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Order-Dispatching Strategy Induced by
Optimal Transport Plan for an Online
Ride-Hailing System
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Abstract
Order-dispatching strategy is fundamental for online ride-hailing systems in three major ways. First, it should be capable of
effectively matching hundreds of orders to thousands of vehicles in less than 1 min, whereas both orders and vehicles are
geographically widely distributed. Second, it should decide how to fairly allocate profit among participators. Third, it should
unify interests of present and future. Conflicts always exist within the three objectives. We observe that the system is dyna-
mically balanced during fine-tuned time intervals. Based on this observation, we propose a novel dispatching strategy capable
of juggling the three objectives. By applying optimal transport theory, we demonstrate that, under appropriate presumptions,
this dispatching strategy is ruled by the optimal transport plan realizing the Wasserstein distance between distributions of
orders and vehicles. Furthermore, we develop a kit of methodological and algorithmic tools which has substantial and sensi-
ble advantages in characterizing and optimizing the system.
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A modern online ride-hailing platform such as Uber,
Didi Chuxing, or Lyft, on the one hand allows passen-
gers to book routes starting from almost every corner of
a city of a certain scale at every time with a smart phone,
and on the other hand makes it possible for full-time,
part-time, or even casual drivers to render transportation
services at their greatest spatiotemporal convenience. A
ride-hailing platform is a typical two-sided market, so
matching demand and supply, that is, dispatching pas-
senger orders to drivers, is a key feature of the service
(1).

Orders are immediately responded to under many dis-
patching strategies. Introduced by Lee (2) and Lee et al.
(3), the nearest driver or the shortest-travel-time driver is
matched immediately after an order comes in. This strat-
egy may be myopic: any single dispatch is the ‘‘optimal’’
choice at the moment but a sequence of consecutive dis-
patches following this rule one by one may not be opti-
mal as a whole. The strategy by Seow et al. (4) starts
from a collaborative multi-agent architecture called
NTuCab. Each unit of the NtuCab is composed of N

vehicles awaiting N requests and the optimal matching is
aimed to minimize total pickup time among the unit. To

make the computation burden arising from arbitrary
permutation within the unit affordable, the size of the
unit, namely N , should not be too large. Wong and Bell
(5) aim to minimize passenger request waiting time in a
heuristic approach with rolling horizon considering
anticipation of future requests and traffic conditions.
Wang et al. (6) try to optimize multiple objectives includ-
ing system-wide measures and individual benefits using
stable matching with rolling horizon. Bertsimas et al. (7)
consider maximization of total profit via a backbone
algorithm with a restricted set of candidate actions for a
sparser problem. Xu et al. (8) introduce a strategy aimed
at maximizing of expectation of drivers’ total present
value. In the design, each spatiotemporal grid is assigned
a value which was learned from historical observations.
If a driver is to move from grid A to grid B to fulfill an
order, his reward from this action is the price of the
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order plus the value difference of B to A. For a queue of
limited orders to be picked up by another queue of lim-
ited drivers, the total reward of each candidate combina-
tion of dispatches is calculated and the combination with
the maximum reward is to be implemented. Zhou et al.
(9) impose a KL-divergence penalty on the maximizing
process proposed by Xu et al. (8) and the KL-divergence
is roughly defined between normalized distributions of
orders and drivers after dispatch. Xu et al. (8) and Zhou
et al. (9) aim to balance interests of present and future
via maximizing of expectation of drivers’ total present
value while raising another tricky question of seeking
appropriate weights for present and future. This question
is thus at the core of myopia handling.

Instead of dispatching a driver immediately after an
order arrives, platforms often hold unserved orders as
well as vacant drivers for a certain period for better
matching. Intuitively, as the length of the period
increases, more demand/supply information is revealed,
but more passengers may cancel orders as the waiting
time increases. Akbarpour et al. (10) demonstrate that if
the platform can identify passengers who are about to
cancel and take action accordingly, then waiting to
thicken the market can substantially increase successful
matches. Otherwise, matching agents with the nearest
distance or expected shortest pickup time is close to
optimal.

In the domain of dispatch optimization research, there
are generally two objectives to consider: one is oriented
to passengers’ interests, to maximize the total order
response rate (ORR), that is, the proportion of served
orders to total orders in one day, whereas the other is
oriented to drivers’ interests, to maximize the accumu-
lated driver income (ADI), that is, the yield of orders
served during one day. The two objectives may result in
different dispatches unless all the orders have an identi-
cal price. Both ORR and ADI are relatively fair but uni-
lateral objectives under the assumption of supply
insufficiency. In this article, we study another potential
objective, that is, the system’s productivity which is
defined as the inverse of the expectation of the driver
cycle for which the basic connotation is the expected
time in completing an order. In definition, the driver
cycle consists of vacant time, pickup time, and service
time. Vacant time is the slack of supply playing an
important role in achieving equilibrium with demand,
service time is the time determined by the trip of the
order and is taken as exogenous, while pickup time is the
time determined by the trip between the matched driver
and passenger. Pickup time also constitutes an important
part of a passenger’s waiting time. So optimization
around pickup time benefits both driver and passenger
while improving system productivity.

