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ABSTRACT
The hazard rate function plays a fundamental role in survival analysis.
Its statistical inference methods have been systemically and exclu-
sively studied. When does the hazard rate reach a particular warning
level? This is abasic questionof interest to the investigatorbut largely
left to be explored in practice. We define a level set of hazard rate to
address this issue andpropose a kernel smoothing estimator for such
a level set. In terms of the Hausdorff distance, we establish the con-
sistency, convergence rate and asymptotic distribution of the level
set estimator. The validity of the proposed confidence set, based on
the bootstrap method, for the level set of hazard rate function is
theoretically justified. We conduct comprehensive simulation stud-
ies to assess the finite-sample performance of the proposedmethod,
which is further illustrated with a breast cancer study.
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1. Introduction

The hazard rate function, known as failure rate in reliability and survival analysis, and
also as force of mortality in demographics, is a core concept in many fields. It specifies
the instantaneous rate at which failures occur for subjects that are surviving at time t. For
unit-variate survival time T, the associated hazard rate function is defined as

λ(t) = lim
s→0+

P(t ≤ T < t + s | T ≥ t)
s

.

The censoring, as a feature of survival data, makes the estimation for the hazard rate
function λ(t) nontrivial; there have been significant efforts to develop methodologies
and theory for this challengeable issue. Watson and Leadbetter (1964) proposed a kernel
smoothing estimator for the unit-variate hazard rate function, whichwas further furnished
by Tanner and Wong (1983), Ramlau-Hansen (1983), Yandell (1983), and Lo, Mack, and
Wang (1989), among others. Multivariate survival data, especially bivariate survival data,
where each subject may experience several types of events or several subjects as a group
experience one type of event, are commonly observed in modern biomedical study. As
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the bivariate hazard rate function is closely related with the bivariate survival function,
its estimation method always stems from estimator for the bivariate survival function.
In the framework of censoring, Burke (1988) proposed to estimate the bivariate survival
function by suitably modifying the estimator proposed by Campbell and Földes (1982)
to satisfy the monotonicity. Employing the product integral techniques and the Volterra
integral equations theory, Dabrowska (1988, 1989) proposed a bivariate Kaplan–Meier
estimate (Dabrowska representation). Pruitt (1991) proposed to estimate the bivariate sur-
vival function based on the self-consistency equations of the EM-algorithm. Prentice and
Cai (1992) proposed a representation (Prentice–Cai representation) of bivariate survival
function by using themarginal survival functions and the related covariance function. Fur-
thermore, Gill, van der Laan, and Wellner (1995) studied the limiting distribution of the
Dabrowska representation and the Prentice–Cai representation by applying the functional
delta method.

The nonparametric estimation methods for the hazard rate function, univariate or
bivariate, or their variety, have been extensively investigated. On the contrary, in practice
we may be interested to know when the hazard rate reaches a particular warning level.
In clinical study, the investigators are eager to understand at what time the hazard rate of
tumor exceeds the prespecified warning level. It is also crucial to know when the hazard
rate of default risk in the credit risk field and thereof ruin probability in insurance attain
the warning levels that corporations can bear. Furthermore, regarding to such a time point
patients or customers can be classified as time-dependent risk, higher or lower, groups.
We define a level set of hazard rate, consisting of all the time points at which the haz-
ard rate is equal to a given level. Utilising empirical process theory and technique of kernel
smoothing,we further propose an estimator for such a level set and establish its consistency,
convergence rate and asymptotic distribution in terms of the Hausdorff distance.

Our work is closely related with the set inference, which has been studied and pro-
moted mainly in the society of econometrics. Gilstein and Leamer (1983) provided set
consistent estimation in a class of likelihood models. Furthermore, Chernozhukov, Hong,
and Tamer (2007) considered a general class of criterion-based econometric models which
is identified on a set of parameters and proposed a valid method of obtaining confi-
dence regions for such an identified set parameters by employing empirical process theory.
Romano and Shaikh (2010) provided computationally intensive, yet feasible methods for
inference in a very general class of partially identified econometric models. On the other
hand, many efforts have been made to the inference for density level set. Under various
metrics, the consistency and convergence rate for the density level set have been investi-
gated by Polonik (1995), Tsybakov (1997), Walther (1997), Cuevas, González-Manteiga,
and Rodríguez-Casal (2006), Rinaldo and Wasserman (2010). Furthermore, Singh, Scott,
and Nowak (2009) established the minimaxity of the estimate of density level set and both
Mammen and Polonik (2013) and Jankowski, Ji, and Stanberry (2014) proposed meth-
ods for constructing confidence sets for the density level sets by using variation of density
function. Recently, Chen, Genovese, and Wasserman (2017), under the Hausdorff dis-
tance, have established the limiting distribution of the estimate of density level set and
constructed the confidence set by using the bootstrap method.

Although there have been significant recent efforts to develop methodologies for vari-
ous set inference in some particular fields, there is a paucity of methods with theoretical
guarantees for set inferencewith censored survival data. From the perspective of the hazard
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rate function, which is a fundamental concept in survival analysis, we define the level set of
the hazard rate and propose an estimator for it. In contrast to the density level set estimator
proposed by Chen et al. (2017) where the kernel smoothing density function estimator nat-
urally enjoys the independent and identically distributed (i.i.d.) expression, the non-i.i.d.
expression of the kernel smoothing hazard rate function estimator imposes the challeng-
ing obstacle in theoretical derivations. We make much effort to surmount the difficulty by
constructing the i.i.d. counterpart and further evaluating the approximating error, which
is shown to be non-ignorable and further explicitly expressed via sample size and smooth-
ing bandwidth. Based on these painstaking preparations and employingmodern geometric
techniques and empirical process theory, we rigorously establish the consistency, conver-
gence rate and asymptotic distribution of the level set estimator. We further theoretically
validate the bootstrap-based method to construct confidence set for the hazard level set.
Numerical results show that the proposedmethod exhibits favourable performances in the
finite-sample settings.

The rest of this paper is organised as follows. In Section 2, we propose the estimation
method for the hazard level set. We establish the asymptotic properties of the proposed
method in Section 3. In Section 4, we conduct simulation studies to evaluate its finite-
sample performance and illustrate our method with application to a real data example.
Some remarks are concluded in Section 5, and all the proofs are provided in Section 6.

2. Hazard level set

We first introduce some conventional notation in multivariate setting. For any
a = (a1, . . . , ad)T ∈ Rd and b = (b1, . . . , bd)T ∈ Rd, let min{a, b} = (min{a1, b1}, . . . ,
min{ad, bd})T and I(a ≤ b) =∏d

j=1 I(aj ≤ bj), where I(·) is the indicator function.Denote
a ≤ b if aj ≤ bj for j = 1, . . . , d. Let [a, b] = [a1, b1] × · · · × [ad, bd] for a ≤ b. The
Euclidean norm inRd is denoted by ‖ · ‖2. To present our work in a general framework, we
consider d-variate survival time T = (T1, . . . ,Td)

T to denote the survival time for multi-
ple events occurring on a subject or for multiple subjects in a cluster experiencing a single
event. The d-variate hazard rate function is defined as

λ(t) = lim
s>0,‖s‖2→0

P(t ≤ T < t + s | T ≥ t)
s1 · · · sd

,

where s = (s1, . . . , sd)T. Correspondingly, let C = (C1, . . . ,Cd)
T denote the d-variate cen-

soring time. Let X = min{T,C} be the observed time and � = I(T ≤ C) be the failure
indicator. Suppose the study duration is on [0, τ 0], where τ 0 = (τ01, . . . , τ0d)T allowing
different endpoints for each component of survival times. As usual, T and C are assumed
to be independent.

For a specific � > 0, we define the level set of the hazard rate function λ as follows,

L = {t ∈ [0, τ 0] : λ(t) = �}.

Furthermore, we can define the upper hazard level set as {t ∈ [0, τ 0] : λ(t) ≥ �} and the
lower hazard level set as {t ∈ [0, τ 0] : λ(t) ≤ �}, respectively. For i = 1, . . . , n, (Xi,�i) are
assumed to be independent and identically distributed copies of (X,�). Based on these
observations, we ideally aim to estimate and infer these hazard level sets. First of all, we
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need to know how to estimate the hazard rate function λ(t). Note that the cumulative
hazard function can be deduced as

�(t) =
∫
[0,t]

λ(s) ds.

LetH(x) = P(X ≤ x) and H̄(x) = P(X > x) denote the distribution function and survival
function of X, respectively. Based on the random censoring assumption, the cumulative
hazard function can be rewritten as

�(t) =
∫
[0,t]

1
H̄(s−)

H11(ds),

where H11(x) = P(X ≤ x,� = 1). Plugging in the sample versions, we can estimate it by

�̂(t) =
∫
[0,t]

1
H̄n(s)

Hn11(ds),

where H̄n(x) = n−1∑n
i=1 I(Xi ≥ x) and Hn11(x) = n−1∑n

i=1 I(Xi ≤ x)I(�i = 1).
Utilising the kernel smoothing theory, the estimator of λ(t) is given by

λ̂n(t) =
∫

Kn(t − s)�̂(ds),

where Kn(x) = h−d
n K(x/hn), K(·) is a d-variate kernel function, and hn is bandwidth that

could depend on the sample size n. Therefore, we can estimate the hazard level set L by

L̂n = {t ∈ [0, τ 0] : λ̂n(t) = �}.
If we consider the smoothed version of λ(t), we have

λn(t) =
∫

Kn(t − s)λ(s) ds =
∫

Kn(t − s)�(ds).

Correspondingly, the hazard level set can be also given by

Ln = {t ∈ [0, τ 0] : λn(t) = �}.
Motivated by Chen et al. (2017), we really discuss in our work relations between the hazard
level setsLn and L̂n from perspectives of theoretical derivations and practical applications.
Specifically, while the bias of λn(t) − λ(t)may be analysed theoretically, in practice, it can-
not be accurately estimated. On the contrary, as an unbiased estimator, λ̂n(t) converges to
λn(t) at a much faster rate. As a result, λn(t), preserving the salient structure of λ(t), could
be viewed as an alternative estimand.

It is conventional to use the Hausdorff distance to measure how far two subsets of a
metric space are from each other. Specifically, for any two subsets A and B of metric space
(Rd, ρ), the Hausdorff distance between A and B is defined by

Haus(A,B) = inf{ε > 0 : A ⊂ B ⊕ ε andB ⊂ A ⊕ ε}

= max
{
sup
x∈B

ρ(x,A), sup
x∈A

ρ(x,B)

}
,

where ρ is the Euclidean distance, A ⊕ ε =⋃x∈A{y : ρ(y, x) ≤ ε}, and ρ(x,A) =
inf{ρ(x, y) : y ∈ A}. We will use the Hausdorff distance to evaluate the distance between
the hazard level sets.
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3. Asymptotic theory

Let BCk(D) denote the collection of functions defined on D with bounded and contin-
uous kth-order partial derivatives. We impose the following assumptions throughout our
discussions.

