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Abstract
We propose an inferential procedure for additive hazards regression with high-
dimensional survival data, where the covariates are prone to measurement errors.
We develop a double bias correction method by first correcting the bias arising from
measurement errors in covariates through an estimating function for the regression
parameter. By adopting the convex relaxation technique, a regularized estimator for
the regression parameter is obtained by elaborately designing a feasible loss based
on the estimating function, which is solved via linear programming. Using the Ney-
man orthogonality, we propose an asymptotically unbiased estimator which further
corrects the bias caused by the convex relaxation and regularization. We derive the
convergence rate of the proposed estimator and establish the asymptotic normality for
the low-dimensional parameter estimator and the linear combination thereof, accom-
panied with a consistent estimator for the variance. Numerical experiments are carried
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out on both simulated and real datasets to demonstrate the promising performance of
the proposed double bias correction method.

Keywords Bias correction · Confidence interval · Error-in-variable · Estimating
equation · High dimensions · Survival analysis

1 Introduction

With rapid advancement of information technology, high-dimensional complex data
can be collected at a fast pace and a low cost in many scientific disciplines and appli-
cations. Nevertheless, the measurement error is commonly encountered in the data
collection process, which plays an ever more critical role and often imposes new
challenges in statistical analysis. There is a vast amount of literature on tackling
measurement error problems in low-dimensional settings (Carroll et al. 2006), which
however remains a rather unexplored area in high-dimensional settings. The issue
becomes more challenging when the outcome is subject to right censoring, a common
scenario in survival analysis.

When all variables are fully observed and accuratelymeasured, regularization is one
of themost-widely used approaches to high-dimensional sparse regressionmodels; see
Bühlmann and van de Geer (2011) and Wainwright (2019) for an overview. Recently,
substantial endeavors have been devoted to developing statistical inference, such
as construction of confidence intervals and hypothesis testing, for high-dimensional
sparse linear regressionmodels. Using the sample splitting techniques,Wasserman and
Roeder (2009) andMeinshausen et al. (2009) proposed significance testing procedures
for high-dimensional regression coefficients. However, the sample splitting may lead
to potential efficiency loss. Lockhart et al. (2014) developed a significance test for
variables along the Lasso (Tibshirani 1996) solution path. Lee et al. (2016) proposed
an exact post-selection inference procedure for the regression coefficients conditional
on themodel selected by Lasso. The resulting confidence interval may change with the
selectedmodel and thus is difficult to interpret. Another line of research in constructing
confidence intervals takes the debiased approach based on Lasso, which exploits the
idea of low-dimensional projection while considering the remaining regression coef-
ficients as nuisance parameters (Javanmard and Montanari 2014; Zhang and Zhang
2014). By inverting the Karush–Kuhn–Tucker condition, van de Geer et al. (2014)
extended the debiased method to the high-dimensional generalized linear models and
proposed to construct confidence intervals using the de-sparsified Lasso estimator.
Ning and Liu (2017) constructed confidence intervals for high-dimensional penalized
M-estimators based on the decorrelated score statistic. For high-dimensional censored
survival data, Fang et al. (2017) and Yu et al. (2021) proposed hypothesis testing and
confidence interval procedures in the framework of the Cox proportional hazards
model based on the decorrelated and debiased approaches, respectively.

Covariate measurement errors might arise as a consequence of device failures
or measurement cost savings. Recent progress on dealing with measurement errors
mainly focuses on the high-dimensional sparse linear models. By relaxing the upper
bound restriction for the �∞-norm of the gradient in the Dantzig selector (Candès
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and Tao 2007), Rosenbaum and Tsybakov (2010) showed that the resulting estimator
can correctly recover the sparsity pattern with high probability. Sørensen et al. (2018)
made an extension to high-dimensional generalized linear models. As the loss func-
tion is no longer convex due to covariate measurement errors, Loh and Wainwright
(2012) proposed a non-convex modification of the Lasso and developed a projected
gradient descent algorithm. On the other hand, Datta and Zou (2017) advocated the
convex approximation to the non-convex loss as convexity is essential for the Lasso
method and they further obtained the error bounds of the proposed estimators. Belloni
et al. (2017) proposed simultaneous confidence intervals for a subset of regression
coefficients where the critical values were obtained using the multiplier bootstrap.

Mismeasured covariates may also arise in survival regression analysis. As a valu-
able complement of the Cox proportional hazards model, the additive hazards model
possesses a distinct interpretation and an explicit solution from the martingale-based
estimating equation (Lin and Ying 1994). In the low-dimensional settings, Huang
and Wang (2000) proposed a nonparametric-correction approach for the Cox model,
and Kulich and Lin (2000) developed an empirical moment plug-in approach for the
additive hazards model when there exists a validation set. Yan and Yi (2016) also
studied the measurement error effect on the structure of the additive hazard function,
and proposed the regression calibration method to reduce it. In the high-dimensional
settings with accurately measured covariates, Huang et al. (2013) and Lin and Lv
(2013) established the error bounds for the Lasso estimators under the proportional
and additive hazards models, respectively.

In this work, we address a more challenging problem of high-dimensional survival
data with covariate measurement errors. Focusing on the additive hazards model, our
main contributions can be summarized in two different facets. First, multiple layers of
bias correction are needed due tomultiple sources for bias, for whichwe propose novel
strategies to correct the biases adaptive to different sources. In the first step, we develop
a surrogate loss function by correcting the bias from covariate measurement errors.
However, the convexity of such loss function cannot be guaranteed, thus leading to an
unstable regularized solution. We propose to relax the strict zero-root constraint of the
penalized estimating equation and expand the feasible region over a parameter space
at the sacrifice of introducing additional bias. We formulate a convex optimization
problem following the idea of the Dantzig selector, which thereby greatly facilitates
the computation and theoretical analysis. In the second step, we propose the nearly
Neyman-orthogonal estimating function of the individual coefficient of interest such
that the impact from the regularization bias and estimation of nuisance parameters
is negligible (Neyman 1959; Newey 1994; Chernozhukov et al. 2018). Second, by
allowing the dimensionality to increase at an exponential rate with respect to the
sample size, we establish the error bound for the one-step bias corrected estimator and
construct the confidence interval and hypothesis testing for the individual coefficient
based on the second-step bias corrected estimator.

The rest of this paper is organized as follows. Section 2 describes the first-step
bias corrected estimator under the additive hazards model with covariate measurement
errors and establishes its convergence rate under some regularity conditions. In Sect. 3,
we construct the confidence intervals and hypothesis testing for the low-dimensional
components of high-dimensional regression coefficients and demonstrate the connec-
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tion from the second-step bias correction for regularization. We conduct simulation
studies in Sect. 4, including parameter estimation, confidence intervals, and size and
power analysis for hypothesis testing, to evaluate the finite-sample performances of
our propose methods. A real dataset is analyzed in Sect. 5, and Sect. 6 concludes with
some discussions. The proofs of main theorems are relegated to the Appendix while
additional preliminary lemmas are collected in the online supplementary material.