As to dispatching structure design, our idea is to com-
bine virtues of both instant matching and delayed match-
ing. First, we need to fix a time window of certain length
and generate the optimal dispatching plan based on
information about that window. Then each upcoming
order is immediately matched with a candidate driver by
some greedy algorithm guided by the plan. We observe
that the system is dynamically balanced if the time win-
dows are tuned to the length of the driver cycle. Then, in
our opinion, such a window is enough to provide the nec-
essary information for optimal matching while eliminat-
ing myopia. However, the number of drivers and orders
to be matched even in one window is tremendous, com-
paring with the unit size of NTuCab in Seow et al. (4).
Arbitrary permutation apparently is not a feasible choice
to do the optimization. Linear programming can effec-
tively handle cases with small to middle-sized amounts of
data (11–14). But when facing a large-scale problem like
online ride-hailing order-dispatching, it seems to be
powerless. In this paper, we introduce a new approach.
The approach is nourished by research around the
Monge–Kantorovich problem, or the optimal transport
problem, to use another name. In the formulation of the
problem, both supply and demand are generalized to dis-
tributions in feasible space and the optimal transport
plan is the one to realize the minimum transport cost, or,
to give it its formal name, the Wasserstein distance,
between the pair of distributions (15). The theory of the
optimal transport plan and Wasserstein distance has
demonstrated itself to be a powerful tool in dealing with
complicated matching problems. Fast numerical solu-
tions to a balanced transport provision (the mass of sup-
ply equals that of demand) are available because of the
work of Cuturi (16), Altschuler et al. (17), Peyré and
Cuturi (18), and others. Inspired by the theory and corre-
sponding numerical methods, we translate the original
problem into an optimal transport problem. In the trans-
lation, distributions of supply and demand are calculated
at grid level, and cost incurred in moving mass between
grids is primarily defined as travel time. Specially , if the
assumption of isotropism holds, the cost is then simpli-
fied to Euclidean distance of travel. Then our optimal
dispatching plan is immediately obtained via sequentially
applying a usual algorithm solving optimal transport
problems and our own developed algorithm ‘‘local
integralization.’’ It is understood that the plan is at grid-
to-grid level, where individuality differentials of driver
and order within grid are not considered. Guided by the
plan, a driver-to-passenger level greedy matching algo-
rithm, such as the ‘‘first in first serve guided by plan’’
developed in this article, can complete the work of
dispatching.
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Preliminary

In 1781 Monge published one of his first famous works,
Mémoire sur la théorie des déblais et des remblais
(‘‘déblai’’ is an amount of material that is extracted from
the earth or a mine; ‘‘remblai’’ is material that is input
into a new construction). The problem considered by
Monge is as follows. Assume you have a certain amount
of soil to extract from the ground and transport to places
where it should be incorporated in a construction. The
places where the material should be extracted and the
ones where it should be transported to are all known.
But the assignment has to be determined: To which desti-
nation should one send the material that has been
extracted at a certain place? The answer does matter
because transport is costly, and you want to minimize
the total cost. Monge assumed that the transport cost of
one unit of mass along a certain distance was given by
the product of the mass and the distance (19).

Mathematically, the optimal transport problem con-
sists of finding, from among all transformations y= T (x)
that push forward a source distribution m(x) to a target
n(y), the map that minimizes the expected transportation:

inf
T

ð
X

c(x, T (x))m(x)dx, m 8 T�1 = n, ð1Þ

where c(x, y) is the externally provided cost of moving a
unit of mass from x to y (19); m and n are normalized dis-
tributions supported on a measurable space X ; T is any
measurable map from X to X , and m 8 T�1 = n func-
tions in the way that, for any measurable set A � X ,
m 8 T�1(A)=m(T�1(A))= n(A).
If m and n are defined in Euclidean space Rd and

c(x, y) :¼ kx� yk2

with k�k2 denoting the Euclidean distance, the optimal
transport cost is the L1 Wasserstein distance of m and n

(20):

W1(m, n) :¼ inf
T

ð
R

d

kx� T (x)k2m(x)dx, m 8 T�1 = n: ð2Þ

For generalization, Kantorovich (15) considers the
following set of ‘‘couplings’’

M(m, n) :¼fp 2 P(Rd 3R
d) s:t: 8Borel set A,B � R

d ,

p(A 3R
d)=m(A),p(Rd 3 B)= n(B)g,

where R
d 3R

d is the product space of R
d and

P(Rd 3R
d) stands for the probability measure space on

R
d 3R

d . Intuitively, a coupling p(m, n) is a joint distri-
bution of m and n, such that two particular marginal dis-
tributions of p are equal to m and n, respectively. Instead
of finding the optimal transport map, Kantorovich

formulates the optimal transport problem as finding the
optimal coupling,

p� :¼ arg inf
p2M(m, n)

ð
R

d 3R
d

kx� yk2dp(x, y): ð3Þ

Meanwhile, the L1 Wasserstein distance between m and n

is

W1(m, n) :¼
ð
R

d 3R
d

kx� yk2dp�(x, y): ð4Þ

W1 possesses all the properties of distance, especially the
property of triangle inequality. Optimal transport plan
(OTP) is used to address the solution when it is of little
interest to verify whether the coupling is precisely a map.

When the two measures m and n are supported on a
discrete set fxign

i= 1, where xi 2 A for i= 1, :::n and
A � R

d is bounded, the relaxation of optimal transport
from Kantorovich (15) becomes a linear programming
problem, which can be solved effectively for small to
medium size. We identify m and n as the vectors located
on the simplex

Dn :¼ fw 2 R
d : S

n

i= 1
wi = 1, and wi ø 0, i= 1, :::, ng,

whose entries denote the weight of each distribution
assigned to the points of fxign

i= 1. Let C 2 R
n 3 n be the

pair-wise distance matrix, where Ci, j = kxi � xjk2, and 1n

be the all-ones vector with n elements. We denote by
M(m, n) the set of coupling matrices between m and n,
that is,

M(m, n) :¼ fP 2 R
n 3 n : P1n =m,PT1n = ng: ð5Þ

Let hh�, �ii denote the summation of the element-
wise multiplication, such that, for any two matrix
A=(aij),B=(bij) 2 R

n 3 n, hhA,Bii=S
n
i= 1S

n
j= 1aijbij.

According to the Kantorovich formulation in Equations
3 and 4, calculating the Wasserstein distance between m

and n thus is equivalent to solving the optimization
problem

W1(m, n) :¼ min
P2M(m, n)

hhP,Cii, ð6Þ

which is a linear program with O(n) linear constraints.
Practical algorithms to solve the problem in Equation 6
through linear programming require a computational
time of order O(n3 log (n)) for fixed d (21). When the size
of the problem grows, its solution can be accelerated sig-
nificantly through the addition of an entropic regulariza-
tion and a Sinkhorn-type iterative algorithm (21, 22).