(i) H(τ 0−) > 0.
(ii) The symmetric kernel function K(·) vanishes on the outside of [−1, 1] and has

continuous third-order partial derivatives.
(iii) | log hn|/ log log n → ∞ and nhd+2

n /| log hn| → ∞; hn monotonically converges to
zero and nhdn monotonically converges to infinity as n → ∞.

(iv) The hazard rate function λ is bounded over [0, τ 0]. There exists some positive
constant c0 such that ‖∇λn(t)‖2 > c0 for all t ∈ Ln.

(v) Ln is a manifold lies in [0, τ ] for some τ < τ 0.

Assumption (i) is imposed to make the cumulative hazard function to be well-defined,
which is conventional in survival analysis. For ease of exposition, in assumption (ii), the
support of the kernel is constricted on [−1, 1] instead of an arbitrary compact set. Such an
assumption is also imposed in Ramlau-Hansen (1983), Diehl and Stute (1988), Giné and
Guillou (2001), and Calonico, Cattaneo, and Farrell (2017). Assumption (iii) states that
the bandwidth converges to zero at certain rate regarding to the sample size. Assumption
(iv) excludes the situation in which the hazard rate function λ is horizontal, which is also
imposed inMammen and Polonik (2013), Laloë and Servien (2013), and Chen et al. (2017)
for set inference. Assumption (v) is imposed to avoid the unstability of the hazard rate
function (level set) estimation near the end time of the study. For a multivariate function
f : Rd → R and f ∈ BC2([0, τ ]), we define the quantities

‖f ‖0,max = sup
x∈[0,τ ]

|f (x)|,

‖f ‖1,max = sup
x∈[0,τ ]

max
1≤i≤d

∣∣∣∣∂f (x)∂xi

∣∣∣∣ ,
‖f ‖2,max = sup

x∈[0,τ ]
max

1≤i,j≤d

∣∣∣∣∂2f (x)∂xi∂xj

∣∣∣∣ ,
‖f ‖∗

k,max = max{‖f ‖j,max : j = 0, . . . , k}
for k = 0, 1, 2. The following theorem shows the convergence rate between the estimated
hazard rate function and the smoothed counterpart.

Theorem 3.1: Suppose that assumptions (i)–(iv) hold. Then for k = 0, 1, 2, we have

‖̂λn − λn‖∗
k,max = O

(√
| log hn|
nhd+2k

n

)
.

Actually, we establish the almost sure (a.s.) convergence rate but we suppress the
abbreviation a.s. hereafter if there is no confusion. Whenever two smoothed hazard rate
functions are sufficiently closed to each other, it could be expected that the corresponding
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hazard level sets are closed in terms of the Hausdorff distance, which is summarised in the
following theorem.

Theorem 3.2: Suppose that assumptions (i)–(v) hold. Then we have

Haus(L̂n,Ln) = O(‖̂λn − λn‖∗
0,max) = O

(√
| log hn|
nhdn

)
.

We establish the convergence rate for the almost sure convergence, which is used to
build the following theorem.

Theorem 3.3: Suppose that assumptions (i)–(v) hold. Then we have

sup
x∈Ln

∣∣∣∣∣∣
|Gn(fx)| −

√
nhdnρ(x, L̂n)√

nhdnρ(x, L̂n)

∣∣∣∣∣∣ = O(‖̂λn − λn‖∗
1,max) = O

(√
| log hn|
nhd+2

n

)
,

where

Gn(f ) =
∫
[0,τ 0]

f (s) d[n1/2{�̂(s) − �(s)}]

and fx is defined as

fx(s) = 1√
hdn‖∇λn(x)‖2

K
(
x − s
hn

)
, x ∈ Ln.

Theorem 3.3 shows that the projection distance onto the level set L̂n can be approxi-
mated well at certain rate by a functional empirical process. Thus, we collect the functions
together by defining

F =
⎧⎨⎩fx(·) = 1√

hdn‖∇λn(x)‖2
K
(
x − ·
hn

)
: x ∈ Ln

⎫⎬⎭ .

Let B be the Gaussian process indexed by F such that for any f1 ∈ F and f2 ∈ F ,

B(f1)
D= N(0,E{f 21 (X)I(� = 1)H̄−2(X−)})

and

Cov(B(f1),B(f2)) = E{f1(X)f2(X)I(� = 1)H̄−2(X−)},
where D= stands for the equal in the sense of distribution.

Theorem 3.4: Suppose that assumptions (i)–(v) hold. If nh5dn (log log n)4/ log3 n → 0 as
n → ∞, then we have

sup
t

∣∣∣∣∣P(

√
nhdnHaus(L̂n,Ln) ≤ t) − P

(
sup
f∈F

|B(f )| ≤ t

)∣∣∣∣∣
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= O

⎛⎝( log7 n
nhdn

)1/8

+
(
log3 n
nhd+2

n

)1/2
⎞⎠ .

Theorem 3.4 demonstrates that the distribution of the Hausdorff distance between L̂n
and Ln can be approximated by that of the supremum functional Gaussian process. How-
ever, we cannot directly use this theorem to construct a confidence set forLn as the limiting
distribution is too complicated to be applied.We employ the bootstrapmethod to construct
the confidence set. For ease of exposition, denoteWn = Haus(L̂n,Ln) and letw1−α be the
1 − α quantile of the distribution function ofWn for a given α ∈ (0, 1). Obviously, it holds
that

P(Ln ⊂ L̂n ⊕ w1−α) ≥ 1 − α.

LetOi = (Xi,�i) be the ith observation, i = 1, . . . , n. Sampling n times from these obser-
vations with replacement, we obtain the bootstrap samplesO∗

1 , . . . ,O∗
n . Thus, we can con-

struct the hazard level set L̂∗
n based on the bootstrapped samples. LetW∗

n = Haus(L̂∗
n, L̂n)

and w∗
1−α be the 1 − α quantile of the distribution function of W∗

n . Next theorem shows
that the confidence set forLn constructed by the bootstrapmethod is asymptotically valid.

Theorem 3.5: Suppose that assumptions of Theorem 3.4 hold. Then there exists Kn such
that

sup
t

|P(

√
nhdn Haus(L̂∗

n, L̂n) ≤ t|O1, . . . ,On) − P(

√
nhdnHaus(L̂n,Ln) ≤ t)|

= O

⎛⎝( log7 n
nhd+2

n

)1/6

+
(
log7 n
nhdn

)1/8
⎞⎠

for all (O1, . . . ,On) ∈ Kn and P(Kn) ≥ 1 − c1 exp(−c2nhd+2
n ) for some constants c1 and

c2. Thus, we have

P(Ln ⊂ L̂n ⊕ w∗
1−α) ≥ 1 − α + O

⎛⎝( log7 n
nhd+2

n

)1/6

+
(
log7 n
nhdn

)1/8
⎞⎠ .

In practice, repeating the sampling procedure N times leads to N realisations of W∗
n ;

the 1 − α quantile among these N realisations, denoted by ŵ∗
1−α , can be used to estimate

w∗
1−α . Thus, the 1 − α confidence set for Ln is given by L̂n ⊕ ŵ∗

1−α .

Remark 3.1: nhd+2
n /| log hn| → ∞ in assumption (iii) implies that nhd+2

n → ∞, which
leads to log n − (d + 2)| log hn| > 0. Thus, we have | log hn| = O(log n). On the other
hand, it follows from | log hn|/ log log n → ∞ stated in assumption (iii) that hn loga n → 0
for any a > 0. Combining with the extra assumption nh5dn (log log n)4/ log3 n → 0 in The-
orems 3.4 and 3.5, we have nh5d+1

n → 0, which implies that log n = O(| log hn|). Hence,
we conclude that

| log hn| = O(log n), log n = O(| log hn|),
which will be used repeatedly in proofs of Theorems 3.4 and 3.5.
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Remark 3.2: If we further assume that nhd+2
n / log7 n → ∞, which is a strengthened

version of nhd+2
n /| log hn| → ∞ based on Remark 3.1, then the established rates in The-

orems 3.4 and 3.5 both converge to zero. As a result, we can theoretically justify the weak
convergence of the Haudorff distance between hazard level sets and validate its boot-
strapped approximation. Actually, for any d + 2 < ν0 ≤ 5d, let hn be the order of n−1/ν0 ,
then assumption nhd+2

n / log7 n → ∞ and the other assumptions in Theorems 3.4 and 3.5
are all satisfied.

Now we have systemically established the asymptotic properties of the estimate of the
hazard level set Ln, which backups the practical applications of our proposed method.
The proofs of theorems are deferred to Section 6. Furthermore, we can also establish the
asymptotic properties of the estimators of the upper and lower hazard level sets without
much more efforts. We skip the related discussions to keep our focus on the hazard level
set only.

The bandwidth choice is crucial for kernel smoothing method. Intuitively, bias between
λ and λn is decreasing and that between λn and λ̂n is increasing when the bandwidth
is decreasing. We employ the cross validation score function (Patil 1993) to choose the
optimal bandwidth. Specifically, we define the cross validation criterion

CVn(hn) =
∫
[0,τ 0]

λ̂2n(t) dt − 2
n∑

i=1

λ̂
(−i)
n (Xi)I(�i = 1)∑n

j=1 I(Xj ≥ Xi)
, (1)

where λ̂
(−i)
n is the leave-one-out version of λ̂n by deleting the ith observation. The optimal

bandwidth is defined by ĥn = argminhnCVn(hn), which is recommended in our numerical
studies.

4. Numerical studies

We conducted simulation studies to evaluate the finite-sample performance of the pro-
posed method. For ease of exposition, we considered bivariate survival time, i.e. d = 2, in
numerical studies.

Example 4.1: Wefirst generated the survival timeT = (T1,T2)
T from the bivariate hazard

rate function

λ(t1, t2) = [exp{−(t1 − 2)2} + 0.1] × [exp{−(t2 − 2)2} + 0.1]

and specified the hazard level � = (110 + 11e)/(100e). We considered the kernel function
K(t1, t2) = 0.16 × exp{−(t21 + t22)/2}I(−3 ≤ t1 ≤ 3)I(−3 ≤ t2 ≤ 3). Note that T1 and T2
were independently generated. We set the censoring time C = min{C̃, τ }, where C̃ was
generated from the uniform distribution on [0, τ + L]. The censoring-tuning parameter L
and study duration τ were chosen to yield the censoring rates of (20%, 20%), (50%, 20%)

and (50%, 50%).We considered sample sizes n = 100, 200 and 400. The smoothing param-
eter was selected by minimising (1). For each configuration, we repeated 500 simulations,
and for each replicated data set 200 bootstrap samples were generated for constructing the
confidence set.
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Table 1. Simulation results for the proposed hazard level set estimate in
Example 4.1.

