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Abstract
Massive data are often featured with high dimensionality as well as large sample 
size, which typically cannot be stored in a single machine and thus make both analy-
sis and prediction challenging. We propose a distributed gridding model aggrega-
tion (DGMA) approach to predicting the conditional mean of a response variable, 
which overcomes the storage limitation of a single machine and the curse of high 
dimensionality. Specifically, on each local machine that stores partial data of rela-
tively moderate sample size, we develop the model aggregation approach by split-
ting predictors wherein a greedy algorithm is developed. To obtain the optimal 
weights across all local machines, we further design a distributed and communi-
cation-efficient algorithm. Our procedure effectively distributes the workload and 
dramatically reduces the communication cost. Extensive numerical experiments are 
carried out on both simulated and real datasets to demonstrate the feasibility of the 
DGMA method.
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1 Introduction

Explosive growth in the size and dimensionality of modern datasets has ignited 
enormous interest in statistical learning such as parameter estimation, inference, and 
prediction. Typically, the storage and analysis of such big data cannot be conducted 
on a single machine due to the limitation in the storage and computational capabil-
ity, which brings great challenges as well as new opportunities. With platforms such 
as Hadoop (Shvachko et al. 2010) or Spark (Zaharia et al. 2010), the massive dataset 
can be split into smaller pieces and stored on multiple local machines, where the 
conventional methods can be applied as usual. The key issue is how to combine the 
analysis results from each local machine to draw a valid global conclusion. In this 
regard, both the communication rounds and computational complexity are important 
factors that should be taken into consideration.

In handling massive data, the divide-and-conquer (DC) method is the most 
commonly used strategy to alleviate the computational burden, which divides 
the data into smaller pieces and stores them on multiple local machines with 
one piece of dataset on each machine, and then a simple average of the local 
results is taken as the final solution. Relevant work include variable selection 
(Chen and Xie 2014), nonparametric regression (Zhang et al. 2013; Chen et al. 
2016; Zhao et  al. 2016), and bootstrap inference (Kleiner et  al. 2014). Moreo-
ver, Lee et al. (2015) considered the high-dimensional sparse linear regression 
by combining the local debiased Lasso estimators (van de Geer et  al., 2014). 
Rosenblatt and Nadler (2016) studied the asymptotically exact expression for 
the averaged estimation error under two large-sample regimes. Shang and Cheng 
(2017) explored the statistical versus computational trade-off of the DC method 
for nonparametric smoothing spline. Battey et al. (2018) established the theoret-
ical upper bound on the number of local machines such that the information loss 
due to the DC algorithm is negligible. However, each local machine must have 
access to at least the squared root of the total sample size in order to achieve the 
asymptotic error rate; this requirement alone could exceed the storage capability 
of a single machine, especially for massive data with huge sample size. Moreo-
ver, the DC method takes a simple linear combination of all local results, which 
may result in efficiency loss when a single machine only has access to relatively 
small sample size. The overall combination result may further deteriorate for the 
non-additive structure of the estimation procedure.

From the computational perspective, the distributed alternating direction 
method of multipliers (ADMM) (Boyd et al. 2011) has been shown to be an effec-
tive tool for analyzing massive data. The ADMM recasts the infeasible global 
optimization to a distributed multi-machine optimization problem. Employing 
the ADMM algorithm, Mateos et al. (2010) considered the distributed sparse lin-
ear regression, and Zhang et al. (2012) studied the distributed classification. The 
ADMM distributed algorithms typically impose the consensus constraints between 
the global and local solutions, such that the rate of the local estimator converging 
to the global one is slower than linearity. As an alternative, the gradient-based 
optimization method can also be distributed over multiple machines. For example, 
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Johnson and Zhang (2013) introduced an explicit variance reduction method for 
stochastic gradient descent. Jakovetic et  al. (2014) proposed two fast distributed 
gradient algorithms based on the centralized Nesterov gradient algorithm and 
established their convergence rates. Shamir et al. (2014) proposed a novel Newton 
algorithm for the distributed optimization. At every iteration, each local machine 
leverages the second-order information, resulting in more efficient communication 
than the first-order approaches. Furthermore, using a surrogate loss function to 
substitute for the global one, Wang et al. (2017) and Jordan et al. (2019) developed 
a distributed algorithm for a surrogate loss function using the local gradient infor-
mation. Their methods can reach the estimation error bounds of the oracle global 
estimator within several iterations and thus strike a balance between computation 
and communication.