It assumes that the total masses of the given distribu-
tions are equal, which often does not hold in practice.
Therefore, it is more realistic to generalize the problem
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and the Wasserstein metric defined by Equations 1 to 6
to adapt to distributions with unbalanced masses. Much
work has been done in this direction (23–26). In general,
in the case of unbalanced transport, it allows

ð
R

d

m(x)dx 6¼
ð
R

d

n(y)dy;

without loss of generality, assuming

ð
R

d

m(x)dx ø

ð
R

d

n(y)dy,

the unbalanced L1 optimal transport problem solves

U (m, n)= min
0 ł ~m ł m,Ð

~m(x)dx=
Ð

n(y)dy

W1(~m, n): ð7Þ

In the above, ~m and n are both standardized measures
and m is a greater measure than ~m everywhere on R

d .
Compared with balanced problems, there is an addi-
tional outer layer of minimization over the set of distri-
butions which are ‘‘no greater than’’m everywhere and
have total mass equal to n. This additional minimization
work surely gives rise to a much greater computation
burden.

Methodology

In this section, we first refine major characteristics of the
system from the perspective of the supply chain and then
reformulate our objective, optimization of system pro-
ductivity, into an optimal transport problem.

Definitions

Definition 1. Let X denote the 2-dimensional geo-
graphic space where positions of passenger and driver
dwell. The function of order generation rate at time t,
denoted by l(x), is the limit of count of orders gener-
ated at x in ½t, t +Dt) divided by Dt when Dt! 0. The
function of active drivers at time t, denoted by m(x), is
the count of vacant drivers at x plus the count of drivers
in serving but expected to drop off at x. Let

L :¼
Ð
X l(x)dx and M :¼

Ð
X m(x)dx.

Definition 2. (standardized) Distribution of active driv-
ers at t, denoted by mdriver, is the measure of driver
count on X , namely the measure at some x 2 X is
defined as m(x)=M . (standardized) Distribution of
orders at t, denoted by norder, is the measure of order
generation rate on X , namely the measure at some
x 2 X is defined as l(x)=L.

Since the precise position of each driver or order is indi-
vidual, we actually calculate the measures by grid after

gridding the operational geographical space (see
‘‘Geographical mesh’’).

Definition 3. Response time to an order, denoted by
dres, is the duration from the order request being sent to
a dispatch being arranged, where if the driver is in ser-
ving when dispatched, the arrangement actually hap-
pens once the serve ends; the vacant time of a driver,
denoted by dvac, is the duration from the ending of the
last drop-off to the next dispatch being arranged;
pickup time, denoted by dpic, is the duration from a dis-
patch being arranged to the passenger being picked up;
service time, denoted by dser, is the duration from a pas-
senger being picked up to the passenger being dropped
off. Fulfillment time, denoted by dful, is the summation
of dpic and dser. Driver cycle, denoted by Tdri, is the
summation of dvac and dful. Order cycle, denoted by
Tord, is the summation of dres and dful. The correspond-
ing expectations are Edful, ETdri and ETord respec-
tively, where the expectations are taken over X at
time t.

Driver cycle and order cycle are the time costs in ful-
filling an order for driver and passenger respectively.
They are critical factors affecting service quality and
driver income level (1).

Definition 4. L is also the demand (D) of the system.
Supply potential of the system at time t, denoted by

Spot, is defined as Spot :¼ M
Edful

; actual supply, denoted

by Sact, is defined as Sact :¼ M
ETdri

. Ratio of supply to

demand for the system at time t, denoted by rs=d, is

defined as rs=d :¼ Spot
D

= M
LEdful

. System productivity is

defined as g :¼ 1=ETdri = 1=(Edvac +Edpic +Edser).

As introduced previously, system productivity is our
primary objective to optimize.

Assumptions

Assumption 1. The system is dynamically balanced all
through in that
(i) given M and L, Edvac is self-adjusted to guarantee

system balance in the sense that Sact =D, that is,
M =L(Edvac +Edful) and
(ii) sustainable Edvac lies in a positive interval

(0,UEdvac ); if Edvac surpasses UEdvac , M will gra-
dually decline till Edvac falls back below UEdvac .

The vacant rate, dvac
Tdri

3 100% is the major factor that

affects the possibility of a driver logging off/on. The
upper bound of Edvac could be the threshold beyond
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which an ordinary driver will get negative profit and be
very likely to log off.

By Definition 4, rs=d should be above 1 all through
under the assumption.

Assumption 2. Edser is exogenous, that is, independent
of the dispatching strategy.

For each order, dser is determined by the its travel
course and travel speed, where both are almost given
unless the individuality differential of driver is consid-
ered. A global order-dispatching strategy usually takes
any driver as ordinary.

Assumption 3. Isotropism. Let ct(x, y) be the travel time
from a point x 2 X to another point y 2 X at moment
t, and jjx� yjj2 the Euclidian distance between x and y,
then ct(x, y)= k(t)jjx� yjj2, where k(t) is a global speed
factor dependent on t only.

This assumption is for the simplification of ct(x, y).
When ct(x, y) is unobtainable, jjx� yjj2 may not be a bad
substitute.

Isotropism is also for the formulation of the
Wasserstein distance, whose property of triangle inequal-
ity is critical in myopia control (see Theorem 3).
Actually, the cost function has only to possess the prop-
erty of triangle inequality to make the total cost of the
optimal transport possess the same property (21). This
requirement on the cost function is not excessive in most
cases. Furthermore, the computation efficiency of the
numerical method is less affected by the specific form of
cost function (16–18).

Theoretical Results

Theorem 1. Under Assumption 1, each order can be
matched to a driver and
(i) ORR= 100% and ADI= total order prices,
(ii) Edres ’ 0.

Under Assumptions 1 and 2,

(iii) g is optimized while Edpic is minimized.

Proof. (i) and (iii) are immediate deductions of Assumptions
1 and 2. For (ii), it is trivial when both order generates
and order completes with no randomness; otherwise
assume that the queuing is ‘‘M/M/n’’ type which ade-
quately incorporates randomness, that is, both the time
between successive order generations and the time to com-
plete an order are exponentially distributed while the sys-
tem has n servers (active drivers), then by queueing theory
(27), the expected response time

Edres =
nnr
�(n+ 1)
s=d

=½n!L(1� r�1
s=d

)
2�

Pn�1

k = 0

1
k! (nr�1

s=d
)
k
+ 1

n!