CR n Median Mean CP

(20%, 20%) 100 0.577 0.696 0.935
200 0.510 0.636 0.954
400 0.368 0.505 0.960

(50%, 20%) 100 0.709 0.800 0.914
200 0.586 0.674 0.945
400 0.498 0.596 0.941

(50%, 50%) 100 0.707 0.750 0.840
200 0.659 0.695 0.904
400 0.576 0.599 0.927

Notes: CR, the censoring rate; Median, the median of the Hausdorff distance among 500
simulations; Mean, the mean of the Hausdorff distance among 500 simulations; and CP,
the coverage probability of 95% bootstrapped confidence sets.

Table 1 summarises simulation results under different sample sizes and censoring
rates. As expected, both the median and the mean of the Hausdorff distances among 500
simulations decrease dramatically when the sample size is increased from 100 to 400. Fur-
thermore, the coverage probabilities of 95% bootstrapped confidence sets are enhanced to
be around the nominal level. As usual, the performance of the proposed method could be
negatively affected by the higher censoring rates. However, it is greatly improved when n
is increased to 400. As a result, our method exhibits favourable performances in the finite-
sample settings. To gain more insight of the proposed bootstrap method for constructing
the confidence set, based on one simulated dataset with n = 400 and the censoring rate
(50%, 20%), we plot in the right panel of Figure 1 the hazard level setLn and the estimated
hazard level set L̂n as well as the 95%bootstrapped confidence set forLn. It can be seen that
the proposed confidence set covers the hazard level setLn very well. Correspondingly, the
optimal bandwidth selection by minimising (1) is illustrated in the left panel of Figure 1,
showing that the cross validation criterion is feasible.

Example 4.2: We further considered a situation where T1 and T2 were generated depen-
dently from the hazard function λ(t1, t2) = f (t1, t2)/S(t1, t2), where

f (t1, t2) = 0.336{(t1 − 2)2 + (t2 − 2)2 + 1}−3/4 exp[−{(t1 − 2)2 + (t2 − 2)2 + 1}1/4]
× I(0 < t1 < 20)I(0 < t2 < 20)

and

S(t1, t2) =
∫ ∞

t1

∫ ∞

t2
f (x, y) dx dy.

The hazard level was fixed at � = 0.2. We kept the remaining setup the same as Exam-
ple 4.1. The simulation results are summarised in Table 2 and the evaluations of the optimal
bandwidth selection procedure and the proposed bootstrapped confidence set method are
presented in Figure 2, from which we can draw similar conclusions.

Example 4.3: As a real example, we now apply the proposedmethod to the German Breast
Cancer study. The data is available from http://www.umass.edu/statdata/statdata/data. In
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Figure 1. The left panel shows the optimal bandwidth selection based on one simulated dataset with
n = 400 and the censoring rate (50%, 20%) in Example 4.1. The right panel correspondingly shows
the hazard level set Ln (solid lines), the estimated hazard level set L̂n (dotted lines), and the 95%
bootstrapped confidence set forLn.

Table 2. Simulation results for the proposed hazard level set estimate in
Example 4.2.

CR n Median Mean CP

(20%, 20%) 100 0.872 0.956 0.936
200 0.718 0.792 0.962
400 0.577 0.634 0.962

(50%, 20%) 100 1.104 1.246 0.886
200 0.918 1.077 0.914
400 0.777 0.897 0.944

(50%, 50%) 100 1.327 1.386 0.789
200 1.122 1.274 0.896
400 0.878 1.053 0.921

Notes: CR, the censoring rate; Median, the median of the Hausdorff distance among 500
simulations; Mean, the mean of the Hausdorff distance among 500 simulations; and CP,
the coverage probability of 95% bootstrapped confidence sets.

the study, a total of 686 patients with primary node positive breast cancer were recruited
between July 1984 andDecember 1989. The time to the recurrence of breast cancer and the
time to deathweremonitored during study alongwith the censoring rates 56.4%and 75.1%,
respectively. To provide an overall view, we plot in Figure 3 the heat map for the hazard rate
function estimate. It reveals that both lower-left and top-right regions demonstrated very
higher hazard rates. Furthermore, the patients in the study tended to suffer from much
more serious life-threatening disease than the tumor recurrence. Figure 4 shows the opti-
mal bandwidth selection procedure as well as the hazard level set estimate with � = 0.002
and the 95% confidence set based on 200 bootstrapped samples. In general, it captures the
trend of the time set in which the hazard rate function reached the given level 0.002, in
comparison with Figure 3.
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Figure 2. The left panel shows the optimal bandwidth selection based on one simulated dataset with
n = 400 and the censoring rate (50%, 20%) in Example 4.2. The right panel correspondingly shows
the hazard level set Ln (solid lines), the estimated hazard level set L̂n (dotted lines), and the 95%
bootstrapped confidence set forLn.

Figure 3. The heat map of the estimated hazard rate function in the German Breast Cancer study.
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Figure 4. The left panel shows the optimal bandwidth selection for the German Breast Cancer study.
The right panel correspondingly shows the hazard level set estimate with � = 0.002 (dotted lines) and
the 95% bootstrapped confidence set.

5. Concluding remarks

The hazard rate function is the core concept in survival analysis. There has been a long
history of researches on its nonparametric estimation methods. From a novel perspective,
we define the hazard level set and comprehensively study its theoretical properties, includ-
ing the convergence rate and weak convergence under the Hausdorff distance, and further
propose a valid bootstrap method to construct the confidence set. Numerical results
demonstrate that the proposed method performs favourably in finite-sample settings.

In clinical study, the investigators are often interested to know at what time the haz-
ard rate of some tumor exceeds the prespecified warning level. In finance, it is also vital
to understand when the hazard rate of default risk achieves the warning level that cor-
porations can bear. The related hazard level could be considered a guidance for what
diagnostic strategy be further adopted. Our work endeavours to initiate theoretical basis
and illuminate potential application of the hazard level set in survival analysis.

6. Theoretical proofs

We provide proofs of theorems presented in Section 3. For ease of exposition, we consider
the case d = 2 while our derivations can be extended to higher dimension case, mainly
involving the complicated multivariate integral transformation.

Proof of Theorem 3.1: We first prove that it holds for k = 0. For t = (t1, t2)T ∈ [0, τ ],
under assumption (ii), the expressions of λ̂n and λn can be further refined as

λ̂n(t) =
∫
Bn(t)

Kn(t − s)�̂(ds) and λn(t) =
∫
Bn(t)

Kn(t − s)�(ds),

where Bn(t) = [t1 − hn, t1 + hn] × [t2 − hn, t2 + hn]. Then we have

λ̂n(t) − λn(t) =
∫
Bn(t)

Kn(t − s)(�̂ − �)(ds).



34 G. MAO ET AL.

Under assumption (ii), using integration by parts and noting that Kn(t − s) and ∇Kn
(t − s), as functions of s, are zero at the boundary of Bn(t), we further have

λ̂n(t) − λn(t) =
∫
Bn(t)

(�̂ − �)(s) dKn(t − s). (2)

Rewrite

�̂(t) − �(t) =
∫
[0,t]

1
H̄n(s)

Hn11(ds) −
∫
[0,t]

1
H̄(s−)

H11(ds)

=
∫
[0,t]

{
1

H̄n(s)
− 1

H̄(s−)

}
Hn11(ds) +

∫
[0,t]

1
H̄(s−)

(Hn11 − H11)(ds)

≡ ξn1(t) + ξn2(t),

where ξn1(t) and ξn2(t) are self-explained from the expression. As a result, (2) can be
further deduced as

λ̂n(t) − λn(t) =
∫
Bn(t)

ξn1(s) dKn(t − s) +
∫
Bn(t)

ξn2(s) dKn(t − s)

= ηn1(t) + ηn2(t), (3)

where the definitions of ηn1(t) and ηn2(t) are also self-explained.We first consider the term
ηn1(t). Let (t1 − s1)/hn = u and (t2 − s2)/hn = v, then using assumption (ii), we have

ηn1(t) = ηn1(t1, t2) = h−2
n

∫ 1

−1

∫ 1

−1
ξn1(t1 − hnu, t2 − hnv)K(du, dv)

= h−2
n

∫ 1

−1

∫ 1

−1
ξn1(t1 + hnu, t2 + hnv)K(du, dv). (4)

Furthermore, the integrals of
∫ 1
−1
∫ 1
−1 ξn1(t1 + hnu, t2)K(du, dv),

∫ 1
−1
∫ 1
−1 ξn1(t1, t2)K(du,

dv), and
∫ 1
−1
∫ 1
−1 ξn1(t1, t2 + hnv)K(du, dv) are all zero based on assumption (ii).

Hence, (4) can be written as

ηn1(t) = h−2
n

∫ 1

−1

∫ 1

−1
{ξn1(t1 + hnu, t2 + hnv) − ξn1(t1 + hnu, t2)

− ξn1(t1, t2 + hnv) + ξn1(t1, t2)}K(du, dv)

= h−2
n

∫ 1

−1

∫ 1

−1

{∫ t1+hnu

t1

∫ t2+hnv

t2
ξn1(ds1, ds2)

}
K(du, dv)

= h−2
n

∫ 1

−1

∫ 1

−1

{∫ t1+hnu

t1

∫ t2+hnv

t2

H̄(s1−, s2−) − H̄n(s1, s2)
H̄(s1−, s2−)H̄n(s1, s2)

×Hn11(ds1, ds2)}K(du, dv). (5)

Note that hn monotonically converges to zero as n → ∞. Thus, there exists some τ ∗ <

τ 0 such that τ1 + hn < τ ∗
1 and τ2 + hn < τ ∗

2 when n is sufficiently large. Then, under
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assumption (i), we have

sup
t1,t2,u,v

∣∣∣∣∣h−2
n

∫ t1+hnu

t1

∫ t2+hnv

t2

H̄(s1−, s2−) − H̄n(s1, s2)
H̄(s1−, s2−)H̄n(s1, s2)

Hn11(ds1, ds2)

∣∣∣∣∣
≤ c3 sup

s∈[0,τ∗]
|H̄n(s) − H̄(s−)| × sup

t1,t2,u,v

∣∣∣∣∣h−2
n

∫ t1+hnu

t1

∫ t2+hnv

t2
Hn11(ds1, ds2)

∣∣∣∣∣ , (6)

where c3 is some positive constant. Furthermore

sup
t1,t2,u,v

∣∣∣∣∣h−2
n

∫ t1+hnu

t1

∫ t2+hnv

t2
Hn11(ds1, ds2)

∣∣∣∣∣
≤ sup

t1,t2,u,v

∣∣∣∣∣h−2
n

∫ t1+hnu

t1

∫ t2+hnv

t2
(Hn11 − H11)(ds1, ds2)

∣∣∣∣∣
+ sup

t1,t2,u,v

∣∣∣∣∣h−2
n

∫ t1+hnu

t1

∫ t2+hnv

t2
H11(ds1, ds2)

∣∣∣∣∣
≤ 4h−2

n sup
s∈[0,τ∗]

|Hn11(s) − H11(s)| + sup
s∈[0,τ∗]

|H′′
11(s)|, (7)

whereH′′
11 is the sub-density function corresponding to the sub-distribution functionH11.