2 Additive Hazards Regression

Let T denote the failure time, C denote the censoring time, and Z = (Z1, . . . , Z p)
�

be a p-vector of covariates. Assume that T and C are conditionally independent given
Z. Let X = min(T ,C) denote the observed survival time and � = I (T ≤ C)

denote the failure indicator, where I (·) is the indicator function. In contrast to the Cox
proportional hazards model (Cox 1972), the additive hazards model specifies that the
hazard function associated with covariate Z is the sum of, rather than the product of,
the baseline hazard function and the regression function of covariates. Specifically,
the hazard function takes the form of

λ(t | Z) = λ0(t) + Z�β0,

where λ0(t) is the unknown baseline hazard function and β0 is a p-vector of unknown
regression parameters. For i = 1, . . . , n, let (Xi ,�i ,Zi ) be the independent and
identically distributed copies of (X ,�,Z). Let Ni (t) = I (Xi ≤ t,�i = 1)
denote the counting process and Yi (t) = I (Xi ≥ t) denote the at-risk process, and
Z(t) = ∑n

i=1 Yi (t)Zi/
∑n

i=1 Yi (t). Adopting the martingale estimating equation, Lin
and Ying (1994) proposed a pseudo-score function,

G∗
n(β) = 1

n

n∑

i=1

∫ τ

0
{Zi − Z(t)}{Yi (t)Z�

i βdt − dNi (t)},

where τ is the end time of the study duration and β ∈ B ⊂ R
p with B being the

parameter space. We rewrite G∗
n(β) = B∗

nβ − b∗
n , where

b∗
n = 1

n

n∑

i=1

∫ τ

0
{Zi − Z(t)}dNi (t)

and

B∗
n = 1

n

n∑

i=1

∫ τ

0
Yi (t){Zi − Z(t)}⊗2dt

with a⊗2 = aa� for a vector a. Clearly, the resulting estimator can be obtained by
solving the zero root of G∗

n(β). However, neither is such an estimation procedure
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applicable in the high-dimensional settings where p is larger than n nor in the situ-
ation where covariates Z are prone to measurement errors. When both situations are
present in high-dimensional complex survival data, the problem becomes even more
challenging.

We assume the classic additive measurement error structure as follows,

W = Z + U,

where U = (U1, . . . ,Up)
� is a p-variate symmetrically distributed random vector

with mean 0 and covariance matrix V. We do not directly observe Z but only observe
its surrogate W, because covariate Z may be measured with error. If some covariates
are error-free, we can simply set the corresponding terms in V to be zero. To facili-
tate development of our double bias correction approach, we assume V to be known
provisionally. We further make the typical surrogacy assumption that (T ,C) and W
are conditionally independent given covariate Z, which is obviously satisfied when U
is independent of (T ,C,Z), in conjunction with the random censoring mechanism.
Assume thatW1, . . . ,Wn are independent copies ofW, and letOn = {Xi ,�i ,Wi }ni=1
denote the observed data and correspondingly Un = {Xi ,�i ,Zi }ni=1.

We develop the procedure for the first correction of the bias caused by simply
replacing Zi withWi in G∗

n(β). For ease of exposition, let

bn = 1

n

n∑

i=1

∫ τ

0
{Wi − W(t)}dNi (t)

and

Bn = 1

n

n∑

i=1

∫ τ

0
Yi (t){Wi − W(t)}⊗2dt,

where W(t) = ∑n
i=1 Yi (t)Wi/

∑n
i=1 Yi (t). By noting that

E(Wi | Un) = Zi and E(WiW�
j | Un) = ZiZ�

j + I (i = j)V

and following some algebra, we can derive that

E(Bnβ − bn | Un) = G∗
n(β) + dnVβ,

where

dn = 1

n

n∑

i=1

∫ τ

0
Yi (t)dt − τ

n
.

Inspired by the corrected score method proposed by Stefanski (1989), we immediately
obtain the desirable corrected estimating function, depending only on On and β, as
follows,
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Gn(β) = Dnβ − bn, with Dn = Bn − dnV,

which satisfies E{Gn(β) | Un} = G∗
n(β). Ideally, following Johnson et al. (2008) and

Lin and Lv (2013), the penalized estimating equation with the Lasso penalty is given
by

Gn(β) + δ · sign(β) = 0, (2.1)

where sign(·) is the pointwise sign function and δ > 0 is the tuning parameter. Due
to the extra term dnV arising from the measurement error, the matrix Dn = Bn − dnV
cannot be guaranteed to be non-negative definite. This prohibits a unique solution
of (2.1), and the resulting estimator would be unstable. A more plausible way is to
relax the strict zero-root constraint of (2.1) and expand the feasible region over the
parameter space B at the sacrifice of introducing additional bias. In particular, we
define the estimator β̂ as the solution of the minimization problem,

min
β∈B

{|β|1 : |Gn(β)|∞ ≤ η|β|1 + δ} , (2.2)

where | · |r denotes the �r -norm for a vector with 1 ≤ r ≤ ∞ with | · |∞ being the
maximal norm. The term η|β|1 is added to further loosen the upper bound tailored by
the tuning parameter η > 0 (Rosenbaum and Tsybakov 2010; Sørensen et al. 2018).
We show in Lemma 3 that the true parameter β0 falls in the feasible region of (2.2)
with probability tending to one. By introducing a slack vector u = (u1, . . . , u p)

�,
minimizing (2.2) is equivalent to solving the optimization problem,

minimize 1�u
subject to − u ≤ β ≤ u

− η11�u + Dnβ ≤ δ1 + bn

− η11�u − Dnβ ≤ δ1 − bn
u ≥ 0,

(2.3)

where 1 is a vector of 1 and 0 is a vector of 0. For notational simplicity, the length
of a vector is omitted when there is no ambiguity. We write β ≤ u if β j ≤ u j for
j = 1, . . . , p, where β = (β1, . . . , βp)

�. The resulting estimator, denoted by β̂, can
be obtained by solving (2.3) using linear programming. Because it is a crude estimator
obtained by expanding the feasible region, multiple solutions to (2.3) may exist and
they can all be considered as β̂.

The rate of β̂ converging to the true parameter β0 should first be established before
accounting for the bias of β̂ explicitly. Let A denote a set of indices and v denote a
vector, and let vA be the sub-vector of v with indices corresponding to those in setA.
Denote the active set by A0 = { j : β0 j 
= 0}, where β0 j is the j-th element of the
true regression parameter β0, for j = 1, . . . , p. Let s0 = |A0|, the cardinality of set
A0. We first state some regularity conditions as follows.
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C1 Assume that 	0(τ ) = ∫ τ

0 λ0(t)dt < ∞ and P{Y (τ ) = 1} ≥ τ0 > 0 for some
constant τ0, where Y (t) = I (X ≥ t) for t ∈ [0, τ ].

C2 Each component of Z and U is sub-Gaussian.
C3 There exists a constant ζ0 > 0, such that

min
v∈Rp\{0},|vAc

0
|1≤3|vA0 |1

v�B∗v
v�v

≥ ζ0,

where

B∗ = E

{∫ τ

0
Y (t) (Z − z(t))⊗2 dt

}

with z(t) = E{Y (t)Z}/E{Y (t)}.
Condition C1 is a standard assumption in survival analysis. Condition C2 bounds the
tail probability for every component of the covariate and the measurement error. It
implies that the event

�L =
{

max
(

max
1≤ j≤p

|Z j |, max
1≤ j≤p

|Uj |
)

≤ L

}

can occur with high probability for sufficiently large L . Condition C3 is regarding the
restricted eigenvalue condition, an inherent condition in high-dimensional regression
models. We denote cn � c∗

n if cn and c∗
n are of the same order of magnitude. Let

Lc1,c2
max = max{Lc1, |V|c2max} for some constants c1 and c2, where |V|max = maxi, j |Vi j |

with V = (Vi j )p×p. The error bound for the proposed estimator β̂ is given in the
following theorem.