All the aforementioned methods rely upon correct model specification. However, 
model misspecification often occurs in practice, especially when dealing with mas-
sive data. As a remedy, the model averaging approach is often used to combine the 
strength of multiple candidate models and mitigate the risk of misspecification. The 
major focus of model averaging is to determine appropriate weights for candidate 
models. The Bayesian model averaging (Raftery et  al. 1997; Hoeting et  al. 1999; 
Eklund and Karlsson 2007) assigns the posterior model probabilities to the corre-
sponding candidate models. Buckland et  al. (1997) constructed model averaging 
weights based on the AIC or BIC scores, which was further elaborated by Burnham 
and Anderson (2003). There is also a large body of literature on model averaging 
from the frequentist perspective, for example, the forecast model averaging (New-
bold and Granger 1974), frequentist model averaging (Hjort and Claeskens 2003), 
Mallows’ Cp model averaging (Hansen 2007; Wan et  al. 2010), the optimal mean 
squared error averaging (Liang et al. 2011), the optimal model averaging for linear 
mixed-effects models (Zhang et  al. 2014) and jackknife model averaging (Hansen 
and Racine 2012).

For the high-dimensional data that can be handled by a single machine, Ando 
and Li (2014) proposed the delete-one cross-validation model averaging proce-
dure with linear regression, which is further extended to the high-dimensional 
generalized linear regression models (Ando and Li 2017). Adopting the sure 
independent screening (SIS) procedure (Fan and Lv 2008), predictors that are 
less marginally correlated with the response can be initially screened out so as to 
reduce the dimensionality of optimization. However, such SIS-based dimension 
reduction methods may also remove some predictors that are truly associated 
with the response, and it is not clear how to choose the cutpoint for determining 
the number of predictors to be kept. For massive data of high dimensionality 
and huge sample size that are distributed and stored on multiple local machines, 
the model averaging procedure becomes more challenging whether from the per-
spectives of theoretical development, distributional communication, or computa-
tional realization.

On the other hand, the model aggregation approach has been mainly studied in 
the machine learning community to enhance prediction accuracy. Instead of com-
bining all candidate models under consideration as in the model averaging proce-
dure, the model aggregation approach recruits one model from the candidate set at 
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each iteration by elaborately designing an effective greedy algorithm. As a result, 
the model aggregation approach can strike a balance between prediction accuracy 
and computational complexity. We propose a distributed gridding model aggrega-
tion (DGMA) procedure for predicting the conditional mean of the response with 
massive data. Specifically, on each machine with access to relatively small sam-
ple size, we develop a greedy model aggregation algorithm to bypass the practical 
issues arising from the SIS procedure. Instead of ranking predictors as in Ando and 
Li (2014), Ando and Li (2017), we rank candidate models wherein the fitness of 
each candidate model is assessed through iterations in the greedy model aggregation 
algorithm. We further define a surrogate loss function with a penalty and design a 
distributed algorithm inspired by Wang et al. (2017) and Jordan et al. (2019). As the 
surrogate loss function only involves data on the master machine and the gradients 
on the local machines, in each iteration the master machine broadcasts the iteration 
value to the local ones while the locals transfer the gradients to the master. Using 
such an iteration-communication procedure, the DGMA approach delivers promis-
ing performance which is comparable to the oracle global approach with access to 
the full data on a single machine.

The remaining of the article is organized as follows. In Section 2, we propose the 
DGMA approach to handling massive data with large size and large dimension. In 
Section 3, two algorithms, one for communication and the other for computation, 
are developed and the counterparts for the oracle global method are also introduced 
as a benchmark. We conduct extensive simulation studies in Section 4 to assess the 
performance of the proposed method and make comparisons with the DC and oracle 
global methods. Our approach is further illustrated with two real examples in Sec-
tion 5, and Section 6 concludes with some remarks. Some theoretical results are col-
lected in the online supplementary material.