It follows from the iterated logarithm that

sup
s∈[0,τ∗]

|H̄n(s) − H̄(s−)| = O

(√
log log n

n

)
(8)

and

sup
s∈[0,τ∗]

|Hn11(s) − H11(s)| = O

(√
log log n

n

)
. (9)

Using the boundedness condition of λ in assumption (iv), we have, for some constant c4,

sup
s∈[0,τ∗]

|H′′
11(s)| = sup

s∈[0,τ∗]
H̄(s)λ(s) ≤ sup

s∈[0,τ∗]
λ(s) ≤ c4. (10)

The total variation normofK over [−1, 1] is denoted by ‖K‖TV, which is bounded by some
constant c5 under assumption (ii). Therefore, combining (5), (6), (7), (8), (9), and (10), we
have

sup
t

|ηn1(t)|

≤ sup
t1,t2,u,v

∣∣∣∣∣h−2
n

∫ t1+hnu

t1

∫ t2+hnv

t2

H̄(s1−, s2−) − H̄n(s1, s2)
H̄(s1−, s2−)H̄n(s1, s2)

Hn11(ds1, ds2)

∣∣∣∣∣ · ‖K‖TV
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≤ c3O

(√
log log n

n

)(
4h−2

n O

(√
log log n

n

)
+ c4

)
c5

= O

(
log log n
nh2n

+
√
log log n

n

)
. (11)

Using the similar arguments, we rewrite ηn2(t) as

ηn2(t) =
∫ 1

−1

∫ 1

−1

{
h−2
n

∫ t1+hnu

t1

∫ t2+hnv

t2

1
H̄(s1−, s2−)

×(Hn11 − H11)(ds1, ds2)

}
K(du, dv). (12)

We now consider the signs of u and v. First, if u ∈ [0, 1] and v ∈ [0, 1], define

G+,+
n (t1, t2, u, v) = 1

n

n∑
i=1

I(Xi ∈ [t1, t1 + hnu] × [t2, t2 + hnv])I(�i = 1)
H̄(Xi−)

.

The integrand function in (12) can be deduced as

sup
t1,t2,u∈[0,1],v∈[0,1]

∣∣∣∣∣h−2
n

∫ t1+hnu

t1

∫ t2+hnv

t2

1
H̄(s1−, s2−)

(Hn11 − H11)(ds1, ds2)

∣∣∣∣∣
= h−2

n sup
t1,t2,u∈[0,1],v∈[0,1]

|G+,+
n (t1, t2, u, v) − E{G+,+

n (t1, t2, u, v)}|. (13)

We further define the class of functions

G = {gt1,t2,u,v,hn(z1, z2, z3)
= I(z1 ∈ [t1, t1 + hnu])I(z2 ∈ [t2, t2 + hnv])I(z3 = 1)H−1

(z1−, z2−) :

t1 ∈ [0, τ1], t2 ∈ [0, τ2], u ∈ [0, 1], v ∈ [0, 1], hn > 0}

and its subclasses

Gm = {gt1,t2,u,v,h(z1, z2, z3)
= I(z1 ∈ [t1, t1 + hu])I(z2 ∈ [t2, t2 + hv])I(z3 = 1)H−1

(z1−, z2−) :

t1 ∈ [0, τ1], t2 ∈ [0, τ2], u ∈ [0, 1], v ∈ [0, 1], h2m ≤ h ≤ h2m−1},

where m = 1, 2, . . .. It follows form Theorem 3.3 in Giné and Guillou (2001) that G and,
for all m ≥ 1, Gm are measurable uniformly bounded VC classes of functions. We now
verify conditions in Corollary 2.2 in Giné and Guillou (2002). Due to the boundedness of
H̄−1 on [0, τ ∗] in assumption (i), there exists some constant c6 such that

sup
g∈Gm

sup
z1,z2,z3

|g(z1, z2, z3)| ≤ sup
s∈[0,τ∗]

H̄−1(s) ≤ c6.
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Furthermore, some calculations, combined with (10), lead to

sup
t1∈[0,τ1],t2∈[0,τ2],u∈[0,1],v∈[0,1],h2m≤h≤h2m−1

E

{
I(X ∈ [t1, t1 + hu] × [t2, t2 + hv])I(� = 1)

H̄(X−)

}2
≤ sup

t1∈[0,τ1],t2∈[0,τ2],u∈[0,1],v∈[0,1],h2m≤h≤h2m−1

∫ t1+hu

t1

∫ t2+hv

t2
H′′
11(s1, s2) ds1ds2

× sup
s∈[0,τ∗]

H̄−2(s) ≤ c26c4 sup
h2m≤h≤h2m−1

h2

≤ c26c4h
2
2m−1 .

Thus, the parametersUm and σ 2
m in Corollary 2.2 in Giné and Guillou (2002) can be taken

to be

Um = c6 and σ 2
m = c26c4h

2
2m−1 .

Assumption (iii) implies h2m−1 → 0 and 2m−1h22m−1/| log h2m−1 | → ∞ asm → ∞. There-
fore, for sufficiently largem, it holds

σm < Um/2 and
√
2mσm ≥ Um

√
log

Um

σm
. (14)

Similarly, for sufficiently largem, there exists some c7 such that

σm
√
2m
√
log

Um

σm
≤
√
c72m−1h22m−1 | log h2m−1 |. (15)

Thus, conditions in Corollary 2.2 in Giné and Guillou (2002) have been verified from (14)
and (15), which immediately implies that

P

⎛⎝ sup
g∈Gm

∣∣∣∣∣∣
2m∑
i=1

[g(Xi1,Xi2,�i) − E{g(X11,X12,�1)}]
∣∣∣∣∣∣ > c8

√
c72m−1h22m−1 | log h2m−1 |

⎞⎠
≤ c9 exp

{
−c10 log

Um

σm

}
(16)

for some positive constants c8, c9 and c10, whereXi = (Xi1,Xi2)
T. Assumption (iii) implies

that | log h2m−1 |/ log log(2m−1) → ∞, from which we have

c10 log
Um

σm
≥ 2 log(m − 1)

for sufficiently largem. Then (16) can be further rewritten as

P

⎛⎝ sup
g∈Gm

∣∣∣∣∣∣
2m∑
i=1

[g(Xi1,Xi2,�i) − E{g(X11,X12,�1)}]
∣∣∣∣∣∣ > c8

√
c72m−1h22m−1 | log h2m−1 |

⎞⎠
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≤ c9 exp{−2 log(m − 1)}
≤ c9

(m − 1)2
. (17)

For 2m−1 ≤ n ≤ 2m, we have h2m ≤ hn ≤ h2m−1 and nh2n ≥ 2m−1h22m−1 under assumption
(iii). As a result, | log hn| ≥ | log h2m−1 |, which immediately implies that

1√
nh2n| log hn|

≤ 1√
2m−1h22m−1 | log h2m−1 |

. (18)

Following (17), (18) and the Montgomery–Smith maximal inequality (Giné and Guil-
lou 2002), we have

P

(
max

2m−1≤n≤2m
sup

t1,t2,u∈[0,1],v∈[0,1]

√
n

h2n| log hn|
|G+,+

n (t1, t2, u, v)

−E{G+,+
n (t1, t2, u, v)}| > 30c8

√
c7
)

= P

(
max

2m−1≤n≤2m
sup

t1,t2,u∈[0,1],v∈[0,1]
1√

nh2n| log hn|

×
∣∣∣∣∣

n∑
i=1

{
I(Xi ∈ [t1, t1 + hnu] × [t2, t2 + hnv])I(�i = 1)

H̄(Xi−)

−
∫ t1+hnu

t1

∫ t2+hnv

t2

1
H̄(s1−, s2−)

H11(ds1, ds2)

}∣∣∣∣∣ > 30c8
√
c7

)

≤ P

⎛⎝ max
2m−1≤n≤2m

sup
t1,t2,u∈[0,1],v∈[0,1],h2m≤h≤h2m−1

1√
2m−1h22m−1 | log h2m−1 |

×
∣∣∣∣∣

n∑
i=1

{
I(Xi ∈ [t1, t1 + hu] × [t2, t2 + hv])I(�i = 1)

H̄(Xi−)

−
∫ t1+hu

t1

∫ t2+hv

t2

1
H̄(s1−, s2−)

H11(ds1, ds2)

}∣∣∣∣∣ > 30c8
√
c7

)

≤ 9P

⎛⎝ sup
t1,t2,u∈[0,1],v∈[0,1],h2m≤h≤h2m−1

1√
2m−1h22m−1 | log h2m−1 |

×
∣∣∣∣∣∣
2m∑
i=1

{
I(Xi ∈ [t1, t1 + hu] × [t2, t2 + hv])I(�i = 1)

H̄(Xi−)

−
∫ t1+hu

t1

∫ t2+hv

t2

1
H̄(s1−, s2−)

H11(ds1, ds2)

}∣∣∣∣∣ > c8
√
c7

)
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= 9P

⎛⎝ sup
g∈Gm

∣∣∣∣∣∣
2m∑
i=1

[g(Xi1,Xi2,�i) − E{g(X11,X12,�1)}]
∣∣∣∣∣∣

> c8
√
c72m−1h22m−1 | log h2m−1 |

)
≤ 9c9

(m − 1)2
.

Consequently, it follows from the Borel–Cantelli and the zero-one law that with probability
one it holds√

n
h2n| log hn|

sup
t1,t2,u∈[0,1],v∈[0,1]

|G+,+
n (t1, t2, u, v) − E{G+,+

n (t1, t2, u, v)}| ≤ 30c8
√
c7.

As a result,

sup
t1,t2,u∈[0,1],v∈[0,1]

|G+,+
n (t1, t2, u, v) − E{G+,+

n (t1, t2, u, v)}| = O

⎛⎝√h2n| log hn|
n

⎞⎠ . (19)

Then (13) can be rewritten as

sup
t1,t2,u∈[0,1],v∈[0,1]

∣∣∣∣∣h−2
n

∫ t1+hnu

t1

∫ t2+hnv

t2

1
H̄(s1−, s2−)

(Hn11 − H11)(ds1, ds2)

∣∣∣∣∣
= O

(√
| log hn|
nh2n

)
.