Theorem 1 Assume η � δ � L2,1
max

√
log p/n and s0L2√log p/n = o(1). Under

conditions C1–C3, we have

|̂β − β0|r = OP

(

s1/r0 L2,1
max

√
log p

n

)

for r = 1 and 2.

The proof of Theorem 1 is delegated to the Appendix. When it holds
s1/r0 L2,1

max
√
log p/n = o(1), the �r -bound converges to zero in probability. To present

our results in a more general framework, we explicitly emphasize the dependence of
error bounds on L , wherein L can be chosen large enough to ensure that the event �L

happens with probability close to one. On the other hand, if Z is uniformly bounded
by a constant as assumed in Bühlmann and van de Geer (2011), the extra effect on the
error bound arises from the measurement error U and its covariance matrix V. As the
first step of bias correction, the estimator β̂ is obtained via the corrected estimating
function, while the convex relaxation in the penalized term unfortunately introduces
additional bias. Thus, the second step of bias correction is necessarywhenwe construct
the confidence interval and hypothesis testing procedure.
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3 Hypothesis Test and Confidence Interval

3.1 Inference for One Parameter

Suppose that we are interested in testing the k-th component of β0,

H0 : β0k = θ0 versus H1 : β0k 
= θ0, (3.1)

where θ0 is a prespecified constant. Obviously, the nuisance parameters β0(−k) =
{β0 j : j = 1, . . . , p, j 
= k} should also be taken into account in the hypothesis testing
procedure. Employing the semiparametric efficiency theory, we propose a new test
procedure for (3.1) such that the effect from estimating the high-dimensional nuisance
parameter becomes asymptotically negligible. We rewrite β0 = (β0k,β

�
0(−k))

�, and
let Gnk(β) denote the k-th component of Gn(β) and Gn(−k)(β) denote the remaining
components. For a matrix A, let A jk denote the ( j, k)-th element of A. Denote A j,−k

as the j-th row of A but excluding the k-th element A jk and A− j,k as the k-th column
of A but excluding the j-th element A jk . Let A− j,−k denote the (p − 1) × (p − 1)
submatrix of A by deleting its j-th row and k-th column.

For any measurable function f , let Pn f denote the expectation under the empirical
probability measure Pn . Denote

g(β0) = −
∫ τ

0
{W − z(t)}dM(t) +

∫ τ

0
Y (t)[{W − z(t)}U� − V]dtβ0,

where

M(t) = N (t) −
∫ t

0
Y (s){d	0(s) + Z�β0ds} (3.2)

is the martingale process. The empirical version Png(β0) can be viewed as an approx-
imation of Gn(β0). The linearity of g(β0) = (g1(β0), . . . , gp(β0))

� implies that the
Neyman orthogonal estimating function takes the form of

gok (β0k | β0(−k)) = gk(β0) − g�−k(β0)γ 0k,

where the projection direction γ 0k satisfies that

∂t E{gok (β0k | β0(−k) + t(β∗−k − β0(−k)))}
∣
∣
t=0 = 0

along the submodel t 
→ β0(−k) + t(β∗−k − β0(−k)) for any β∗−k . As a result, γ 0k =
B∗−1

−k,−kB
∗−k,k . At the population level, the Neyman orthogonal estimating function

gok (β0k | β0(−k)) is given by

gok (β0k | β0(−k)) = gk(β0) − g�−k(β0)B
∗−1
−k,−kB

∗−k,k . (3.3)

AsB∗ andDn are close enough following Lemma 4, the estimator for the projection
direction γ 0k can be obtained in the way of relaxation, which is defined as
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γ̂ k ∈ arg min
γ∈Tk

{|γ |1 : |(Dn)−k,−kγ − (Dn)−k,k |∞ ≤ ηk |γ |1 + δk}, (3.4)

where ηk and δk are the tuning parameters and Tk ⊂ R
p−1 is the parameter space.

The minimization of (3.4) can be carried out using the linear programming procedure
as (2.3). Mimicking (3.3), the Neyman orthogonal estimating function at the sample
level is

Go
nk(βk | β−k) = Gnk(β) − G�

n(−k)(β)γ̂ k, (3.5)

which is expected to be the desirable testing statistic for (3.1) by substituting β̂−k for
β−k . As shown in Lemma 7, the distance between Go

nk(β0k | β̂−k) and Pngok (β0k |
β0(−k)) is negligible. Denote Ak = { j : γ0k( j) 
= 0}, where γ0k( j), j = 1, . . . , p − 1,
is the j-th component of γ 0k . Let sk = |Ak |. We need additional conditions in parallel
with condition C3 to derive the convergence rate of γ̂ k .

C4 There exists a constant ζ0k > 0, such that

min
v∈Rp−1\{0},|vAc

k
|1≤3|vAk |1

v�B∗−k,−kv

v�v
≥ ζ0k .

Theorem 2 Assume ηk � δk � L2,1
max

√
log p/n and sk L2√log p/n = o(1). Under

conditions C1, C2 and C4, we have

|γ̂ k − γ 0k |r = OP

(

s1/rk L2,1
max

√
log p

n

)

for r = 1 and 2.

The proof of Theorem 2 is provided in the Appendix. For notational simplicity, let
�k,θ0(β) denote the same vector as β except for the k-th component replaced by θ0.
Based on Theorems 1 and 2, we construct the test statistic under H0,

Go
nk(θ0 | β̂−k) = Gnk(�k,θ0(β̂)) − G�

n(−k)(�k,θ0(β̂))γ̂ k . (3.6)

To derive the limiting distribution of (3.6), we need more conditions as follows.

C5 Assume log p = o(nα) for some α ∈ (0, 1/2).
C6 Assume

(i) nα−1/2L2,1
max = o(1);

(ii) max(s0, sk)L
4,2
max log p/

√
n = o(1);

(iii) max(s0, sk)L
6,3
max

√
log p/n = o(1).

Condition C5 indicates that the dimension p can attain an exponential rate of sample
size n. Conditions C6-(ii) and C6-(iii) imply the assumptions s0L2√log p/n = o(1)
and sk L2√log p/n = o(1) in Theorems 1 and 2 respectively. In the situation with
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no measurement error, i.e., V = 0, when Z is uniformly bounded by some constant,
C6-(i) automatically holds, C6-(ii) reduces to max(s0, sk) log p/

√
n = o(1), and C6-

(iii) to max(s0, sk)
√
log p/n = o(1); clearly C6-(ii) is more stringent than C6-(iii).

In fact, C6-(iii) is typically employed to show the consistency whereas C6-(ii) for the
asymptotic distribution; e.g., see Ning and Liu (2017).

We denote the covariance matrix by�(β0) = E{g(β0)
⊗2}. Let�k,θ0(β) denote the

vector obtained by inserting a scalar θ0 between the (k − 1)-th and k-th components
of the vector β. The limiting distribution of (3.6) is given in the following theorem.