(nr�1
s=d

)
n

1�r�1
s=d

ł
(a) nnr

�(n+ 1)
s=d

=½n!L(1� r�1
s=d

)
2�

Pn�1

k = dnr�1
s=d
e�1

1
k! (nr�1

s=d
)
k
+ 1

n!

(nr�1
s=d

)
n

1�r�1
s=d

ł
(b) nnr

�(n+ 1)
s=d

=½n!L(1� r�1
s=d

)
2�

Pn�1

k = dnr�1
s=d
e�1

1
n! (nr�1

s=d
)
n
+ 1

n!

(nr�1
s=d

)
n

1�r�1
s=d

=
r�1

s=d
=½L(1� r�1

s=d
)
2�

(n+ 1� dnr�1
s=d
e)+ 1

1�r�1
s=d

,

ð8Þ

where n is the quantity of active drivers (servers), ‘‘dxe’’
stands for the minimum integer no less than x, inequality
(a) holds because the items with k = 0, . . . , dnr�1

s=d
e � 2 are

just omitted from the summation, inequality (b) holds as

1 ø
nr�1

s=d

dnr�1
s=d
e.

nr�1
s=d

dnr�1
s=d
e+ 1

. . . . .
nr�1

s=d

n
and

(nr�1
s=d

)
n

n!
=

(nr�1
s=d

)
dnr�1

s=d
e�1

(dnr�1
s=d
e � 1)!

3
nr�1

s=d

dnr�1
s=d
e 3 . . . 3

nr�1
s=d

n

\
(nr�1

s=d
)
n�1

(n� 1)!
\ . . . \

(nr�1
s=d

)
dnr�1

s=d
e

(dnr�1
s=d
e)!

ł
(nr�1

s=d
)
dnr�1

s=d
e�1

(dnr�1
s=d
e � 1)!

:

Since rs=d.1 by Assumption 1, Edres ! 0 when n! ‘ by
Inequality 8.

(i) tells us that the optimization of ORR or ADI is
ineffective under Assumptions 1 and 2. (ii) demonstrates
that Edres is close to 0 and cannot be optimized any
more. It holds even when rs=d is only slightly above 1.
(iii) shows that since Edvac is self-adjusting and bounded
by Assumption 1, Edser is exogenous by Assumption 2,
the only way to improve system productivity is to mini-
mize Edpic. Putting together (i), (ii), and (iii), both ETdri

and ETord are minimized while ADI is fixed under the
strategy and assumptions. Since ETdri and ETord are the
expected costs in time per order, then it can be said that
profit per order is almost maximized simultaneously
under the strategy and assumptions.

The dynamic balance makes it reasonable to construct
a static matching between current active drivers and
upcoming orders. (iii) of Theorem 1 indicates the objec-
tive to optimize the static matching. We demonstrate this
idea as follows.
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Theorem 2. Let the strategy to minimize Edpic be
implemented for each of the successive windows
½ti, ti+ 1), i= 0, . . . , L� 1, where ti satisfiesÐ ti+ 1

ti
L(s)ds=Mi, i= 0, . . . , L� 1 and L is the count of

such windows. Assume a driver logs off/on only at
ti, i= 1, . . . , L. Then
(i) minimization of Edpic for each window is an indepen-
dent optimal transport problem and
(ii) the optimal dispatching map is ruled by p�i , the
OTP from mi

driver to ni
order in the sense: Mp�i (x, y) driv-

ers at x are to pick up equal amount of passengers at
y.

Specially , under Assumption 3,

minEdi
pic = k(ti)W1(m

i
driver, n

i
order):

Proof. Without loss of generality, we focus on optimization
in one window and omit its superscript.

Let the two measures mdriver and norder be supported on a
discrete set of n grids fxign

i= 1, where xi 2 A for i= 1, :::n
and A � X is bounded. Since mdriver and norder are standar-
dized measures, they are vectors located on simplex
Dn :¼ fw 2 R

d : S
n
i= 1 wi = 1, and wi ø 0, i= 1, :::, ng.

Let C 2 R
n 3 n be the pair-wise travel time matrix, where

Ci, j = ct(xi, xj), and 1n be the all-ones vector with n ele-
ments. We denote byM(mdriver, norder) the set of coupling
matrices between mdriver and norder, following Equation 5.
Minimizing Edpic is equivalent to solving

min
P2M(mdriver, norder)

hhP,Cii,

which is thus an optimal transport problem. Specially when
Assumption 3 holds, we have

minEdpic = min
P2M(mdriver, norder)

hhP,Cii

= k(t) min
P2M(mdriver, norder)

hhP,Dii

= k(t)W1(mdriver, norder)),

where D is an n 3 n matrix with entity Di, j = kxi � xjk2.
The independence of optimization in each window

relies on:

(i) there being no surplus of driver or order after
optimization in each window. It is just the virtue
of balance.

(ii) a driver logging off independently with dispatch-
ing strategy. All drivers will be redistributed by
the destinations of orders in the window. The
redistribution and consequently the distribution
of logoff is independent of the dispatching

strategy implemented unless a driver’s indivi-
duality differential is to be considered.

(iii) a driver logs on independently with dispatching
strategy. The new logon has no a priori infor-
mation about matches under the strategy in the
near past.

Theorem 2 sets up a frame for the optimization work
under ideal conditions. Under the frame, the optimal
transport plan is 100% executed for each window. Then
the distributions of active drivers as well as orders to ful-
fill in the next window are independent of the strategy
implemented in the current window. In this sense, there
will be no myopia under the frame. Actually, since the
windows are set under

Ð ti+ 1

ti
L(s)ds=Mi where L can

only be predicted with error, some drivers may have to
stay idle through the current window and some orders
may have to be deferred. The surplus of supply/demand
is surely affected by the strategy implemented in current
window in relation to position and quantity and may be
a part of the distributions in the next window. So myopia
may happen in the optimization sequences. We develop a
theorem to control myopia arising from a surplus of driv-
ers and similar results hold for that arising from deferred
orders.