Furthermore,G+,−
n ,G−,+

n , andG−,−
n can be defined similarly. Mimicking the proof of (19),

we can also establish the same uniform convergence rate to their expectations. Hence, we
conclude that

sup
t1,t2,u∈[−1,1],v∈[−1,1]

∣∣∣∣∣h−2
n

∫ t1+hnu

t1

∫ t2+hnv

t2

1
H̄(s1−, s2−)

(Hn11 − H11)(ds1, ds2)

∣∣∣∣∣
= O

(√
| log hn|
nh2n

)
.

Based on (12), we have

sup
t

|ηn2(t)|

≤ sup
t1,t2,u∈[−1,1],v∈[−1,1]

∣∣∣∣∣h−2
n

∫ t1+hnu

t1

∫ t2+hnv

t2

1
H̄(s1−, s2−)

(Hn11 − H11(ds1, ds2)

∣∣∣∣∣ ‖K‖TV

= O

(√
| log hn|
nh2n

)
. (20)
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Coupled with (11) and (20), (3) can be deduced as

‖̂λn − λn‖∗
0,max = sup

t∈[0,τ ]
|̂λn(t) − λn(t)|

≤ sup
t∈[0,τ ]

|ηn1(t)| + sup
t∈[0,τ ]

|ηn2(t)|

≤ O

(
log log n
nh2n

+
√
log log n

n
+
√

| log hn|
nh2n

)

= O

(√
| log hn|
nh2n

)

under assumption (iii). For scenarios k = 1 and 2 and d ≥ 2, using the similar arguments,
we can conclude that

‖̂λn − λn‖∗
k,max = O

(√
| log hn|
nhd+2k

n

)
,

which completes the proof of Theorem 3.1. �

Proof of Theorem 3.2: Assumption (iv) implies that there exist some positive constants
c11 and c12 such that if |�1 − �2| ≤ c11 then

Haus({t ∈ [0, τ 0] : λn(t) = �1}, {t ∈ [0, τ 0] : λn(t) = �2}) ≤ c12|�1 − �2|; (21)

see remarks of Theorem 2 in Cuevas et al. (2006). We first consider supx∈Ln
ρ(x, L̂n). It

follows from assumption (iii) and Theorem 3.1 that ‖̂λn − λn‖∗
0,max

a.s.−→ 0. Taking x ∈ Ln
and using (21), for sufficiently large n, there exist un and vn, depending on x and ‖̂λn −
λn‖∗

0,max, such that

λn(un) = � + 2‖̂λn − λn‖∗
0,max, ρ(x, un) ≤ 2c12‖̂λn − λn‖∗

0,max

and

λn(vn) = � − 2‖̂λn − λn‖∗
0,max, ρ(x, vn) ≤ 2c12‖̂λn − λn‖∗

0,max.

Thus, we obtain that

λ̂n(un) = λn(un) + λ̂n(un) − λn(un) ≥ � + 2‖̂λn − λn‖∗
0,max − ‖̂λn − λn‖∗

0,max ≥ �.

Using the analogous arguments, we have λ̂n(vn) ≤ �. Hence, there exists some zn such that
λ̂n(zn) = � and ρ(zn, un) ≤ ρ(un, vn), which implies that

ρ(x, zn) ≤ ρ(x, un) + ρ(zn, un) ≤ ρ(x, un) + ρ(x, un) + ρ(x, vn) ≤ 6c12‖̂λn − λn‖∗
0,max.

Immediately,

sup
x∈Ln

ρ(x, L̂n) ≤ 6c12‖̂λn − λn‖∗
0,max. (22)
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We further consider sup̂x∈L̂n
ρ(̂x,Ln). Taking x̂ ∈ L̂n, we have

|λn(̂x) − �| = |λn(̂x) − λ̂n(̂x)| ≤ ‖̂λn − λn‖∗
0,max,

which, combined with (21), implies that

sup
x̂∈L̂n

ρ(̂x,Ln) ≤ c12 sup
x̂∈L̂n

|λn(̂x) − �| ≤ c12‖̂λn − λn‖∗
0,max. (23)

Following (22), (23) and Theorem 3.1, we have

Haus(L̂n,Ln) = max

{
sup
x̂∈L̂n

ρ(̂x,Ln), sup
x∈Ln

ρ(x, L̂n)

}
≤ 6c12‖̂λn − λn‖∗

0,max

= O

(√
| log hn|
nhdn

)
.

Consequently, we conclude Theorem 3.2. �

Proof of Theorem 3.3: By Theorem 3.2 and assumption (iii), we have Haus(L̂n,Ln)
a.s.−→

0. Thus, for sufficiently large n, the set L̂n is contained in set [0, τ ]. On the other hand,
it follows from assumptions (iii) and (v), Lemma 1 in Chen et al. (2017), Theorems 3.1
and 3.2 that there exists a unique x ∈ Ln such that ρ(̂x,Ln) = ρ(̂x, x) for each x̂ ∈ L̂n,
and vice versa. Furthermore, assumption (iv) also holds for λ̂n(t) as Haus(L̂n,Ln)

a.s.−→ 0
and ‖̂λn − λn‖∗

1,max
a.s.−→ 0.

Noting that λ̂n(̂x) = λn(x), and expanding λ̂n(x) around x̂, we obtain that

|̂λn(x) − λn(x) − ∇λ̂n(̂x)T(x − x̂)| = |̂λn(x) − λ̂n(̂x) − ∇λ̂n(̂x)T(x − x̂)|
= O(ρ2(x, x̂)) + O(‖̂λn − λn‖∗

2,max)ρ
2(x, x̂)

under assumptions (ii) and (iv). It follows from the Lagrange multiplier method and
assumption (v) that

|∇λ̂n(̂x)T(x − x̂)| = ‖∇λ̂n(̂x)‖2ρ(x, x̂).

As a consequence,

| |̂λn(x) − λn(x)| − ‖∇λ̂n(̂x)‖2ρ(x, x̂)|
≤ |̂λn(x) − λn(x) − ∇λ̂n(̂x)T(x − x̂)|
= O(ρ2(x, x̂)) + O(‖̂λn − λn‖∗

2,max)ρ
2(x, x̂). (24)
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On the other hand, the Taylor expansion of ∇λn(̂x) around x results in

∇λn(̂x) − ∇λn(x) = ∇2λn(x)(̂x − x) + o(ρ(̂x, x)).

Using assumptions (ii), (iv) and Theorem 3.2, we obtain that

‖∇λn(̂x) − ∇λn(x)‖2 ≤ O(ρ(̂x, x)) ≤ O(Haus(L̂n,Ln)) = O(‖̂λn − λn‖∗
0,max).

Therefore,

| ‖∇λ̂n(̂x)‖2 − ‖∇λn(x)‖2| ≤ ‖∇λ̂n(̂x) − ∇λn(x)‖2
≤ ‖∇λ̂n(̂x) − ∇λn(̂x)‖2 + ‖∇λn(̂x) − ∇λn(x)‖2
≤ O(‖̂λn − λn‖∗

1,max) + O(‖̂λn − λn‖∗
0,max)

= O(‖̂λn − λn‖∗
1,max).

Thus, based on Theorems 3.1, 3.2 and assumption (iii), from (24) we have

| |̂λn(x) − λn(x)| − ‖∇λn(x)‖2ρ(x, L̂n)|
≤ | |̂λn(x) − λn(x)| − ‖∇λ̂n(̂x)‖2ρ(x, L̂n)| + |‖∇λ̂n(̂x)‖2 − ‖∇λn(x)‖2|ρ(x, L̂n)

= ρ(x, L̂n){O(‖̂λn − λn‖∗
0,max) + O(‖̂λn − λn‖∗

2,max)O(‖̂λn − λn‖∗
0,max)

+ O(‖̂λn − λn‖∗
1,max)}

= O(‖̂λn − λn‖∗
1,max)ρ(x, L̂n).

Since

λ̂n(x) − λn(x)
‖∇λn(x)‖2 = 1√

nhdn
Gn(fx)

and ‖∇λn(x)‖2 is bounded away from zero as stated in assumption (iv), we obtain that

∣∣∣∣∣∣
|Gn(fx)| −

√
nhdnρ(x, L̂n)√

nhdnρ(x, L̂n)

∣∣∣∣∣∣ = O(‖̂λn − λn‖∗
1,max) = O

(√
| log hn|
nhd+2

n

)

holds uniformly over x ∈ Ln, which proves Theorem 3.3. �

Before proving Theorem 3.4, we establish the following lemma, which is a strengthened
version of Theorem 3.1.
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Lemma 6.1: Suppose that assumptions (i)–(iv) hold. Then for k = 0, 1, 2, we have

|‖̂λn − λn‖∗
k,max − ‖gn11 − E(gn11)‖∗

k,max| = O

(
log log n
nhd+k

n
+
√
log log n
nh2kn

)
and

‖̂λn − λn‖∗
k,max = O(‖gn11 − E(gn11)‖∗

k,max),

where

gn11(t) = 1
n

n∑
i=1

Kn(t − Xi)I(�i = 1)H̄−1(Xi−).

Proof: We first consider case k = 0 and d = 2. Under assumption (ii) and using integra-
tion by parts, ηn2(t) in (3) can be written as

ηn2(t) =
∫
Bn(t)

Kn(t − s)
H̄(s−)

(Hn11 − H11)(ds) = gn11(t) − E{gn11(t)}.

Following (3) and (11), we obtain that

|‖̂λn − λn‖∗
0,max − ‖gn11 − E(gn11)‖∗

0,max|

=
∣∣∣∣∣ supt∈[0,τ ]

|̂λn(t) − λn(t)| − sup
t∈[0,τ ]

|gn11(t) − E{gn11(t)}|
∣∣∣∣∣

≤ sup
t∈[0,τ ]

|̂λn(t) − λn(t) − ηn2(t)|

= sup
t∈[0,τ ]

|ηn1(t)|

= O

(
log log n
nh2n

+
√
log log n

n

)
.

Using the analogous arguments to Theorem 3.3 in Giné and Guillou (2002), there exists

some constant c13 such that ‖gn11 − E(gn11)‖∗
0,max ≥ c13

√
| log hn|/(nhdn). Thus, assump-

tion (iii) implies that

‖̂λn − λn‖∗
0,max ≤ ‖gn11 − E(gn11)‖∗

0,max + O

(
log log n
nhdn

+
√
log log n

n

)
= O(‖gn11 − E(gn11)‖∗

0,max).