Theorem 3 Assume η � δ � ηk � δk � L2,1
max

√
log p/n. Under conditions C1–

C5, C6-(i) and C6-(ii), we have

√
nGo

nk(θ0 | β̂−k)
D−→ N (0, σ 2

k ),

where σ 2
k = ϕ�

k �(β0)ϕk with ϕk = �k,1(−γ 0k).

To obtain a consistent estimator for σ 2
k , we consider the sample counterpart,

ĝi (β̂) = −
∫ τ

0
{Wi − W(t)} {

dNi (t) − Yi (t)d	̂0(t)
}

+
∫ τ

0
Yi (t)

[
{Wi − W(t)}W�

i − V
]
dt β̂,

where

	̂0(t) =
n∑

i=1

∫ t

0

dNi (s) − Yi (s)W�
i β̂ds

∑n
j=1 Y j (s)

is the Breslow estimator for 	0(t). Define an empirical estimator for �(β0) as

�̂(β̂) = 1

n

n∑

i=1

{̂gi (β̂)}⊗2.

Theorem 4 Assume η � δ � ηk � δk � L2,1
max

√
log p/n and s0L

2,1
max

√
log p/n =

o(1). Under conditions C1–C6, we have

σ̂ 2
k = σ 2

k + OP

(

max(s0, sk)L
6,3
max

√
log p

n

)

,

where σ̂ 2
k = ϕ̂�

k �̂(β̂)ϕ̂k with ϕ̂k = �k,1(−γ̂ k).

Theorem 5 Assume η � δ � ηk � δk � L2,1
max

√
log p/n. Under conditions C1–C6,

we have

√
nGo

nk(θ0 | β̂−k)/σ̂k
D−→ N (0, 1).
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The proofs of Theorems 3 and 4 are outlined in the Appendix while that of Theo-
rem 5 follows directly from the former and is thus omitted. The null hypothesis H0 is
rejected at the significant level α if

|√nGo
nk(θ0 | β̂−k)/σ̂k | > z1−α/2,

where zα is the α-th lower quantile of the standard normal distribution. The asymptotic
confidence interval ofβ0k canbederivedby reversely solving from the rejection region,

ϕ̂�
k bn − (Dnϕ̂k)

�−k β̂−k ± z1−α/2σ̂k/
√
n

e�
k Dnϕ̂k

, (3.7)

where ek is the k-th vector of the canonical basis of Rp. It is evident from the center-
shifted confidence interval (3.7) for β0k that we can define

β̃k = β̂k −
(

β̂k − ϕ̂�
k bn − (Dnϕ̂k)

�−k β̂−k

e�
k Dnϕ̂k

)

= β̂k − (e�
k Dnϕ̂k)

−1ϕ̂�
k (Dnβ̂ − bn), (3.8)

which can be viewed as the second-step bias correction. We further conclude that√
n(β̃k − β0k) converges in distribution to a zero-mean normal distribution with the

standard error consistently estimated by σ̂k(e�
k Dnϕ̂k)

−1. However, this convergence
property is not possessed by the first-step bias correction estimator β̂k . We expand the
double bias corrected estimator (3.8) by running k from 1 to p, leading to

β̃ = β̂ − �̂
−1

�̂
(
Dnβ̂ − bn

)
, (3.9)

where �̂ = diag(e�
1 Dnϕ̂1, . . . , e

�
pDnϕ̂ p) and �̂ = (ϕ̂1, . . . , ϕ̂ p)

�. This is in spirit
similar to the debiased Lasso proposed by Zhang and Zhang (2014).

The tuning parameters offer us advantages of solving estimators by expanding the
feasible region. We develop the cross-validation (CV) procedure by designing proper
loss functions for selecting the tuning parameters. We first divide the dataset into
J pieces equally. Let β̂[− j](η, δ) denote the estimator using the same procedure of
obtaining β̂ when the j-th sub-dataset is removed. Motivated by the linear form of the
corrected estimating function Gn(β), we define the CV criterion

CV(η, δ) = 1

J

J∑

j=1

L [ j](β̂[− j](η, δ)),

where L [ j](β) = β�Dn[ j]β/2 − bn[ j]β with Dn[ j] and bn[ j] being calculated using
the j-th sub-dataset. The tuning parameters can be selected by minimizing CV(η, δ).
Similar procedures can be developed for selecting the tuning parameters ηk and δk .
As it is time-consuming to find the global minimizer of the CV criterion function, we
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alternatively search for the sub-optimum along the diagonal line η = δ or ηk = δk ,
which is adopted in the numerical studies.

3.2 Inference for Multiple Parameters

The inference procedure for a single parameter can be extended to test multiple param-
eters simultaneously. For a matrix A = (ai j )p×p, let I1 and I2 denote two subsets of
{1, . . . , p}, and let AI1,I2 = (ai j )(i, j)∈I1×I2 be the correponding submatrix of A. We
consider the hypothesis test,

H0 : β0I = θ0 versus H1 : β0I 
= θ0,

where I ⊂ {1, . . . , p} with |I| being fixed, β0I = {β0 j : j ∈ I}, and θ0 is a prespec-
ified |I|-dimensional vector. Rewrite β = (β�

I ,β�
Ic )

�, where Ic is the complement
set of I, i.e., Ic = {1, . . . , p} − I. The Neyman orthogonal function can be derived
as

Go
nI(βI | βIc ) = GnI(β) − γ �

0IGnIc (β),

where GnI(β) = {Gnk(β) : k ∈ I} and GnIc (β) = {Gnk(β) : k ∈ Ic}. The
true value of the direction of projection matrix γ 0I satisfies the Neyman orthogonal
equation,

∂rE
{
Go

nI(β0I | β0Ic + r(βIc − β0Ic ))
} = 0

for any βIc ∈ R
p−|I|, which yields that

γ 0I = (Dn)
−1
IcIc (Dn)IcI .

Set γ 0I = (
γ 0(·, j) : j ∈ I

)
, where γ 0(·, j) is the j-th column of matrix γ 0I . By

mimicking the argument adopted in the test procedure for the single parameter, we
propose the estimator of γ 0(·, j) as

γ̂ ·, j ∈ arg min
γ∈T̃ j

{|γ |1 : |(Dn)Ic,Icγ − (Dn)Ic, j |∞ ≤ ηI, j |γ |1 + δI, j },

where ηI, j and δI, j are the tuning parameters for every j ∈ I and T̃ j ⊂ R
p−|I| is

the parameter space. As a result, the orthogonal score function is estimated as

Ĝo
nI(θ0 | β̂Ic ) = GnI((θ�

0 , β̂
�
Ic )

�) − γ̂ �
IGnIc ((θ�

0 , β̂
�
Ic )

�),

where γ̂ I = (
γ̂ ·, j : j ∈ I

)
. Furthermore, under the null hypothesis it holds

√
nĜo

nI(θ0 | β̂Ic )
D−→ N (0,	I�(β0)	

�
I )
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as n → ∞, where 	I = (I|I|,−γ �
0I) and I|I| is the identity matrix of dimension

|I|. Under the null hypothesis, the asymptotic variance matrix can be consistently
estimated by

	̂I�̂((θ�
0 , β̂

�
Ic )

�)	̂
�
I

where 	̂I = (I|I|,−γ̂ �
I ). As a consequence, the test statistic is constructed as

χ̂2
n = nĜo

nI(θ0 | β̂Ic )�{	̂I�̂((θ�
0 , β̂

�
Ic )

�)	̂
�
I }−1Ĝo

nI(θ0 | β̂Ic ),

which asymptotically follows the Chi-squared distribution with the degree of freedom
|I| under the null hypothesis.