2  Distributed gridding model aggregation

Let {�i, yi}Ni=1 be N independent and identically distributed (i.i.d.) copies of {�, y} , 
where y is the response and � =

(
x1,… , xp

)T is the p-dimensional predictor. Assume 
both the sample size N and the dimension p are too large for a single machine to 
store such a massive dataset. Conventionally, N samples are evenly divided and 
stored in J local machines. Without loss of generality, suppose the j-th machine has 
access to dataset {�ij, yij}ni=1 , where j = 1,… , J and n = N∕J . The first machine is 
designated as the master and the others as local ones. Our goal is to predict the con-
ditional mean of the response given predictors by utilizing the entire dataset that are 
stored in such a distributed manner as well as to control the workload of communi-
cations among machines at a proper level.

For ease of exposition, we first introduce notation. Let {Ak ∶ k = 1,… ,Kn} be 
a family of sets with each element Ak being a nonempty subset of [p], where [p] 
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denotes the set {1,… , p} , and Kn is some positive integer depending on n. Further-
more, |Ak| , the cardinality of Ak , is assumed to be much smaller than the sample size 
n for k = 1,… ,Kn. For a p-dimensional vector � = (a1,… , ap)

T , let �(k) denote the 
subvector of � indexed by set Ak.

We focus on the j-th local machine which only has access to the j-th partial data-
set, {�ij, yij}ni=1 . For the p-dimensional predictor �ij , we can partition it according to 
index sets A1,… ,AKn

 and thus obtain �ij(1),… , �ij(Kn)
 correspondingly. By regressing 

yij on �ij(k) , i = 1,… , n , which underlies the k-th submodel on the j-th local machine, 
the least squares estimator (LSE) is given by

where it implicitly requires that the dimension of �ij(k) , |Ak| , is relatively small com-
pared with sample size n. For simplicity, we denote the k-th submodel on the j-th 
local machine as the (j, k)-th submodel. Obviously, not only is the massive dataset 
divided to obtain sub-datasets of smaller sample sizes, but it is further divided 
according to the dimension of predictors. Essentially, we doubly divide the massive 
data into a matrix of J × Kn pieces as illustrated in Fig. 1, so that traditional statisti-
cal methods would be directly applicable to each piece. We investigate how to com-
bine the piecewise information together to predict the conditional mean of the 

�̂ j(k) = arg min
�∈ℝ|Ak |

1

n

n∑

i=1

(
yij − �T

ij(k)
�
)2

,

Fig. 1  Illustration of the gridding approach to doubly dividing the massive data into J × K
n
 pieces
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response. Instead of naively taking a simple average as in the DC method, we 
develop a weighted average method to enhance the prediction accuracy. For ease of 
exposition, we denote ŷij(k) = �T

ij(k)
�̂ j(k) , the estimated response based on the (j, k)-th 

working submodel, and then �̂ij =
(
ŷij(1),… , ŷij(Kn)

)T represents the vector of esti-
mated responses from the j-th machine. Let �n be the Kn-dimensional simplex 
defined as

which collects all the weights assigned to the submodels. For any � ∈ �n , let 
ŷij(�) = �T�̂ij denote the estimated response based on the weighted combination 
across the Kn submodels. To choose weights in �n such that the prediction error is 
minimized, we define the quadratic loss on the j-th local machine as

Therefore, the total loss function is naturally given by

Typically, the size of the submodel becomes larger when the dimension of predic-
tors is higher. Thus, we introduce a penalty to accommodate the high-dimensional 
setting, i.e., the large p case. Let � ∈ �n be a given prior, and we adopt a special 
case of the entropy penalty (Dai et al. 2012) as

We refer to it as a linear penalty. Intuitively, we give less penalty if we have more 
confidence on the prior information assigned to the submodels Therefore, the opti-
mal weight is given by

where 𝛼 > 0 is the tuning parameter. However, the optimal weight �̂opt cannot be 
obtained under the current setting, because the massive dataset is stored in a dis-
tributed manner over multiple machines. We thus develop a distributed algorithm to 
approximate �̂opt while controlling the communication cost.