Theorem 3. Let DX : sup
x1, x22X

kx1 � x2k2 be the diameter

of X , Dmi
driver the surplus of driver after actual dispatch

in window ½ti, ti+ 1) under the strategy, emi+ 1
driver the

affected distribution of active drivers in ½ti+ 1, ti+ 2).
Then under Assumption 3 we have

jW1(emi+ 1
driver, ni+ 1

order)�W1(m
i+ 1
driver, n

i+ 1
order)j

ł
(a)

W1(emi+ 1
driver,m

i+ 1
driver)

ł
(b) Mi

Mi+ 1

DX

ð
X

Dmi
driverdx:

Proof. Inequality (a) is by property of Wasserstein dis-
tance. Following Equation 2,

W1(emi+ 1
driver,m

i+ 1
driver)= inf

T

ð
X
kx� T (x)k2m(x)dx

ł

ð
X
kx� T 0(x)k2emi+ 1

driver(x)dx,

where T 0 is any map satisfying emi+ 1
driver8T

0�1 =mi+ 1
driver.

Note that the difference between emi+ 1
driver and mi+ 1

driver lies

only on Mi

Mi+ 1
Dmi

driver which is nonnegative everywhere, then

the most costly transport T 0 between emi+ 1
driver and mi+ 1

driver is to

move a mass equal to Mi

Mi+ 1

Ð
X Dmi

driverdx. Since the distance
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to move any piece of mass is upper bounded by DX , we thus
obtain inequality (b).

In operational circumstances, Mi

Mi+ 1
is close to 1 and DX

is less than 60km. Then by Theorem 3, if only the surplus
is trivial compared with the count of active drivers, myo-
pia in respect of possible change on Edpic will not be seri-

ous. It is also based on this virtue that we argue that the
length window of the driver cycle provides enough mar-
ket information for optimization.

Dispatching Structure

The dispatching structure consists of two layers: the fun-
damental layer generating OTP within pairs of the
source grid, where the vacant driver locates, and target
grid, where the order request is sent; and the dispatching
layer, executing an instant match guided by the optimal
transport plan. The fundamental layer is critical and
operates consistently with Theorems 2 and 3 while the
dispatching layer applies in some greedy algorithms.
Applicable algorithms for each layer are developed in the
next subsection.

Algorithms

For generalization, we formulate the following equations
for an unbalanced optimization problem. The balanced
one is a special case therein.

U (mdriver, norder)

=

min W1(~mdriver, norder)

s: t: 0 ł ~mdriver ł mdriver,Ð
~mdriver(x)dx=

Ð
norder(y)dy,

N 3 p(~m, n)(x, y) 2 N for 8(x, y) 2 R
2

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

where N is the set of positive integers. Equation 9 is an
unbalanced optimal transport problem with additional
integer constraints on mass transported. While unbalance
scales up the space in which a feasible solution exists, the
integer constraint erodes optimum continuity with para-
meters. One can take the comprehensive problem as an
integer linear programming problem while enduring the
computation cost as follows,

U (mdriver, norder)

=

min hhP,Cii
s: t: P 2 fA 2 N

n 3 n : A1n ł m,AT1n = ngPn
i= 1 (A1n)i =

Pn
i= 1 (A

T1n)i

8><
>:

9>=
>;

where n stands for the scale of discretization and C the
pair-wise distance matrix.

There are two factors which may neutralize the effort
to solve Equation 10 directly. One is the relatively high
computation cost mentioned above and the other is that
errors in predicting mdriver and norder will invalidate the
optimality. Instead, we take it as balanced when devia-
tion from balance is small, apply a usual algorithm for
balanced problems on it, and generate the decimal OTP.
Integer OTP is obtained by optimally replacing each
piece of the decimal OTP either with its floor or with its
ceiling under supply and demand constraints. To find
the replacements with minimum total transport costs, we
proceed as follows. First, we initialize each piece of inte-
ger OTP to its floor. Then, one by one in ascending
order of unit transport cost, we flip each piece to its ceil-
ing unless rejected by related supply or demand con-
straints. The process stops either when all mass is
completely transported or when ‘‘flipping’’ has been tried
on each piece. We streamline these ideas by Algorithm 1.
Algorithm 2 handles remainders of supply and demand
after the ‘‘flipping’’ process if there are any. Algorithm 3
is for instant dispatching guided by the integer OTP.

Application

In this section, we apply the methodology developed
above to a real order-dispatching problem.

The Data

The data involved is disclosed by the Didi Chuxing incor-
poration. We use a 24 h record of the city Chengdu. The
record consists of orders being picked up and dropped
off by name-masked drivers. Tracks of vehicles (drivers)
are marked with timestamps in longitude and latitude
coordinates. The total count of orders is more than
180,000 and about 35,000 drivers stay in the system at all
times. The metropolis of Western China, Chengdu,
lies on the broad Chengdu Plain with no big river run-
ning through; terrain advantage and a developed net-
work of highroads make traffic within the city almost
isotropic.

Figures 1 and 2 show the 24-h diagrams of strength of
supply and demand respectively; the strength of supply is
measured by the count of active drivers at the beginning
of a minute and demand by count of orders generated in
the minute.

Figure 3 shows the dynamics of average time (in min-
utes) to pick up as well as to serve an order in 24 h; the
sum of pickup time dpic and service time dser is fulfillment
time dful by previous definition. Dividing the count of
active drivers by average dful, we get the ratio of supply
to demand rs=d and its evolution trend is shown in Figure
4. Obviously, from 8:00 to 23:00, during which the system
is most active (87 percent of total orders are generated
during the period), the ratio stays slightly above 1. It thus
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validates Assumption 1 and also suggests that UEdvac is
small compared with Edful.