4 Simulation Studies

We conduct simulation studies to investigate the finite-sample performance of the
proposed method. For comparison, we consider the naive method that ignores mea-
surement errors by treatingW as error-free. As a benchmark, we further consider the
oracle but practically infeasible method that presumes the underlying Z to be known.
For both the naive and oracle methods, the decorrelated score in Ning and Liu (2017)
is applied to obtain the one- and two-step estimators. We generate the failure time T
from the additive hazards model,

λ(t |Z) = 2t + 2 + Z�β0,

whereβ0 = (1, 1,−1,−1, 0�)� with thefirst four regression coefficients nonzero and
the remaining zero, andZ is generated from a p-variate normal distribution with mean
zero and covariance matrix (0.5|i− j |)pi, j=1. The measurement errorU is also generated
from a zero-mean normal distribution with covariance matrix V andW = Z+U. We
set V = 0.25Ip to guarantee the elementwise signal-to-noise ratio to be 0.8, where Ip
is the identity matrix of size p. We take the censoring time C = min(C̃, τ ), where C̃
is generated from U (0, τ̃ ), and τ and τ̃ (τ < τ̃ ) are chosen to yield a censoring rate
of around 30%. We consider sample size n = 200, coupled with p = 100, 200, and
400, respectively. We test two hypotheses as follows: for the first signal covariate,

H0 : β01 = 1 versus H1 : β01 = θ1 (θ1 
= 1), (4.1)

and for the 34th non-signal one,

H0 : β0(34) = 0 versus H1 : β0(34) = θ34 (θ34 
= 0). (4.2)

For each configuration, we repeat 1000 simulations.
We apply the 10-fold CV procedure to select the tuning parameters along the diag-

onal line. In particular, we partition the prespecified interval equally on the log-scale
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Fig. 1 Paths of the cross-validation (CV) procedure along the diagonal line where the minimum point is
indicated by the vertical line

level and then identify which grid point corresponds to the minimum CV. As shown
in Fig. 1, the proposed CV procedure can attain the optimum along the diagonal
direction, demonstrating the practical feasibility of our strategy. We choose the tuning
parameters for the naive and oracle methods by developing a similar 10-fold CV pro-
cedure. The proposed one-step and two-step bias corrected estimators, β̂ and β̃, can be
respectively obtained from (2.3) and (3.9), whereas the counterparts of the naive and
oracle methods are obtained from (1.1) and (2.13) in Ning and Liu (2017). In Table 1,
the columns labeled “β̂k” and “β̃k” with sub-indices k = 1 and 34 are the averages
of the one- and two-step bias corrected estimators, respectively; “SE” is the sample
standard error of the two-step bias corrected estimators; “ESE” is the average of esti-
mates of the corresponding standard errors; and “CP” is the coverage probability of
95% confidence intervals. For the signal covariate, the proposed estimator with double
bias correction is indeed able to correct the bias, while the one-step bias correction
estimator is still biased. Obviously, the naive method is seriously biased whereas the
oracle method can effectively correct the bias of the one-step estimator. In contrast, for
the non-signal covariate, the one-step bias corrected estimator is sufficient to reduce
the bias under three approaches partially because the Lasso penalty in general leads to
the shrunk estimator. Although the coverage probabilities of the proposed method are
lower than the nominal level 95% for the signal covariate, the results are comparable
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Table 1 Simulation results based on 1000 replications of the one-step (β̂k ) and two-step (β̃k ) bias corrected
estimators (k = 1 and 34) for the proposed, naive and oracle methods with sample size n = 200 and
censoring rate 30%

Method p True value β01 = 1

β̂1 SE β̃1 SE ESE CP(%)

Proposed 100 0.228 0.210 0.905 0.357 0.304 90.8

200 0.215 0.241 0.906 0.350 0.301 89.4

400 0.092 0.143 0.931 0.358 0.314 88.7

Naive 100 0.273 0.255 0.658 0.249 0.229 62.5

200 0.238 0.239 0.676 0.261 0.236 68.2

400 0.133 0.193 0.599 0.226 0.230 57.1

Oracle 100 0.546 0.300 0.985 0.302 0.283 93.4

200 0.467 0.315 0.955 0.311 0.275 92.2

400 0.321 0.280 0.917 0.290 0.283 92.8

Method p True value β0(34) = 0

β̂34 SE β̃34 SE ESE CP(%)

Proposed 100 0.000 0.024 −0.007 0.298 0.282 94.0

200 0.002 0.042 −0.034 0.310 0.286 95.4

400 0.001 0.011 0.008 0.326 0.293 95.9

Naive 100 0.001 0.031 0.010 0.206 0.216 96.7

200 0.000 0.026 −0.013 0.199 0.220 97.2

400 −0.002 0.030 0.007 0.225 0.214 94.6

Oracle 100 −0.001 0.052 −0.004 0.253 0.266 96.2

200 −0.003 0.032 −0.003 0.237 0.256 97.0

400 −0.001 0.018 0.016 0.259 0.262 95.8

to that of the oracle method. This situation can be improved by increasing the sample
size or decreasing the censoring rate.

We corroborate the result of Theorem 5 with hypothesis tests of (4.1) and (4.2),
accompanying with the oracle method. It can be seen from Table 2 that the sizes of the
proposed and oracle testing procedures are similar; both are close to 5%. On the other
hand, we explore the power of the two testing procedures by gradually enlarging the
gap of the alternative hypothesis from the null. The power is enhanced accordingly
as shown in Fig. 2, although the proposed method gains the power at a slightly lower
rate than the oracle method when there is little discrimination between the null and
alternative hypotheses. Besides the 1-st and 34-th coordinates, we randomly select the
3-rd, 4-th, 6-th, and 400-th ones to assess the normal approximation of Theorem 5 as
well as the oracle method. The histograms of standardized testing statistics in Fig. 3
indicate the proposed and oracle testing statistics can almost equally and adequately
approximate the normal distribution, yielding valid inferential procedures.