�n =

{
� = (�1,… ,�Kn

)T ∈ [0, 1]Kn ∶

Kn∑

k=1

�k = 1

}
,

Lj(�) =
1

n

n∑

i=1

{
yij − ŷij(�)

}2
, j = 1,… , J.

T(�) =
1

J

J∑

j=1

Lj(�) =
1

Jn

J∑

j=1

n∑

i=1

{
yij − ŷij(�)

}2
.

(2.1)K(�,�) = −

Kn∑

k=1

�k log
(
�k
)
.

(2.2)�̂opt = arg min
�∈�n

{T(�) + �K(�,�)},
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3  Distributed algorithm

Taylor’s expansion of T(�) around �† yields that

where ⟨⋅, ⋅⟩ denotes the inner product and ⊗ denotes the Kronecker product. Appar-
ently, unlike the Kn-dimensional gradient vector ∇T(�†) , the second-order deriva-
tives require communications of order O(K2

n
) among machines. Motivated by Shamir 

et al. (2014), Wang et al. (2017) and Jordan et al. (2019), we define a surrogate loss 
function by replacing the global second-order derivatives with counterparts of the 
master machine with j = 1 . Specifically, by noting that

we define the surrogate loss function as

which neglects some constants. The difference between the surrogate loss and the 
total loss can be evaluated by

where ‖ ⋅ ‖2 is the Euclidean norm. It is expected that the surrogate loss would pro-
duce weights as a reasonable approximation to the optimal weights.

The recursions of our method consist of solving the surrogate loss function on the 
master machine and exchanging gradient information between the local machines 
and the master. At iteration t = 0 , we set an initial value �̂(0) on the master machine 
and broadcast it to all the local machines. Consequently, each local machine com-
putes ∇Lj(�̂

(0)
) and communicates this gradient back to the master machine. After 

computing its own gradient ∇L1(�̂
(0)
) and summarizing all gradients, the master 

machine conducts the minimization of the surrogate loss function with a penalty. 
This constitutes one round of communication, as detailed in Algorithm 1. Repeat the 
procedure until some convergence criterion is met.

(3.1)T(�) = T(�†) + ⟨∇T(�†),� − �†⟩ + 1

2
∇2

T(�†)(� − �†)⊗2,

(3.2)
T(�†) + ⟨∇T(�†),� − �†⟩ + 1

2
∇2

L1(�
†)(� − �†)⊗2

= T(�†) − L1(�
†) + L1(�) + ⟨∇T(�†) − ∇L1(�

†),� − �†⟩,

S(�,�†) =L1(�) + ⟨∇T(�†) − ∇L1(�
†),�⟩

=L1(�) +

�
1

J

J�

j=1

∇Lj(�
†) − ∇L1(�

†),�

�
,

S(�,�†) − T(�) = − T(�†) + L1(�
†) + ⟨∇T(�†) − ∇L1(�

†),�†⟩
+ OP

�
n−1∕2‖� − �†‖2

2

�
,
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The tuning parameter �t+1 in (3.3) is chosen in such a way that it decreases with 
the iteration number t. Typically, Kn is larger for higher dimension p, which may 
cause failure of the classical algorithms for the minimization in (3.3). Motivated by 
Dai et al. (2012), we develop a greedy algorithm as follows.
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Based on the greedy algorithm, we can obtain an approximate estimator �̂(t)

(�)
 for 

�̂
(t+1) in each round. Furthermore, after � iterations, this algorithm returns a vector 

�̂
(t)

(�)
 which has at most � nonzero components. It thus explicitly controls the size 

of submodels and strikes a balance between prediction accuracy and computation 
complexity.