Figure 5 records the event counts of driver logoff/
logon. The logon curve experiences three jumps: at
around 0:00, at around 7:00 and at around 9:00; almost
simultaneous but less obvious jumps of order generation
can be observed. The logoff curve is much more continu-
ous than the logon curve; it slowly arrives at its first peak
at around 1:00 and second at around 10:30 and then
stays at a nearly constant level; the two intervals are
exactly the shift times for most drivers. Drivers response
to market demand via dynamical logon and logoff after
estimation of personal return on investment all the time,
and unconsciously leave behind a market equilibrium.

Algorithm 1: Local integralization

Input: decimal Plan(source, target, plan),
Supply(source, remain), Demand(target,
remain)

Output: integer Plan
Step 1 Initialization;
foreachrow in Plando

Plan.plan=floor(Plan.plan 3 sum(Demand.remain));

Supply[source=Plan.source].remain � Plan.plan;
Demand[target=Plan.target].remain � Plan.plan;

end
Step 2 Check and handle over dispatch;
foreachsource in Plando

over_dispatch= � Supply[source=Plan.source].remain;

if over_dispatch. 0then
sort Plan[source=Plan.source] by cost
descending;
reduce Plan.plan in the descending order
gradually till eliminate over dispatch;

end
end
Step 3 Local optimization;
sort Plan by cost ascending;
to_dispatch=sum(Demand.remain);
foreach row in Plando

if Supply[source=Plan.source].remain . 0and
Demand[target=Plan.target].remain . 0then

Plan.plan + 1;
Supply[source=Plan.source].remain � 1;
to_dispatch � 1;
Demand[target=Plan.target].remain � 1;

end
if to_dispatch=0then

break;
end

end
Step 4 Handle remainder;
Supply_remainder=Supply [remain. 0];

Demand_remainder=Demand[remain. 0];
Plan_remainder=Algorithm 2(Supply_remainder,
Demand_remainder);
Step 5 Plan=Plan.Append(Plan_remainder).

Algorithm 2: Dispatch by ascending costs

Input: Supply, Demand
Output: Plan
Cost(source, target, cost)=Stacked costs for each
permuted pair of (source, target) in (Supply,
Demand);
sort Cost by cost ascending;
to_dispatch=sum(Demand.remain);
foreachrow in Costdo

feasible=min(Supply[source=Cost.source].remain),
Demand[target=Cost.target].remain);
Plan.Append(source, target, feasible);
to_dispatch � feasible;
Supply[source=Cost.source].remain � feasible;
Demand[target=Cost.target].remain � feasible;
if to_dispatch=0then

break;
end

end

Algorithm 3: First in first serve guided by plan

Input: Driver(id_driver, source, time, matched=False),
Order(id_order, target, time, matched=False),
Plan(source, target, remain=plan)
Output: Match(id_driver, id_order)
sort Order by time ascending;
foreach id_order in Order do

target=Order[id_order].target;
Sources=Plan[Plan[target=Order.target].remain. 0].source;
if count(Sources). 0 then

FeasibleDrivers=Driver[source in Sources and
matched=False]
sort FeasibleDrivers by time ascending;
id_driver=FeasibleDrivers[1].id_driver;
source=FeasibleDrivers[1].source;
Match.Append(id_driver, id_order);
Driver[id_driver].matched=True;
Order[id_order].matched=True;
Plan[source=source and
target=target].remain � 1.

end
end

Figure 1. Active drivers of the city in 24 h.
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Preparation of mdriver and norder

Time Window. We recount Edful in Figure 6 and find it is
relatively stable. Additionally, with information provided
by Figure 4, Edvac is small compared with Edful almost all
through. Encouraged by these, and also for convenience
of computation, we uniformly split the 24h of daytime
into 48 equal-length time intervals such that each interval
is 30min long and succeeds the previous one. For each
geographical grid (defined in ‘‘Geographical mesh’’),
orders generated are counted by interval. Active driver for
the grid is summed up by vacant drivers in the grid at the
beginning and drivers anticipated to be released from ser-
ving in the grid during the interval. However, driver
logon/logoff during the interval is regarded as unpredict-
able at grid level and omitted in the distribution calcula-
tion. These settings and the way to calculate distributions
will possibly cause unbalance. For illustration, deviation
from balance, measured in supply=demand� 1, is com-
puted for each interval and shown in Figure 7. It demon-
strates that the unbalance is negligible, especially for those
intervals with high order generation rate.

Geographical Mesh. The geographical gridding is con-
ducted with parameters in Table 1.

The mesh is sized at 450 3 500 but the actual count of
grids with positive density of either supply or demand is
precisely 9183. Transport cost between each pair of grids
is computed as the Euclidean distance between their
centers.

Results

Since we have no access to the point-to-point cost func-
tion of travel time, we do optimization under
Assumption 3 all through. It is understood that dpic

Figure 2. Order generation rate of the city in 24 h.

Figure 3. Diagram of order pickup time and service time.

Figure 4. Ratio of supply to demand in 24 h.

Figure 5. Drivers logon and logoff rates in 24 h.

Figure 6. Diagram of order fulfillment time Edful.
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differentiates with the corresponding Euclidean distance
to travel only by a speed factor under the assumption.

For illustration, we calculate the OTP for interval 9
following the above methodology and settings. The result
is depicted in Figure 8.

Figure 7. Deviation from balance of the isometric intervals.

Table 1. Parameters for Geographical Gridding

Longitude (East) Latitude (North)

Start 103.48 30.18
End 103.70 31.34
Span 1.22 1.16
Steps (number) 450 500
Step span 0.0027 0.0023
Step span (km) 0.26 0.26

Figure 8. Optimal transport plan (OTP) for interval 9. Each blue/
red disk stands for a mass of supply/demand measured in disk
area. Each gray line stands for a piece of OTP and the mass
transported by that piece is measured in the gray level of the line.
Coordinates originate from the southwesternmost grid in
operation and axes are ticked every 10 km.