We further evaluate the finite-sample performance of the inference procedure for
multiple parameters discussed in Sect. 3.2. We consider sample size n = 200, coupled
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Table 2 Size and power of the proposed and oracle testing procedures (θk is the value of β0k under the
alternative hypothesis with k = 1 and 34 and the null values β01 = 1 and β0(34) = 0) at the significant
level of 5% based on 1000 simulation replications

Method p Size Power of test (4.1)

θ1 = 0 θ1 = 0.5 θ1 = 1.5 θ1 = 2 θ1 = 2.5 θ1 = 3

Proposed 100 0.080 0.874 0.432 0.217 0.508 0.779 0.877

200 0.065 0.864 0.401 0.200 0.511 0.718 0.880

400 0.074 0.850 0.427 0.168 0.522 0.751 0.886

Oracle 100 0.066 0.959 0.531 0.282 0.668 0.911 0.990

200 0.078 0.975 0.583 0.293 0.689 0.928 0.989

400 0.072 0.965 0.530 0.235 0.643 0.916 0.952

p Size Power of test (4.2)

θ34 = 0.5 θ34 = 1 θ34 = 1.5 θ34 = 2 θ34 = 2.5 θ34 = 3

Proposed 100 0.060 0.212 0.499 0.802 0.912 0.973 0.979

200 0.046 0.165 0.470 0.759 0.917 0.978 0.989

400 0.041 0.198 0.514 0.798 0.930 0.988 0.998

Oracle 100 0.036 0.235 0.721 0.960 1.000 0.995 1.000

200 0.035 0.242 0.621 0.948 0.987 0.999 0.996

400 0.042 0.228 0.679 0.890 0.989 1.000 1.000
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Fig. 2 Power curves of the proposed (dotted lines) andoracle (dashed lines) testingprocedures for hypothesis
tests in (4.1) and (4.2), respectively

with p = 100, 200, and 400, respectively. The remaining simulation setups are kept the
same and the CV procedure for selecting the tuning parameters is developed likewise.
Set I = {1, 34} and consider the hypothesis test,

H0 : β0I = (1, 0)� versus H1 : β0I = θI (θI 
= (1, 0)�). (4.3)
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Fig. 3 The standard normal density curves (solid lines), histograms of standardized testing statistics, and
the kernel smoothing curves for the proposed (dotted lines) and oracle (dashed lines) methods with k =
1, 3, 4, 6, 34 and 400, respectively

Table 3 Test size and power of the proposed testing procedure for multiple parameters (θI is the alternative
value of β0I and the null value β0I = (1, 0)�) at the significant level of 5% based on 1000 simulation
replications

Method p Size Power of test (4.3)

θI = (0, 0)� θI = (1, 1)� θI = (1, 2)� θI = (2, 2)� θI = (3, 3)�

Proposed 100 0.075 0.796 0.575 0.941 0.912 0.972

200 0.072 0.825 0.540 0.925 0.883 0.981

400 0.065 0.833 0.578 0.951 0.859 0.969

Oracle 100 0.070 0.936 0.773 0.993 0.978 1.000

200 0.084 0.960 0.772 1.000 0.972 1.000

400 0.052 0.938 0.719 1.000 0.980 1.000

To explore the power of the proposed testing procedure, θI is set as (0, 0)�, (1, 1)�,
(1, 2)�, (2, 2)�, and (3, 3)�, respectively. For each configuration, we repeat 1000
simulations. Table 3 shows that both the proposed and oracle inference procedures
deliver promising and comparable performances.

5 Real Example

The China Health and Nutrition Survey (https://www.cpc.unc.edu/projects/china )
is an ongoing open cohort and international collaborative project between the Car-
olina Population Center at the University of North Carolina at Chapel Hill and the
National Institute for Nutrition and Health at the Chinese Center for Disease Control
and Prevention. The survey aims to examine the effects of the social and economic
transformation of Chinese society on the health and nutritional status of its population.
As a subcohort study, we are primarily interested to investigate the physical fitness,
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living and studying behaviors as well as other confounding covariates on the health
of adolescent girls, which is typically implied by the time to menarche. Early and
delayed menarche is usually associated with some physical, psychological, or nutri-
tional barrier. There are 63 eligible adolescent girls with age from 12 to 16 years old
enrolled in the China Health and Nutrition Survey between 1993 and 2009. Their ages
of menarche were recorded with a censoring rate of about 23.8%. There were 90 risk
factors, including systolic blood pressure (SBP) and diastolic blood pressure (DBP),
25 biochemical items, 30 nutritional indexes, 13 urbanization indexes and other living
and studying habits. The SBP and DBP were measured twice and 6 biochemical items
were assessed by local and central laboratories in Beijing, China, respectively.

We apply our proposed method to quantify the effects of risk factors on the time
to menarche. There were eight covariates prone to measurement errors and each was
measured twice, and thus the corresponding coordinates of the covariance matrix
of measurement errors can be estimated using the duplicated observations while the
remaining coordinates are set as zero (Wang et al. 2012). The 10-fold CV procedure
is adopted to select the tuning parameters along the diagonal line. We only report
estimation results of the covariates that are shown to be significant under the proposed
or naive method in Table 4. Among all mismeasured covariates, only our proposed
method shows that albumin is significantly associated with the time to menarche. It
also suggests that female adolescents with a higher level of low density lipoprotein
cholesterol and a higher health score of the living community have a significantly
higher risk of early menarche. Furthermore, there is a trend that a higher level of
albumin, a higher market score of the living community and the habit of disliking for
vegetables are associated with a higher risk of delayed menarche. The naive method
shows that bothCholesterol andwatching TV significantly affect the time tomenarche.

6 Discussion

Both covariate measurement errors and regularization can result in estimation bias.
A single-step bias correction due to covariate measurement errors or regularization
is not adequate to completely remove the bias. In this article, we propose a double
bias correction method for high-dimensional additive hazards model with covariate
measurement errors. We establish the high-dimensional inferential procedure for the
low-dimensional parameters by employing the empirical process theory and semi-
parametric efficient bound theory. As a byproduct, we obtain the convergence rate of
the regularized one-step estimator that corrects the measurement errors in covariates,
which has not been investigated before. Numerical results demonstrate the proposed
method delivers reasonable finite-sample performances. However, our simulations
indicate that it is a subtle issue of selecting the tuning parameters, for which we
develop a CV procedure by searching for the suboptimum along the diagonal direc-
tion. Although such a strategy is plausible in practice, the result may not be globally
optimal.

When the high-dimensional covariates are measured with error, Yan (2014) estab-
lished the error bound for the Lasso estimator under the additive hazards model,
where the non-convex surrogate loss is adopted for finding the local optima. We take
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Table 4 Point estimation, confidence interval (CI) and hypothesis test for these covariates that are shown
to be significant based on the proposed or naive method in the China Health and Nutrition Survey study

Covariate Proposed method

β̂ β̃ ESE 95% CI p-value

Albumin 0.000 −0.022 0.011 (−0.043,−0.001) 0.041

Cholesterol 0.016 0.191 0.065 (0.064, 0.319) 0.006

Health 0.031 0.046 0.015 (0.017, 0.076) 0.009

Market −0.012 −0.057 0.020 (−0.097,−0.018) 0.006

Vegetable −0.027 −0.055 0.016 (−0.087,−0.024) 0.005

TV 0.000 −0.030 0.030 (−0.089, 0.029) 0.316

Covariate Naive method

β̂ β̃ ESE 95% CI p-value

Albumin 0.000 0.065 0.065 (−0.063, 0.194) 0.318

Cholesterol 0.000 0.173 0.077 (0.022, 0.324) 0.025

Health 0.019 0.046 0.031 (−0.014, 0.107) 0.131

Market 0.000 −0.059 0.035 (−0.128, 0.009) 0.087

Vegetable −0.023 −0.057 0.031 (−0.118, 0.004) 0.069

TV 0.000 −0.022 0.006 (−0.034,−0.010) < 0.001

Cholesterol: Low density lipoprotein cholesterol, Health: Health score of the living community, Market:
Modern market component score of the living community, Vegetable: Does the adolescent dislike vegeta-
bles? TV: Does the adolescent dislike watching TV?

a very different approach to establishing the error bound by following the idea of
the Dantzig selector. Specifically, we investigate the tail probability of the corrected
estimating function Gn(β0) through properly selecting x in Lemma 3, and then for-
mulate the optimization problem of (2.2) by relaxing the strict zero-root constraint
of (2.1) and expanding the feasible region. An additional term η|β|1 is introduced in
(2.2) due to the measurement error. Furthermore, (2.2) is a convex optimization prob-
lem, thereby greatly facilitating the computation and theoretical analysis. As another
main contribution, our work establishes the inference procedure for the components
of high-dimensional regression coefficients, which is beyond the thesis of Yan (2014).
In addition, the proposed inference procedure can test multiple components simul-
taneously using the Chi-squared test statistic based on the multivariate version of
Theorem 5 (Mitra and Zhang 2016; Guo et al. 2021) as discussed in Sect. 3.2.