As a benchmark, the oracle global method corresponds to the ideal situation 
where the entire dataset can be stored and analyzed in a single mega-machine and 
thus can achieve the optimal convergence rate. Despite its infeasibility in practice, 
the greedy algorithm for (2.2) is described as follows.
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4  Simulation studies

We conduct extensive simulation studies to evaluate the finite-sample performance 
of the distributed gridding model aggregation (DGMA) approach. For comparison, 
we also consider the divide-and-conquer model averaging (DCMA) approach where 
the optimal weights are obtained by taking an average over all the weights from the 
local machines. The DCMA approach is new in the context of model averaging for 
massive data and has its own interest. As a benchmark, we make comparisons with 
the oracle global method, for which the entire dataset can be stored and analyzed 
in a single super machine and thus the optimal weights can be obtained by directly 
optimizing (2.2) using Algorithm 3. The oracle global approach, although infeasible 
in practice, is expected to deliver the best performance in simulations.

We generate �i, i = 1,… ,N , independently from a p-variate normal distribution 
with mean zero and covariance matrix � = (0.5|r−s|) for r, s = 1,… , p . The response 
variable yi is then obtained via the linear model,

where the error �i is independently generated from N(0, 0.5) and the first 15 entries 
of coefficient �∗ are independently drawn from N(0, 0.5) (and then fixed throughout 
simulations) and the others are set to be 0. We consider N = 4000 and 8000 and 
p = 2000 . For each scenario, we randomly divide the data into subsets with an equal 
sample size n = 100 or 400 and allocate them into local machines.

(4.1)yi = �T
i
�∗ + �i,
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At the initial step, we perform the SIS procedure (Fan and Lv 2008) to rank the 
2000 predictors and then group every 10 predictors together to formulate the candi-
date submodels. This leads to a total of Kn = 200 candidate submodels, while none 
of them contains the true model. Moreover, we also consider the situation in which 
the true model is contained in the candidate submodels. In particular, we consider 
Kn = 100 and perform the SIS procedure only on the 1985 non-significant predictors 
to obtain the ordered predictors. The top five predictors and 15 significant ones are 
grouped together to formulate one candidate submodel. The remaining 1980 predic-
tors are evenly grouped to formulate the other 99 candidate submodels.

We consider three types of priors � for the candidate submodels. The first one is 
an equal constant prior wherein each component of � is 1∕Kn . Obviously, the equal 
noninformative prior leads the regularization term in (2.1) to be a constant and thus 
makes our method free of the tuning parameter � . The second is a uniform prior, for 
which we independently generate Kn uniform variates on (0, 1) and set each com-
ponent of � to be a normalized uniform variate (divided by the summation of Kn 
uniform variates). The third is an informative prior, for which we sort the uniform 
variates in a descending order, and assign more prior weights to the more effective 
submodels based on the ranking.

Considering that our datasets naturally consist of J-fold subsets in a distributed 
framework, we develop a leave-one-machine-out cross validation (CV) procedure to 
select the tuning parameter � . Specifically, let �̂(−j)

(�) denote the resulting estimator 
based on the DGMA approach by leaving the j-th machine out and define the CV 
prediction error on the j-th machine as

Consequently, the optimal tuning parameter is given by

where there may exist multiple optimal solutions. Noting that the objective function 
is separable and to further avoid the out-of-memory issue, we adopt the gridding 
method to find the optimal �̂opt . Moreover, the oracle global approach can also use 
this optimal tuning parameter because it can be considered as the solution of a con-
ventional J-fold CV criterion. The optimal tuning parameter for the DCMA approach 
can be selected similarly with �̂(−j)

(�) obtained using the DCMA approach.
A testing dataset with sample size 1000 is generated from (4.1) to evaluate the 

performances of three approaches in terms of the mean squared error (MSE) for 
prediction. Under each configuration, we repeat 500 simulations and present the 
averaged MSE of prediction and its associated standard deviation (SD). Table  1 
shows the simulation results when the equal constant prior is used for � . The effec-
tiveness of the proposed DGMA algorithm can be fully demonstrated by its quick 
convergence within only four communications to a stable plateau associated with 

CVj(�) =
1

n

n∑

i=1

(
yij −

Kn∑

k=1

�̂
(−j)

k
(�)�T

ij(k)
�̂ j(k)

)2

.