For scenarios k = 1, 2 and d ≥ 2, utilising the similar arguments, we conclude Lemma 6.1.
�

Proof of Theorem 3.4: Based on Theorems 3.2 and 3.3 and some basic derivations, we
have ∣∣∣∣∣

√
nhdn Haus(L̂n,Ln) − sup

f∈F
|Gn(f )|

∣∣∣∣∣
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=
∣∣∣∣∣
√
nhdn sup

x∈Ln

ρ(x, L̂n) − sup
f∈F

|Gn(f )|
∣∣∣∣∣

≤ sup
x∈Ln

√
nhdnρ(x, L̂n)

supx∈Ln
| |Gn(fx)| −

√
nhdnρ(x, L̂n)|

supx∈Ln

√
nhdnρ(x, L̂n)

≤ sup
x∈Ln

√
nhdnρ(x, L̂n) sup

x∈Ln

∣∣∣∣∣∣
|Gn(fx)| −

√
nhdnρ(x, L̂n)√

nhdnρ(x, L̂n)

∣∣∣∣∣∣
≤ c14

√
| log hn|‖̂λn − λn‖∗

1,max

for some positive constant c14. By Corollary 2.2 in Giné and Guillou (2002), there exist

some constants c15, c16, c17 and c18 such that for c15
√

| log hn|/(nhd+2
n ) ≤ t1 ≤ c16,

P(‖gn11 − E(gn11)‖∗
1,max > t1) ≤ c17 exp(−c18nhd+2

n t21). (25)

Following Lemma 6.1, we have

P

(∣∣∣∣∣
√
nhdn Haus(L̂n,Ln) − sup

f∈F
|Gn(f )|

∣∣∣∣∣ > t2

)
≤ P(c14

√
| log hn|‖̂λn − λn‖∗

1,max > t2)

≤ P(c19c14
√

| log hn|‖gn11 − E(gn11)‖∗
1,max > t2)

≤ c17 exp

(
− c18
c219c

2
14

nhd+2
n

| log hn| t
2
2

)
(26)

for somepositive constant c19 and c15c19c14
√

| log hn|2/(nhd+2
n ) ≤ t2 ≤ c16c19c14

√| log hn|.
On the other hand, we define the class of functions

F † =
⎧⎨⎩fx(z1, z2) = K((x − z1)/hn)I(z2 = 1)√

hdn‖∇λn(x)‖2H̄(z1−)

: x ∈ Ln

⎫⎬⎭ ,

on which we further define the process

G
†
n(f ) = 1√

n

n∑
i=1

[f (Xi,�i) − E{f (Xi,�i)}]

for any f ∈ F †. We denote the Gaussian process B† indexed by F † such that for any
f1 ∈ F † and f2 ∈ F †,

B†(f1)
D= N(0,E{f 21 (X,�)}) and Cov(B†(f1),B†(f2)) = E{f1(X,�)f2(X,�)}.

Following Corollary 2.2 in Chernozhukov, Chetverikov, and Kato (2014), there exist some
positive constants c20 and c21 and some random variable B D= supf∈F † |B†(f )| such that
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for all γ ∈ (0, 1) and sufficiently large n,

P

(∣∣∣∣∣ supf∈F †
|G†

n(f )| − B

∣∣∣∣∣ > c20
2

log2/3 n
γ 1/3(nhdn)1/6

)
≤ c21γ .

Obviously,

P

(∣∣∣∣∣supf∈F
|Gn(f )| − B

∣∣∣∣∣ > c20
log2/3 n

γ 1/3(nhdn)1/6

)

≤ P

(∣∣∣∣∣ supf∈F †
|G†

n(f )| − B

∣∣∣∣∣ > c20
2

log2/3 n
γ 1/3(nhdn)1/6

)

+ P

(∣∣∣∣∣supf∈F
|Gn(f )| − sup

f∈F †
|G†

n(f )|
∣∣∣∣∣ > c20

2
log2/3 n

γ 1/3(nhdn)1/6

)

≤ c21γ + P

(∣∣∣∣∣supf∈F
|Gn(f )| − sup

f∈F †
|G†

n(f )|
∣∣∣∣∣ > c20

2
log2/3 n

γ 1/3(nhdn)1/6

)
. (27)

By (26) and (27), we have

P

(
|
√
nhdn Haus(L̂n,Ln) − B| > t2 + c20

log2/3 n
γ 1/3(nhdn)1/6

)

≤ c17 exp

(
− c18
c219c

2
14

nhd+2
n

| log hn| t
2
2

)
+ c21γ

+ P

(∣∣∣∣∣supf∈F
|Gn(f )| − sup

f∈F †
|G†

n(f )|
∣∣∣∣∣ > c20

2
log2/3 n

γ 1/3(nhdn)1/6

)
. (28)

On the other hand, viewed as index by x over Ln, the distribution of B(f ) is the same as
that of B†(f ). Consequently, employing Lemma 10 in Chen et al. (2017) and (28), we have

sup
t

∣∣∣∣∣P(

√
nhdn Haus(L̂n,Ln) ≤ t) − P

(
sup
f∈F

|B(f )| ≤ t

)∣∣∣∣∣
≤ c22

{
c20

log7/6 n
γ 1/3(nhdn)1/6

+ t2
√
log n

}
+ c21γ + c17 exp

(
− c18
c219c

2
14

nhd+2
n

| log hn| t
2
2

)

+ P

(∣∣∣∣∣supf∈F
|Gn(f )| − sup

f∈F †
|G†

n(f )|
∣∣∣∣∣ > c20

2
log2/3 n

γ 1/3(nhdn)1/6

)
(29)

for some positive constant c22. Observing that

Gn(fx) =
√
nhdn

λ̂n(x) − λn(x)
‖∇λn(x)‖2 for fx ∈ F (30)
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and

G
†
n(fx) =

√
nhdn

gn11(x) − E{gn11(x)}
‖∇λn(x)‖2 for fx ∈ F †, (31)

and using Lemma 6.1 and the boundedness of ‖∇λn(x)‖−1
2 over x ∈ Ln, which is stated in

assumption (iv), we obtain that∣∣∣∣∣supf∈F
|Gn(f )| − sup

f∈F †
|G†

n(f )|
∣∣∣∣∣ = O

⎛⎝ log log n√
nhdn

+
√
hdn log log n

⎞⎠ .

Under assumption (iii) and as nh5dn (log log n)4/ log3 n → 0, there exists some c23 ≥ c215c18
large enough such that nhd+2+2c23

n /(| log hn|2 log n) converges to zero. By setting γ =
(
log7 n
nhdn

)1/8 and t2 = (
c23c219c

2
14| log hn|2

c18nhd+2
n

)1/2, it is straightforward to verify that log log n√
nhdn

and√
hdn log log n converge to zero faster than log2/3 n

γ 1/3(nhdn)1/6
. Therefore, we have

P

(∣∣∣∣∣supf∈F
|Gn(f )| − sup

f∈F †
|G†

n(f )|
∣∣∣∣∣ > c20

2
log2/3 n

γ 1/3(nhdn)1/6

)
= 0. (32)

Based on the chosen γ and t2, (29) can be refined as

sup
t

∣∣∣∣∣P(

√
nhdn Haus(L̂n,Ln) ≤ t) − P

(
sup
f∈F

|B(f )| ≤ t

)∣∣∣∣∣
= O

⎛⎝( log7 n
nhdn

)1/8

+
(
log3 n
nhd+2

n

)1/2
⎞⎠

by using Remark 3.1. We therefore complete the proof of Theorem 3.4. �

Proof of Theorem 3.5: Denote Kn = {(O1, . . . ,On) : ‖̂λn − λn‖∗
1,max ≤ ε0} for some

small ε0. As a result, whenever dataset lie in Kn, assumption (iv) holds for λ̂n by
replacing Ln with L̂n. In addition, by Lemma 6.1 and (25), we have P(Kn) ≥ 1 −
c24 exp(−c25nhd+2

n ) for some constants c24 and c25. Thus, we can assume that the original
dataO1, . . . ,On lies in Kn. We define the bootstrap empirical process

G∗
n(f ) =

∫
[0,τ 0]

f (s) d[n1/2{�̂∗(s) − �̂(s)}],

where �̂∗(s) is the bootstrapped estimator. Let L̂∗
n be the bootstrapped estimator of hazard

level set, then we have

sup
t

|P(

√
nhdn Haus(L̂∗

n, L̂n) ≤ t|O1, . . . ,On) − P(

√
nhdn Haus(L̂n,Ln) ≤ t)|

≤ sup
t

∣∣∣∣∣P(

√
nhdn Haus(L̂∗

n, L̂n) ≤ t|O1, . . . ,On) − P

(
sup
f∈F ∗

n

|B∗
n(f )| ≤ t|O1, . . . ,On

)∣∣∣∣∣



JOURNAL OF NONPARAMETRIC STATISTICS 47

+ sup
t

∣∣∣∣∣P
(
sup
f∈F

|B(f )| ≤ t

)
− P

(
sup
f∈F ∗

n

|B∗
n(f )| ≤ t|O1, . . . ,On

)∣∣∣∣∣
+ sup

t

∣∣∣∣∣P(

√
nhdn Haus(L̂n,Ln) ≤ t) − P

(
sup
f∈F

|B(f )| ≤ t

)∣∣∣∣∣
= ζn1 + ζn2 + ζn3, (33)

where ζn1, ζn2 and ζn3 are self-explained from the expression,

F ∗
n =

⎧⎨⎩fx(·) = 1√
hdn‖∇λ̂n(x)‖2

K
(
x − ·
hn

)
: x ∈ L̂n

⎫⎬⎭ ,

and B∗
n is a Gaussian process on F ∗

n such that for any f1 ∈ F ∗
n and f2 ∈ F ∗

n ,

E(B∗
n(f1)|O1, . . . ,On) = 0

and

Cov(B∗
n(f1),B

∗
n(f2)|O1, . . . ,On) = 1

n

n∑
i=1

f1(Xi)f2(Xi)I(�i = 1)H̄−2(Xi−).

Theorem 3.4 implies that

ζn3 = O

⎛⎝( log7 n
nhdn

)1/8

+
(
log3 n
nhd+2

n

)1/2
⎞⎠ . (34)

If we suggest to estimate λ̂n by λ̂∗
n, mimicking analogous procedures of estimating λn by

λ̂n and applying similar arguments for Haus(L̂∗
n, L̂n), we have

ζn1 = O

⎛⎝( log7 n
nhdn

)1/8

+
(
log3 n
nhd+2

n

)1/2
⎞⎠ . (35)

Now we consider the second term ζn2. By assumptions (ii) and (iv), there exists some
universal constant c26 such that

‖∇λn(x1)‖−1
2 K

(
x1 − x
hn

)
≤ c26, ‖∇λ̂n(x2)‖−1

2 K
(
x2 − x
hn

)
≤ c26

hold uniformly over x ∈ [0, τ 0], x1 ∈ Ln and x2 ∈ L̂n, respectively. Following (2.10) in
Giné and Guillou (2002), the function collection

Fscale =
{
fx(·) = ‖∇λn(x)‖−1

2 K
(
x − ·
hn

)
: x ∈ Ln

}
is the uniformly bounded VC class. As a result, there exist some constants c27 and c28 such
that

sup
Q

N(Fscale, L2(Q), c26ε) ≤
(c27

ε

)c28
,
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where N(�, �, ε) denotes the ε-covering number of metric space (�, �), Q is the proba-
bility measure and the L2(Q) norm of f is (

∫ |f |2 dQ)1/2. Thus, we have

N1(ε, n) = sup
Q

N(F , L2(Q), c26ε) ≤
(

c27
hd/2n ε

)c28

(36)

by observing the scale transformation from Fscale to F . Let L be the Lebesgue measure
on Rd. For Q = (τ01 · · · τ0d)−1L and ε > 0, we can find a covering set for F with size
N1(ε, n), which is denoted by D1 = {f 01 , . . . , f 0N1(ε,n)}. Obviously, class F is indexed by x
over Ln. On the contrary, for any f ∈ F we denote the corresponding index by �1(f ) ∈
Ln.