The measurement error U is typically assumed to be normally distributed in the
literature. We relax the normal assumption by only imposing the second moment con-
dition. However, the covariance matrixV of the measurement errorU is assumed to be
known. In fact, estimation ofV based on (replicated)W, even under a normal assump-
tion, has its own right of interest and remains largely unexplored in the paradigm of
high-dimensional settings (Donoho and Gavish 2014).
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We have focused on the additive hazards model, while the issues under the Cox
proportional hazards model are different and require new development. In the low-
dimensional case and with normal measurement errors, it can only approximately
correct the partial likelihood score of the Cox model because the exact correction
does not exist (Nakamura 1992). The situation becomes much more challenging in the
high-dimensional Cox model as the convergence rates of the approximately corrected
score and oracle partial score need to be evaluated, which is the extra effort beyond
our double bias correction method in the framework of additive hazards regression.

Supplementary Material

The online supplementary material contains Lemmas 1–10 and their technical proofs.
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Appendix: Proof of Theorems

Proof of Theorem 1 For ease of exposition, let c denote a generic positive constant that
may be different from line to line. We first show that the true value β0 falls in the
feasible region of the optimization problem (2.2), and then show that β̂ satisfies the
restricted eigenvalue condition as stated in Lemma 5. We finally conclude the proof
by establishing variate concentration inequalities.

As η|β0|1 + δ = O(a0L
2,1
max

√
log p/n), the inequality |Gn(β0)|∞ ≤ η|β0|1 +

δ holds with probability tending to one by Lemma 3. For ease of exposition, our
derivation is based on the event that β0 falls in the feasible region of the optimization
problem (2.2).

Set ĥ = β̂ − β0, and by the definition of β̂, we have

|(β0)A0 |1 + |(β0)Ac
0
|1 = |β0|1 ≥ |̂β|1 = |̂βA0

|1 + |̂βAc
0
|1

= |̂hA0 + (β0)A0 |1 + |̂hAc
0
+ (β0)Ac

0
|1

≥ |(β0)A0 |1 − |(β0)Ac
0
|1 − |̂hA0 |1 + |̂hAc

0
|1.
(A.1)

Hence, (A.1) along with the definition of setA0 yields that |̂hA0 |1 ≥ |̂hAc
0
|1 and thus

ĥ�B∗
n ĥ ≥ ζ ĥ�ĥ (A.2)
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following Lemma 5.
Simple calculation entails that

B∗
n ĥ =

(
Dn ĥ − τ

n
Vĥ

)
− 1

n

n∑

i=1

∫ τ

0
{Ui − U(t)}Z�

i ĥYi (t)dt

− 1

n

n∑

i=1

∫ τ

0
Zi {Ui −U(t)}�ĥYi (t)dt− 1

n

n∑

i=1

∫ τ

0
[Ui {Ui −U(t)}� − V]̂hYi (t)dt

≡ (I1) − (I2) − (I3) − (I4),

where (Ik), k = 1, . . . , 4, corresponds to each of the above four terms.
Considering term (I1), by Lemma 3, we have

∣
∣
∣Gn(β0) − τ

n
Vβ0

∣
∣
∣
∞

= OP (a0L
2,1
max

√
log p/n).

Therefore,

|(I1)|∞ ≤
∣
∣
∣Gn(β0) − τ

n
Vβ0

∣
∣
∣
∞

+
∣
∣
∣Gn(β̂) − τ

n
Vβ̂

∣
∣
∣
∞

≤ OP (a0L
2,1
max

√
log p/n) + η|β0|1 + δ +

∣
∣
∣
τ

n
Vβ̂

∣
∣
∣
∞

= OP (a0L
2,1
max

√
log p/n). (A.3)

Considering term (I2), letUi j denote the j-th component of Ui and Zik denote the
k-th component of Zi . Noting that

|̂h|1 ≤ |β0|1 + |̂β|1 ≤ 2|β0|1 ≤ 2a0

and using the Hoeffding inequality, we have

P

(∣
∣
∣
∣
∣

1

n

n∑

i=1

∫ τ

0
UiZ�

i ĥYi (t)dt

∣
∣
∣
∣
∣
∞

≥ cn−1/2x | �L

)

≤ P

(∣
∣
∣
∣
∣

1

n

n∑

i=1

∫ τ

0
UiZ�

i Yi (t)dt

∣
∣
∣
∣
∣
max

∣
∣̂h

∣
∣
1 ≥ cn−1/2x | �L

)

≤
p∑

j=1

p∑

k=1

P

(∣
∣
∣
∣
∣

1

n

n∑

i=1

∫ τ

0
Ui j ZikYi (t)dt

∣
∣
∣
∣
∣
≥ cn−1/2x

2a0
| �L

)

≤ 2p2 exp

(

− cx2

a20L
4

)

. (A.4)

Lemma 2 implies that
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P

(

sup
t∈[0,τ ]

∣
∣U(t)

∣
∣∞ ≥ cn−1/2(L + x) | �L

)

≤ 3p exp

{

−cmin

(

n,
x2

L2

)}

.

(A.5)

Therefore, under conditions C1 and C2 and based on (A.4) and (A.5), we obtain

P(|(I2)|∞ ≥ cn−1/2(a0L
2 + x) | �L)

≤ P

(∣
∣
∣
∣
∣

1

n

n∑

i=1

∫ τ

0
UiZ�

i ĥYi (t)dt

∣
∣
∣
∣
∣
∞

≥ cn−1/2x

2
| �L

)

+P

(

sup
t∈[0,τ ]

∣
∣U(t)

∣
∣∞

∫ τ

0

∣
∣
∣
∣
∣

1

n

n∑

i=1

Z�
i ĥYi (t)

∣
∣
∣
∣
∣
dt ≥ cn−1/2

(
a0L

2 + x

2

)
| �L

)

≤ 5p2 exp

{

−cmin

(

n,
x2

a20L
4

)}

. (A.6)

Considering term (I3), based on symmetry with respect to the term (I2), we can
calculate the tail bound of (I3) as

P(|(I3)|∞ ≥ cn−1/2(a0L
2 + x) | �L) ≤ 5p2 exp

{

−cmin

(

n,
x2

a20L
4

)}

.