Table 2. Edpic Comparison

Interval S/D dis0 dis1 dis2 dis12dis2 dis02dis2

2 0.77 1.32 1.55 1.37 0.18 20.05
3 1.31 1.95 2.37 1.64 0.72 0.31
4 1.69 2.59 2.44 1.45 0.98 1.14
5 1.49 3.58 2.62 1.65 0.96 1.93
6 1.60 3.28 2.82 1.68 1.14 1.60
7 1.58 3.59 2.80 1.73 1.07 1.86
8 1.44 3.66 3.27 2.07 1.20 1.59
9 1.18 3.69 3.00 2.29 0.71 1.40
10 1.45 3.69 2.39 1.73 0.65 1.96
11 1.19 3.91 2.88 2.48 0.41 1.44
12 1.00 3.36 2.96 2.99 20.04 0.37
13 0.74 3.32 3.40 2.93 0.46 0.38
14 0.76 2.59 3.08 2.83 0.25 20.24
15 0.40 2.20 2.51 1.66 0.85 0.54
16 0.68 1.79 1.54 1.29 0.26 0.50
17 0.88 1.62 1.28 1.16 0.13 0.47
18 1.00 1.68 1.22 1.24 20.02 0.44
19 0.92 1.90 1.37 1.25 0.12 0.65
20 1.05 1.94 1.11 1.05 0.06 0.89
21 1.22 2.08 0.90 0.76 0.14 1.33
22 1.32 2.20 0.77 0.59 0.18 1.61
23 1.34 2.25 0.74 0.56 0.18 1.69
24 1.27 2.30 0.89 0.66 0.23 1.64
25 1.27 2.55 0.89 0.68 0.21 1.87
26 1.21 2.68 0.94 0.72 0.22 1.96
27 1.06 2.87 0.88 0.74 0.14 2.13
28 1.02 2.76 0.94 0.83 0.11 1.92
29 1.06 2.87 0.83 0.70 0.13 2.17
30 1.19 2.69 0.91 0.70 0.21 1.99
31 1.25 2.83 0.87 0.65 0.21 2.18
32 1.25 2.85 1.09 0.81 0.28 2.04
33 1.25 3.14 1.20 0.90 0.29 2.23
34 1.12 3.10 1.32 1.05 0.27 2.05
35 1.10 3.12 1.45 1.18 0.26 1.94
36 1.12 2.94 1.44 1.16 0.29 1.79
37 1.14 2.78 1.27 1.01 0.25 1.77
38 1.17 2.83 1.05 0.83 0.22 2.00
39 1.07 2.91 1.20 1.05 0.16 1.87
40 1.11 2.95 1.37 1.14 0.23 1.80
41 1.08 3.12 1.36 1.14 0.22 1.98
42 1.04 3.24 1.49 1.27 0.22 1.97
43 1.03 3.29 1.54 1.36 0.18 1.94
44 1.04 3.48 1.52 1.31 0.21 2.17
45 1.03 3.57 1.41 1.25 0.16 2.32
46 1.06 3.67 1.38 1.18 0.21 2.49
47 1.04 3.61 1.89 1.61 0.28 1.99
48 1.10 3.40 2.43 1.93 0.51 1.47

Note: S/D = simplification for the ratio of count of active drivers to count

of orders generated in each interval; dis = distance. Data for interval 1

was unavailable.
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Edpic Comparison. For each interval, we compute the
standard W1 distances (dis1) (through a standard algo-
rithm applicable to balanced optimal transport prob-
lems) and the distances by proposed Algorithm 1 (dis2).
We compare the results to the distances extracted from
actual dispatches by the operating platform (dis0). The
strategy underlying dis0 has not been explicitly stated
but will probably be value-based (8, 9). Distance is scaled
in kilometers if not specified throughout this paper.

We actually start computation from interval 2 because
of data missing in interval 1. For the 47 experiments, as
reported in Table 2, our proposed methodology only
loses twice to the one implemented by operating platform
by a slight margin while wins significantly in the other
45. Furthermore, the advantage of Algorithm 1 over
standard Wasserstein method is apparent. It shows that
the larger the system deviates from balance, the greater
the advantage is. In the tables, S=D is a simplification for

Table 3. Effectiveness in Myopia Elimination

Interval Extrema Distance achieved Effectiveness Interval Extrema Distance achieved Effectiveness

(30,120] 2.06 2.09 0.99 (720,810] 0.86 0.90 0.95
(60,150] 2.42 2.45 0.99 (750,840] 0.89 0.92 0.96
(90,180] 2.55 2.60 0.98 (780,870] 0.85 0.88 0.97
(120,210] 2.69 2.73 0.99 (810,900] 0.86 0.89 0.96
(150,240] 2.86 2.94 0.97 (840,930] 0.84 0.87 0.97
(180,270] 2.92 3.01 0.97 (870,960] 0.93 0.95 0.97
(210,300] 2.69 2.92 0.92 (900,990] 1.02 1.05 0.97
(240,330] 2.55 2.78 0.92 (930,1020] 1.17 1.20 0.97
(270,360] 2.52 2.76 0.91 (960,1050] 1.30 1.32 0.98
(300,390] 2.84 3.10 0.92 (990,1080] 1.39 1.40 0.99
(330,420] 3.00 3.14 0.95 (1020,1110] 1.34 1.39 0.97
(360,450] 2.83 2.91 0.97 (1050,1140] 1.22 1.26 0.97
(390,480] 1.96 2.06 0.95 (1080,1170] 1.12 1.17 0.96
(420,510] 1.50 1.55 0.97 (1110,1200] 1.17 1.20 0.97
(450,540] 1.28 1.32 0.97 (1140,1230] 1.29 1.31 0.99
(480,570] 1.24 1.30 0.96 (1170,1260] 1.39 1.41 0.99
(510,600] 1.17 1.23 0.95 (1200,1290] 1.44 1.46 0.98
(540,630] 1.08 1.12 0.96 (1230,1320] 1.50 1.52 0.99
(570,660] 0.87 0.93 0.93 (1260,1350] 1.47 1.49 0.99
(600,690] 0.71 0.81 0.87 (1290,1380] 1.42 1.44 0.98
(630,720] 0.69 0.80 0.86 (1320,1410] 1.50 1.54 0.98
(660,750] 0.77 0.84 0.91 (1350,1440] 1.79 1.82 0.98
(690,780] 0.87 0.91 0.95