As far as classF ∗
n , utilising analogous arguments to (36), there exist some constants c29

and c30 such that

N2(ε, n) = sup
Q

N(F ∗
n , L2(Q), c26ε) ≤

(
c29

hd/2n ε

)c30

.

The covering set D2 = {f 0,∗1 , . . . , f 0,∗N2(ε,n)} for F ∗
n and the corresponding index �2(f ∗) ∈

L̂n for any f ∗ ∈ F ∗
n are defined similarly.

LetN(ε, n) = N1(ε, n) + N2(ε, n) and�A(x) be the projection for x onto a setA. Obvi-
ously, for any f ∈ F , there exists f ∗ ∈ F ∗

n such that�2(f ∗) = �L̂n
(�1(f )), and vice versa.

With slight abuse of notation, we define the mapping by �F ∗
n (f ) = f ∗. Let

fi =
{
f 0i , 1 ≤ i ≤ N1(ε, n),
�F (f 0,∗i−N1(ε,n)), N1(ε, n) + 1 ≤ i ≤ N(ε, n)

and

f ∗i =
{
�F ∗

n (f 0i ), 1 ≤ i ≤ N1(ε, n),
f 0,∗i−N1(ε,n), N1(ε, n) + 1 ≤ i ≤ N(ε, n),

which implies that

‖�1(fi) − �2(f ∗i )‖2 ≤ Haus(Ln, L̂n) (37)

for all 1 ≤ i ≤ N(ε, n). Let F̆ = {f1, . . . , fN(ε,n)} and F̆ ∗
n = {f ∗1 , . . . , f ∗N(ε,n)}, then ζn2 can

be deduced as

ζn2 ≤ sup
t

∣∣∣∣∣∣P
(
sup
f∈F

|B(f )| ≤ t

)
− P

⎛⎝sup
f∈F̆

|B(f )| ≤ t

⎞⎠∣∣∣∣∣∣
+ sup

t

∣∣∣∣∣∣P
⎛⎝sup

f∈F̆

|B(f )| ≤ t

⎞⎠− P

⎛⎝ sup
f∈F̆ ∗

n

|B(f )| ≤ t|O1, . . . ,On

⎞⎠∣∣∣∣∣∣
+ sup

t

∣∣∣∣∣∣P
⎛⎝ sup

f∈F̆ ∗
n

|B(f )| ≤ t|O1, . . . ,On

⎞⎠− P

⎛⎝ sup
f∈F̆ ∗

n

|B∗
n(f )| ≤ t|O1, . . . ,On

⎞⎠∣∣∣∣∣∣
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+ sup
t

∣∣∣∣∣∣P
(
sup
f∈F ∗

n

|B∗
n(f )| ≤ t|O1, . . . ,On

)
− P

⎛⎝ sup
f∈F̆ ∗

n

|B∗
n(f )| ≤ t|O1, . . . ,On

⎞⎠∣∣∣∣∣∣
= ζ

(1)
n2 + ζ

(2)
n2 + ζ

(3)
n2 + ζ

(4)
n2 , (38)

where definitions of ζ
(1)
n2 , ζ

(2)
n2 , ζ

(3)
n2 and ζ

(4)
n2 are also self-explained. We first deal with

term ζ
(1)
n2 . For notational simplicity, denote γ1 = (

log7 n
nhdn

)1/8. Under assumption (iii) and

nh5dn (log log n)4/ log3 n → 0, following (27), (30), (31) and (32), there exist some constants
c31 and c32 such that

P

(∣∣∣∣∣ supx∈Ln

√
nhdn‖∇λn(x)‖−1

2 |̂λn(x) − λn(x)| − sup
f∈F

|B(f )|
∣∣∣∣∣ > c31

3
log2/3 n

γ
1/3
1 (nhdn)1/6

)

≤ P

(∣∣∣∣∣ supx∈Ln

√
nhdn

|̂λn(x) − λn(x)t|
‖∇λn(x)‖2

− sup
x∈Ln

√
nhdn

|gn11(x) − E{gn11(x)}|
‖∇λn(x)‖2

∣∣∣∣∣ > c31
3

log2/3 n

γ
1/3
1 (nhdn)1/6

)
+ c32γ1

= c32γ1, (39)

where gn11 is defined in Lemma 6.1. In addition, (39) also holds for x ∈ L̆n and f ∈ F̆ ,
where L̆n = {�1(f1), . . . ,�1(fN(ε,n))}. Hence, we have

P

⎛⎝∣∣∣∣∣∣supf∈F
|B(f )| − sup

f∈F̆

|B(f )|
∣∣∣∣∣∣ > c31

log2/3 n

γ
1/3
1 (nhdn)1/6

⎞⎠
≤ P

(∣∣∣∣∣ supx∈Ln

√
nhdn‖∇λn(x)‖−1

2 |̂λn(x) − λn(x)| − sup
f∈F

|B(f )|
∣∣∣∣∣ > c31

3
log2/3 n

γ
1/3
1 (nhdn)1/6

)

+ P

(∣∣∣∣∣ supx∈Ln

√
nhdn

|̂λn(x) − λn(x)|
‖∇λn(x)‖2 − sup

x∈L̆n

√
nhdn

|̂λn(x) − λn(x)|
‖∇λn(x)‖2

∣∣∣∣∣
>

c31
3

log2/3 n

γ
1/3
1 (nhdn)1/6

)

+ P

⎛⎝∣∣∣∣∣∣ supx∈L̆n

√
nhdn‖∇λn(x)‖−1

2 |̂λn(x) − λn(x)| − sup
f∈F̆

|B(f )|
∣∣∣∣∣∣

>
c31
3

log2/3 n

γ
1/3
1 (nhdn)1/6

)

≤ c33γ1 + P

(∣∣∣∣∣ supx∈Ln

√
nhdn

|̂λn(x) − λn(x)|
‖∇λn(x)‖2 − sup

x∈L̆n

√
nhdn

|̂λn(x) − λn(x)|
‖∇λn(x)‖2

∣∣∣∣∣
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>
c31
3

log2/3 n

γ
1/3
1 (nhdn)1/6

)

= c33γ1 + P

(∣∣∣∣∣supf∈F

√
nhdn

|̂λn(�1(f )) − λn(�1(f ))|
‖∇λn(�1(f ))‖2

− sup
f∈F̆

√
nhdn

|̂λn(�1(f )) − λn(�1(f ))|
‖∇λn(�1(f ))‖2

∣∣∣∣∣∣ > c31
3

log2/3 n

γ
1/3
1 (nhdn)1/6

⎞⎠
= c33γ1 + κn

for some constant c33, where κn is self-explained from the expression andwill be considered
later. Noting that γ1 = (

log7 n
nhdn

)1/8 and using Lemma 10 in Chen et al. (2017), we have for
some constant c34

ζ
(1)
n2 = sup

t

∣∣∣∣∣∣P
(
sup
f∈F

|B(f )| ≤ t

)
− P

⎛⎝sup
f∈F̆

|B(f )| ≤ t

⎞⎠∣∣∣∣∣∣
≤ c34c31

log7/6 n

γ
1/3
1 (nhdn)1/6

+ c33γ1 + κn

≤ (c34c31 + c33)

(
log7 n
nhdn

)1/8

+ κn.

Now we consider the term ζ
(2)
n2 . Define

(B(f1), . . . ,B(fN(ε,n)))
D= N(0,�1), (B(f ∗1 ), . . . ,B(f ∗N(ε,n)))

D= N(0,�2)

and δ12 = max1≤i,j≤N(ε,n) |�i,j
1 − �

i,j
2 |, where �

i,j
k is the (i, j)th element of �k for k = 1,

2 and i, j = 1, . . . ,N(ε, n). Employing Gaussian comparison theorem (Chernozhukov,
Chetverikov, and Kato 2013), there exists some constant c35 such that

ζ
(2)
n2 ≤ c35δ

1/3
12 [max{1, (N(ε, n)/δ12)}]2/3.

We next discuss the bound of δ12. Observing that

�
i,j
1 =

∫
[0,τ 0]

h−d
n ‖∇λn(�1(fi))‖−1

2 ‖∇λn(�1(fj))‖−1
2

× K
(

�1(fi) − x
hn

)
K
(

�1(fj) − x
hn

)
H′′
11(x) dx

and

�
i,j
2 =

∫
[0,τ 0]

h−d
n ‖∇λ̂n(�2(f ∗i ))‖−1

2 ‖∇λ̂n(�2(f ∗j ))‖−1
2

× K
(

�2(f ∗i ) − x
hn

)
K

(
�2(f ∗j ) − x

hn

)
H′′
11(x) dx,
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where H′′
11 is defined in (7), we have

|�i,j
1 − �

i,j
2 |

≤ ‖∇λn(�1(fi))‖−1
2 ‖∇λn(�1(fj))‖−1

2 − ‖∇λ̂n(�2(f ∗i ))‖−1
2 ‖∇λ̂n(�2(f ∗j ))‖−1

2 |

×
∫
[0,τ 0]

h−d
n K

(
�1(fi) − x

hn

)
K
(

�1(fj) − x
hn

)
H′′
11(x) dx

+ ‖∇λ̂n(�2(f ∗i ))‖−1
2 ‖∇λ̂n(�2(f ∗j ))‖−1

2 h−d
n

×
∫
[0,τ 0]

∣∣∣∣K (�1(fi) − x
hn

)
K
(

�1(fj) − x
hn

)

−K
(

�2(f ∗i ) − x
hn

)
K

(
�2(f ∗j ) − x

hn

)∣∣∣∣∣H′′
11(x) dx.