(A.7)

Considering term (I4), we rewrite it as

(I4) = 1

n

n∑

i=1

∫ τ

0

(
U⊗2
i − V

)
ĥYi (t)dt + 1

n

n∑

i=1

∫ τ

0
UiU(t)�ĥYi (t)dt .

Under conditions C1 and C2, the tail bound for the first term of (I4) can be obtained
by using similar arguments to (A.4), which is given by

P

(∣
∣
∣
∣
∣

1

n

n∑

i=1

∫ τ

0

(
U⊗2
i − V

)
ĥYi (t)dt

∣
∣
∣
∣
∣
∞

≥ cn−1/2x | �L

)

≤ 2p2 exp

(

− cx2

a20L
4,2
max

)

.

Likewise, under conditions C1 and C2, we have

P

(∣
∣
∣
∣
∣

1

n

n∑

i=1

∫ τ

0
UiU(t)�ĥYi (t)dt

∣
∣
∣
∣
∣
∞

≥ cn−1/2(a0L
2 + x) | �L

)

≤ 3p exp

{

−cmin

(

n,
x2

a20L
4

)}

.
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As a result,

P
(
|(I4)|∞ ≥ cn−1/2(a0L

2 + x) | �L

)
≤ 5p2 exp

{

−cmin

(

n,
x2

a20L
4,2
max

)}

.

(A.8)

Combining (A.3), (A.6), (A.7) and (A.8),we arrive at |B∗
n ĥ|∞=OP (L2,1

max
√
log p/n).

It follows from condition C3 and (A.2) that

|̂h|21 ≤ 4|̂hA0 |21 ≤ 4s0 |̂hA0 |22 ≤ 4s0 |̂h|22 ≤ 4s0ζ
−1ĥ�B∗

n ĥ ≤ 4s0ζ
−1 |̂h|1|B∗

nĥ|∞,

which implies that

|̂h|1 = OP (s0L
2,1
max

√
log p/n),

and

|̂h|2 = OP (s1/20 L2,1
max

√
log p/n).

Thus, the proof is completed. ��
Proof of Theorem 2 It follows the definition of γ 0k and Lemma 4 that

|(Dn)−k,−kγ 0k − (Dn)−k,k |∞ ≤ |B∗−k,−k − (Dn)−k,−k |max|γ 0k |1 + |B∗−k,k − (Dn)−k,k |∞
= OP (ak L

2,1
max

√
log p/n),

wherewedenoteak = |γ 0k |1.Asηk |γ 0k |1+δk = O(ak L
2,1
max

√
log p/n), the inequality

|(Dn)−k,−kγ 0k − (Dn)−k,k |∞ ≤ ηk |γ 0k |1 + δk holds with probability tending to one.
Thus, we consider γ 0k falling in the feasible region of the optimization problem (3.4).

The definitions of γ̂ k and γ 0k imply

|γ̂ k |1 = |(γ̂ k)Ak |1 + |(γ̂ k)Ac
k
|1 ≤ |γ 0k |1 = |(γ 0k)Ak |1.

We denote ĥk = γ 0k − γ̂ k and then |(γ̂ k)Ak |1 ≥ |(γ 0k)Ak |1 − |(̂hk)Ak |1 using the
triangular inequality. Immediately, we have |(̂hk)Ak |1 ≥ |(̂hk)Ac

k
|1, following which

and Lemma 6, we further have

ζk ≤ ĥ�
k (B∗

n)−k,−k ĥk
|̂hk |22

. (A.9)

The Cauchy–Schwarz inequality yields |(̂hk)Ak |1 ≤ √
sk |(̂hk)Ak |2. As a result,

|̂hk |1 = |(̂hk)Ak |1 + |(̂hk)Ac
k
|1 ≤ 2|(̂hk)Ak |1 ≤ 2

√
sk |(̂hk)Ak |2 ≤ 2

√
sk |̂hk |2.
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Furthermore, combining the triangle inequality and Lemma 4, we obtain

|(B∗
n)−k,−k ĥk |∞ ≤ |(B∗

n)−k,−k − (Dn)−k,−k |max|γ̂ k |1 + |(Dn)−k,k − (B∗)−k,k |∞
+|(B∗

n)−k,−k − (B∗)−k,−k |max|γ 0k |1 + |(Dn)−k,−k γ̂ k − (Dn)−k,k |∞
= OP (ak L

2,1
max

√
log p/n).

Consequently, there exists a constant c > 0 such that

ĥ�
k (B∗

n)−k,−k ĥk ≤ |(B∗
n)−k,−k ĥk |∞|̂hk |1 ≤ cak L

2,1
max

√
sk log p

n
|̂hk |2,

which along with (A.9) yields that

|̂hk |2 = OP

(

L2,1
max

√
sk log p

n

)

and thus

|̂hk |1 = OP

(

sk L
2,1
max

√
log p

n

)

.

This completes the proof. ��
Proof of Theorem 3 We rewrite

√
nϕ̂�

k Gn(�k,θ0(β̂)) = √
nϕ̂�

k {Gn(�k,θ0(β̂)) − Gn(β0)}
+√

n(ϕ̂k − ϕk)
�Gn(β0) + √

nϕ�
k Gn(β0).

Using the definition of γ̂ k and Theorem 1 and following some basic algebraic calcu-
lations, we have

|√nϕ̂�
k {Gn(�k,θ0(β̂)) − Gn(β0)}| = |√nϕ̂�

k Dn(�k,θ0(β̂) − β0)|
≤ √

n|(Dn)−k,−k γ̂ k − (Dn)−k,k |∞|�k,θ0(β̂) − β0|1
= OP

(

s0L
4,2
max

log p√
n

)

.

On the other hand, Theorem 2 and Lemma 3 imply that

√
n|(ϕ̂k − ϕk)

�Gn(β0)| ≤ √
n|ϕ̂k − ϕk |1|Gn(β0)|∞

= OP

(

sk L
4,2
max

log p√
n

)

.

Therefore, Theorem 3 follows directly from the Slutsky theorem and Lemma 8. ��
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Proof of Theorem 4 Note that

|̂σ 2
k − σ 2

k |
= |ϕ̂�

k �̂(β̂)ϕ̂k − ϕ�
k �(β0)ϕk |

≤ |ϕ̂�
k �̂(β̂)(ϕ̂k − ϕk)| + |(ϕ̂k − ϕk)

��̂(β̂)ϕk | + |ϕ�
k {�̂(β̂) − �(β0)}ϕk |

≤ |�̂(β̂)|max|ϕ̂k − ϕk |1|ϕ̂k |1 + |�̂(β̂)|max|ϕ̂k − ϕk |1|ϕk |1
+|ϕ�

k {�̂(β̂) − �(β0)}ϕk |

≤ 4

n

n∑

i=1

|gi (β0)|2∞|ϕ̂k − ϕk |1|ϕk |1 + 4

n

n∑

i=1

|̂gi (β̂) − gi (β0)|2∞|ϕ̂k − ϕk |1|ϕk |1

+|ϕ�
k {�̂(β̂) − �(β0)}ϕk |

= OP

(

sk L
6,3
max

√
log p

n

)

+ OP

(

s20sk L
10,5
max

(
log p

n

)3/2
)

+OP

(

s0L
6,3
max

√
log p

n

)

= OP

(

max(s0, sk)L
6,3
max

√
log p

n

)

under condition s0L
2,1
max

√
log p/n = o(1) and using Lemmas 9 and 10 in the online

supplementary material. Thus, the proof is completed. ��
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