�̂opt = argmin
�

1

J

J∑

j=1

CVj(�),
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decreasing standard derivations. In general, DGMA exhibits superior performances 
over DCMA, while both are outperformed by the oracle global approach. Similar 
conclusions can be drawn from Tables 2 and 3, which respectively summarize simu-
lation results for the uniform and sorted uniform priors of �.

Figure 2 shows the MSEs of prediction for scenarios with sample size N = 4000 . 
For the case with Kn = 200 where the true model is not included in the candidate 
submodels, DGMA and DCMA exhibit similar performances when the number of 
local machines is J = 10 or, equivalently when each machine stores partial data of 
adequate size. However, the advantage of DGMA over DCMA is amplified when 
datasets are distributed over a larger number of local machines ( J = 40 ), demon-
strating the power of the distributed algorithm. For the case with Kn = 100 where 
the true model is indeed included in the candidate set, the MSEs of prediction under 
the three approaches decrease dramatically, indicating that all of them can gain 
greatly from the correct specification of one of the candidate submodels. Further-
more, DCMA delivers almost the same performances as DGMA; both are inferior 
to the oracle global approach while the gap is narrowed with the use of the sorted 
uniform prior. Similar conclusions can be drawn from Fig. 3 when N is increased to 
8000.

Overall, DGMA generally outperforms DCMA, especially when datasets are 
distributed across a large number of local machines or a noninformative prior is 
assigned to candidate submodels; both situations are commonly encountered with 
massive data, making DGMA a preferable option in practice.

Table 1  The mean squared error (MSE) for the prediction of the response averaged over 500 simulations 
and the corresponding standard deviation (SD) in the testing dataset with the equal constant prior

n J K
n

DGMA DCMA Oracle

t = 1 t = 2 t = 3 t = 4

100 40 200 MSE 0.7399 0.6653 0.6477 0.6462 0.6840 0.2556
SD 0.1362 0.1191 0.1154 0.1161 0.1267 0.0119

100 MSE 0.3258 0.2718 0.2556 0.2545 0.2643 0.2451
SD 0.0630 0.0221 0.0139 0.0137 0.0116 0.0116

400 10 200 MSE 0.3364 0.3264 0.3260 0.3261 0.3265 0.2556
SD 0.1371 0.1304 0.1302 0.1302 0.1301 0.0119

100 MSE 0.2560 0.2460 0.2454 0.2454 0.2463 0.2451
SD 0.0178 0.0115 0.0114 0.0114 0.0114 0.0116

100 80 200 MSE 0.7376 0.6652 0.6508 0.6492 0.6865 0.2560
SD 0.1231 0.1062 0.1033 0.1032 0.1127 0.0115

100 MSE 0.3228 0.2705 0.2553 0.2540 0.2637 0.2451
SD 0.0604 0.0211 0.0129 0.0132 0.0112 0.0112

400 20 200 MSE 0.3333 0.3236 0.3232 0.3233 0.3236 0.2560
SD 0.1362 0.1298 0.1295 0.1295 0.1293 0.0115

100 MSE 0.2552 0.2460 0.2454 0.2454 0.2461 0.2451
SD 0.0171 0.0112 0.0111 0.0111 0.0111 0.0112
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Table 2  The mean squared error (MSE) for the prediction of the response averaged over 500 simulations 
and the corresponding standard deviation (SD) in the testing dataset with the uniform prior