We obtain that H′′
11 is bounded over [0, τ 0] because (10) can be further strength-

ened by replacing [0, τ ∗] with [0, τ 0]. Furthermore, assumption (ii) implies that∫
[0,τ 0] h

−d
n K(

�1(fi)−x
hn )K(

�1(fj)−x
hn )H′′

11(x) dx is also bounded. On the other hand, under
assumption (ii) and noting that assumption (iv) holds for λn and λ̂n, we have

|�i,j
1 − �

i,j
2 |

≤ O(1)
{
h−d
n

∫
[0,τ 0]

∣∣∣∣K (�1(fi) − x
hn

)
K
(

�1(fj) − x
hn

)

−K
(

�2(f ∗i ) − x
hn

)
K

(
�2(f ∗j ) − x

hn

)∣∣∣∣∣ dx
+ |‖∇λn(�1(fi))‖2 − ‖∇λ̂n(�2(f ∗i ))‖2| + |‖∇λn(�1(fj))‖2 − ‖∇λ̂n(�2(f ∗j ))‖2|

}

≤ O(1)
{
h−d
n

∫
[0,τ 0]

∣∣∣∣K (�1(fi) − x
hn

)
− K

(
�2(f ∗i ) − x

hn

)∣∣∣∣ dx
+ h−d

n

∫
[0,τ 0]

∣∣∣∣∣K
(

�1(fj) − x
hn

)
− K

(
�2(f ∗j ) − x

hn

)∣∣∣∣∣ dx
+ |‖∇λn(�1(fi))‖2 − ‖∇λ̂n(�2(f ∗i ))‖2|

+ |‖∇λn(�1(fj))‖2 − ‖∇λ̂n(�2(f ∗j ))‖2|
}
. (40)

Under assumption (iv), following Theorems 3.1 and 3.2 and (37), we have

|‖∇λn(�1(fi))‖2 − ‖∇λ̂n(�2(f ∗i ))‖2|
≤ ‖∇λn(�1(fi)) − ∇λn(�2(f ∗i ))‖2 + ‖∇λn(�2(f ∗i )) − ∇λ̂n(�2(f ∗i ))‖2
≤ O(1)‖�1(fi) − �2(f ∗i )‖2 + ‖̂λn − λn‖∗

1,max

≤ O(1)Haus(Ln, L̂n) + ‖̂λn − λn‖∗
1,max
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= O

(√
| log hn|
nhd+2

n

)
(41)

holds uniformly over i = 1, . . . ,N(ε, n). It follows from assumption (ii) and (37) that

h−d
n

∫
[0,τ 0]

∣∣∣∣K (�1(fi) − x
hn

)
− K

(
�2(f ∗i ) − x

hn

)∣∣∣∣ dx
=
∫
[−1,1]

∣∣∣∣K(t) − K
(
t + �2(f ∗i ) − �1(fi)

hn

)∣∣∣∣ dt
≤ O(1)‖�1(fi) − �2(f ∗i )‖2/hn

= O

(√
| log hn|
nhd+2

n

)
(42)

for all i = 1, . . . ,N(ε, n). Combing (40), (41) and (42), we obtain that

δ12 = sup
1≤i,j≤N(ε,n)

|�i,j
1 − �

i,j
2 | ≤ c36

√
| log hn|
nhd+2

n

for some constant c36. Immediately,

ζ
(1)
n2 + ζ

(2)
n2 ≤ c35(c36)1/3

(√
| log hn|
nhd+2

n

)1/3
⎧⎨⎩log

⎛⎝N(ε, n)
√
nhd+2

n

c36
√| log hn|

⎞⎠⎫⎬⎭
2/3

+ (c34c31 + c33)

(
log7 n
nhdn

)1/8

+ κn. (43)

We now consider κn. By the definition of F̆ , for any f ∈ F , there exist fi ∈ F̆ and some
constant c37, not depending on the choices of f and fi, such that∫

[0,τ 0]
h−d
n

{
1

‖∇λn(�1(f ))‖2K
(

�1(f ) − x
hn

)
− 1

‖∇λn(�1(fi))‖2K
(

�1(fi) − x
hn

)}2
dx

≤ c37ε2,

from which we have ‖�1(f ) − �1(fi)‖2/hn is small when ε is small. On the other hand,
by assumption (ii), there exist some domainDi lies in [−1, 1] and some positive constant
c38, not depending on f and fi, such that |K(t) − K(t + �1(fi)−�1(f )

hn )| > c38‖�1(fi)−�1(f )
hn ‖2

for all t ∈ Di using the directional derivative along the particular direction of {�1(fi) −
�1(f )}/hn, which excludes the degenerated case of the kernel function taking a constant.
As a consequence,∫

[0,τ 0]
h−d
n

{
K
(

�1(f ) − x
hn

)
− K

(
�1(fi) − x

hn

)}2
dx

=
∫
[−1,1]

{
K(t) − K

(
t + �1(fi) − �1(f )

hn

)}2
dt
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≥
∫
Di

{
K(t) − K

(
t + �1(fi) − �1(f )

hn

)}2
dt

≥ c39‖�1(f ) − �1(fi)‖22/h2n (44)

for some positive constant c39. Actually, (44) still holds for constant kernel function. Note
that there exists some constant c40 such that

|‖∇λn(�1(fi))‖2 − ‖∇λn(�1(f ))‖2| ≤ ‖∇λn(�1(fi)) − ∇λn(�1(f ))‖2
≤ O(1)‖λn‖∗

2,max‖�1(fi) − �1(f )‖2
≤ c40‖�1(fi) − �1(f )‖2.

Consequently, following assumptions (ii), (iv) and (44) and some basic calculations, we
have

c37ε2 ≥
∫
[0,τ 0]

h−d
n

{
‖∇λn(�1(f ))‖−1

2 K
(

�1(f ) − x
hn

)
−‖∇λn(�1(fi))‖−1

2 K
(

�1(fi) − x
hn

)}2
dx

≥ c41
∫
[0,τ 0]

h−d
n

{
‖∇λn(�1(fi))‖2K

(
�1(f ) − x

hn

)
−‖∇λn(�1(f ))‖2K

(
�1(fi) − x

hn

)}2
dx

= c41‖∇λn(�1(fi))‖22
∫
[0,τ 0]

h−d
n

{
K
(

�1(f ) − x
hn

)
− K

(
�1(fi) − x

hn

)}2
dx

+ {‖∇λn(�1(fi))‖2 − ‖∇λn(�1(f ))‖2}2
∫
[0,τ 0]

h−d
n

{
K
(

�1(fi) − x
hn

)}2
dx

+ 2‖∇λn(�1(fi))‖2{‖∇λn(�1(fi))‖2 − ‖∇λn(�1(f ))‖2}

×
∫
[0,τ 0]

h−d
n

{
K
(

�1(f ) − x
hn

)
− K

(
�1(fi) − x

hn

)}
K
(

�1(fi) − x
hn

)
dx

≥ c42‖�1(f ) − �1(fi)‖22/h2n − c43‖�1(f ) − �1(fi)‖22/hn
≥ c44‖�1(f ) − �1(fi)‖22/h2n

for some positive constants c41, c42, c43 and c44, which leads to

‖�1(f ) − �1(fi)‖2 ≤ (c37c−1
44 )1/2hnε.

Therefore, under assumptions (ii) and (iv), when ‖�1(f ) − �1(fi)‖2 ≤ (c37c−1
44 )1/2hnε, we

have ∣∣∣∣ |̂λn(�1(f )) − λn(�1(f ))|
‖∇λn(�1(f ))‖2 − |̂λn(�1(fi)) − λn(�1(fi))|

‖∇λn(�1(fi))‖2

∣∣∣∣
≤ O(1)|‖∇λn(�1(fi))‖2 |̂λn(�1(f )) − λn(�1(f ))|
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− ‖∇λn(�1(f ))‖2 |̂λn(�1(fi)) − λn(�1(fi))| |
≤ O(1){|‖∇λn(�1(f ))‖2 − ‖∇λn(�1(fi))‖2|

+ | |̂λn(�1(f )) − λn(�1(f ))| − |̂λn(�1(fi)) − λn(�1(fi))||}
≤ O(1){‖∇λn(�1(f )) − ∇λn(�1(fi))‖2 + |̂λn(�1(f )) − λ̂n(�1(fi))|

+ |λn(�1(f )) − λn(�1(fi))|}
≤ O(1)(‖λn‖∗

2,max + ‖̂λn‖∗
1,max + ‖λn‖∗

1,max)‖�1(f ) − �1(fi)‖2
≤ c45hnε

for some constant c45. Immediately,

sup
f∈F

|̂λn(�1(f )) − λn(�1(f ))|
‖∇λn(�1(f ))‖2 ≤ max

1≤i≤N(ε,n)

|̂λn(�1(fi)) − λn(�1(fi))|
‖∇λn(�1(fi))‖2 + c45hnε,

which implies that∣∣∣∣∣∣supf∈F

√
nhdn

|̂λn(�1(f )) − λn(�1(f ))|
‖∇λn(�1(f ))‖2 − sup

f∈F̆

√
nhdn

|̂λn(�1(f )) − λn(�1(f ))|
‖∇λn(�1(f ))‖2

∣∣∣∣∣∣
≤ c45

√
nhd+2

n ε.

By setting ε = c31 log3/8 n
6c45(nhn)1/8(nhd+2

n )1/2
, it is straightforward to show that κn = 0. For such

chosen ε, following assumption (iii) and Remark 1, there exists some constant c46 such
that

N(ε, n)
√
nhd+2

n

c36
√| log hn|

≤ nc46 .

Hence, (43) can be deduced as

ζ
(1)
n2 + ζ

(2)
n2 ≤ c35(c36)1/3(c46)2/3

(
| log hn| log4 n

nhd+2
n

)1/6

+ (c34c31 + c33)

(
log7 n
nhdn

)1/8

= O

⎛⎝( log5 n
nhd+2

n

)1/6

+
(
log7 n
nhdn

)1/8
⎞⎠ (45)

by utilising Remark 3.1.
Employing analogous arguments, we have

ζ
(3)
n2 + ζ

(4)
n2 = O

⎛⎝( log5 n
nhd+2

n

)1/6

+
(
log7 n
nhdn

)1/8
⎞⎠ . (46)

Following (38), (45) and (46), we can conclude

ζn2 = O

⎛⎝( log5 n
nhd+2

n

)1/6

+
(
log7 n
nhdn

)1/8
⎞⎠ . (47)
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Under assumption (iii), it follows from (33), (34), (35), (47) and Remark 3.1 that

sup
t

|P(

√
nhdn Haus(L̂∗

n, L̂n) ≤ t|O1, . . . ,On) − P(

√
nhdn Haus(L̂n,Ln) ≤ t)|

= O

⎛⎝( log5 n
nhd+2

n

)1/6

+
(
log3 n
nhd+2

n

)1/2

+
(
log7 n
nhdn

)1/8
⎞⎠

= O

⎛⎝( log7 n
nhd+2

n

)1/6

+
(
log7 n
nhdn

)1/8
⎞⎠ ,

which implies that

P(Ln ⊂ L̂n ⊕ w∗
1−α) ≥ 1 − α + O

⎛⎝( log7 n
nhd+2

n

)1/6

+
(
log7 n
nhdn

)1/8
⎞⎠

using P(Ln ⊂ L̂n ⊕ w1−α) ≥ 1 − α. This completes the proof of Theorem 3.5. �
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