Table 4. Fragment of Dispatching

OrderId Target grid Order time Driver matched Driver time Source grid dres

7c297b1cd7 175 3 214 1420.53 idle1at174 1410.00 174 3 217 210.53
17b8f89ea7 175 3 218 1416.30 dcd063bd11 1430.61 175 3 219 14.31
8c178f7f03 176 3 212 1413.63 2ff7ebaf10 1426.46 175 3 212 12.83
7676abfc5b 176 3 219 1413.46 f020e07830 1433.41 175 3 219 19.95
42fbb6984f 178 3 214 1421.93 d051cdc0e7 1426.15 177 3 214 4.21
33363ebfc3 179 3 250 1412.33 d4e5ff38d5 1421.86 179 3 250 9.53
24b3d42c60 181 3 213 1418.96 idle1at175 1410.00 173 3 213 28.96
c626f1af09 181 3 240 1412.33 a87e7dba69 1415.18 147 3 269 2.85
4f9b03af21 182 3 203 1411.81 aa5a7e4958 1420.03 174 3 202 8.21
97d876ad42 182 3 208 1424.41 c8591a3863 1428.15 176 3 209 3.73
56549bdd0a 182 3 231 1419.75 8bd05d52c3 1418.21 181 3 232 21.53
99d7970cd8 182 3 232 1417.30 d1d125316d 1416.50 182 3 232 20.80
4192d9d56f 182 3 233 1411.26 idle1at176 1410.00 176 3 237 21.26
2e70430a29 182 3 235 1410.31 7c82421fee 1417.80 161 3 247 7.48
cb5907bfe9 183 3 240 1419.35 idle1at173 1410.00 173 3 250 29.35
......
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the ratio of count of active drivers to count of orders
generated in each interval.

Myopia Control. To verify that myopia is nearly eliminated
during the successive 30-min intervals, we construct an
extreme benchmark. Our idea is to widen the window to
its practical extreme to contain as many candidate dis-
patches as possible. The extreme window is set 90min
long. For within a 90-min interval, if a driver is not dis-
patched throughout he will almost certainly log off;
meanwhile, there will be a high probability of a passen-
ger canceling the order if it is not responded to within
less than 10min. So the OTP for a 90-min interval is
extremely considerate and the corresponding W1 distance
is an extremum to achieve for all dispatching strategies.

Precisely, we construct overlapped 90-min intervals,
that is, (30, 120�, (60, 150�, :::(1350, 1410�. For each such
interval, we compute the W1 distance between supply and
demand as the extrema distance with which dis2 com-
puted previously is to compare. To have a common basis
for comparison, we average dis2 over three successive 30-
min intervals, weighting with count of orders of each
interval, as distance achieved. The ratio of extrema dis-
tance, which is from the 90-min interval covering the
three, to distance achieved is then a representative of
effectiveness in myopia elimination. Table 3 shows the
results validating Theorem 3.

Order Response Time Edres . The driver to order level dis-
patches can be generated by applying Algorithm 3 on the
results of Algorithm 2. Table 4 includes a fragment of
dispatching for illustration, wherein a negative value of
dres indicates that the appointed driver has already being
vacant for that long. Recall that when we constructed
the distributions for a interval, we just omitted time dif-
ferences of events, but in a real world delayed response
to an order will lead to serious serving complaints. Edres
for the 47 experiments under our strategy are listed in
Table 5. The results provide a validating example for (ii)
of Theorem 1.

Conclusion and Discussion

We observe that the ride-hailing market is a dynamically
balanced system. Encouraged by this observation, we
aim to optimize the system’s productivity, instead of
ADI and ORR which are ineffective under the balanced
condition. The system’s productivity is the inverse of the
driver cycle by definition. Consequently, optimization is
done by minimizing expected order pickup time under
appropriate assumptions. We then formulate the minimi-
zation work into sequential optimal transport problems.
Finally, the solution can be effectively obtained via algo-
rithms developed within this article. We also demonstrate
that myopia is well controlled under our methodology.

Table 5. Edres Statistics

Interval

Edres within (in minutes)
Interval

Edres within (in minutes)

< 0 (%) (0,3] (%) (3,8] (%) (8,15] (%) .15 (%) < 0 (%) (0,3] (%) (3,8] (%) (8,15] (%) .15 (%)

2 73 8 9 8 2 26 94 2 2 2 1
3 92 3 2 2 1 27 91 3 3 2 1
4 92 3 3 2 1 28 87 5 5 2 1
5 94 2 2 2 1 29 89 4 4 2 1
6 92 2 3 3 1 30 90 3 3 2 1
7 92 3 2 3 1 31 92 3 3 2 1
8 92 3 3 2 0 32 92 3 2 2 1
9 90 3 3 3 0 33 92 3 3 2 1
10 90 2 4 3 2 34 91 3 4 2 1
11 91 2 3 2 1 35 90 3 3 2 1
12 86 2 6 4 2 36 88 5 4 3 1
13 85 3 7 3 2 37 86 5 5 3 1
14 82 4 6 6 2 38 89 4 4 2 1
15 80 7 6 5 2 39 89 4 4 2 1
16 74 7 10 7 3 40 88 4 4 2 1
17 80 6 7 5 2 41 90 4 4 2 1
18 84 5 6 4 1 42 88 4 4 3 1
19 86 4 5 3 1 43 88 4 4 2 1
20 85 5 5 4 2 44 88 4 3 3 1
21 91 3 3 2 1 45 88 4 4 3 1
22 93 2 2 2 1 46 87 5 5 3 1
23 93 2 3 2 1 47 86 4 5 3 1
24 93 2 2 2 1 48 82 6 6 4 2
25 93 2 2 2 1
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For the convenience of statement of our methodology,
we make a simplification that each driver is assumed to
serve only once during one interval, while actually there
are quite a few short orders which permit second serve or
even more. This suggests that distribution of supply
changes even in one single interval, which just erodes the
foundation of our methodology. More sophisticated
techniques, such as Wasserstein distance between spatio-
temporal distributions, are probably needed to resolve
this question.
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