n J K
n

DGMA DCMA Oracle

t = 1 t = 2 t = 3 t = 4

100 40 200 MSE 0.7507 0.6759 0.6585 0.6567 0.6941 0.2556
SD 0.1308 0.1150 0.1121 0.1124 0.1224 0.0119

100 MSE 0.3256 0.2715 0.2553 0.2542 0.2596 0.2462
SD 0.0649 0.0216 0.0132 0.0131 0.0113 0.0114

400 10 200 MSE 0.3329 0.3225 0.3221 0.3221 0.3229 0.2556
SD 0.1361 0.1288 0.1287 0.1286 0.1293 0.0119

100 MSE 0.2559 0.2459 0.2453 0.2453 0.2459 0.2462
SD 0.0175 0.0114 0.0114 0.0114 0.0114 0.0114

100 80 200 MSE 0.7406 0.6671 0.6512 0.6499 0.6862 0.2561
SD 0.1309 0.1182 0.1153 0.1162 0.1264 0.0111

100 MSE 0.3248 0.2706 0.2554 0.2535 0.2595 0.2465
SD 0.0642 0.0223 0.0132 0.0118 0.0106 0.0106

400 20 200 MSE 0.3277 0.3174 0.3170 0.3170 0.3174 0.2561
SD 0.1299 0.1230 0.1229 0.1230 0.1228 0.0111

100 MSE 0.2563 0.2462 0.2456 0.2456 0.2462 0.2465
SD 0.0176 0.0106 0.0105 0.0105 0.0105 0.0106

Table 3  The mean squared error (MSE) for the prediction of the response averaged over 500 simulation 
runs and the corresponding standard deviation (SD) in the testing dataset with the sorted uniform prior

n J K
n

DGMA DCMA Oracle

t = 1 t = 2 t = 3 t = 4

100 40 200 MSE 0.6939 0.6584 0.6533 0.6539 0.6606 0.2553
SD 0.1214 0.1129 0.1113 0.1116 0.1121 0.0120

100 MSE 0.2454 0.2474 0.2450 0.2472 0.2468 0.2450
SD 0.0119 0.0115 0.0114 0.0115 0.0114 0.0115

400 10 200 MSE 0.3253 0.3227 0.3226 0.3226 0.3226 0.2553
SD 0.1321 0.1296 0.1295 0.1295 0.1296 0.0120

100 MSE 0.2454 0.2451 0.2450 0.2451 0.2450 0.2450
SD 0.0115 0.0115 0.0115 0.0115 0.0115 0.0115

100 80 200 MSE 0.7357 0.6657 0.6520 0.6510 0.6595 0.2558
SD 0.1218 0.1100 0.1082 0.1084 0.1099 0.0111

100 MSE 0.2458 0.2478 0.2454 0.2477 0.2472 0.2453
SD 0.0109 0.0104 0.0105 0.0105 0.0104 0.0105

400 20 200 MSE 0.3208 0.3173 0.3172 0.3172 0.3171 0.2558
SD 0.1279 0.1245 0.1243 0.1243 0.1243 0.0111

100 MSE 0.2460 0.2455 0.2454 0.2454 0.2454 0.2453
SD 0.0108 0.0105 0.0105 0.0105 0.0105 0.0105
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5  Real examples

5.1  Asset prediction

As an illustration, we apply the proposed DGMA, DCMA and the oracle global 
approaches to analyzing data from the 1991 Survey of Income and Program Partici-
pation. In the early 1980s, the United States introduced several tax-deferred savings 
options and launched 401(k) plans to stimulate individual savings for retirement. In 

Fig. 2  The mean squared error (MSE) for the prediction of the response in the testing dataset using the 
DGMA approach within 10 rounds of communications, the DCMA and oracle global approaches for 
K
n
= 200 (the true model is not included in the candidate submodels) and for K

n
= 100 (the true model 

is included in the candidate submodels) under sample size N = 4000

Fig. 3  The mean squared error (MSE) for the prediction of the response in the testing dataset using the 
DGMA approach within 10 rounds of communications, the DCMA and oracle global approaches for 
K
n
= 200 (the true model is not included in the candidate submodels) and for K

n
= 100 (the true model 

is included in the candidate submodels) under sample size N = 8000
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practice, the net financial asset is usually chosen as an evaluation for the individual 
saving preference. In this study, we are interested in predicting the net financial asset 
based on several predictors. There are 9915 observations and for each observation 
74 predictors are collected, including age, income, family size, education, marriage 
status, home owner and some other financial indexes, as well as the net financial 
asset which is considered as the dependent variable. Normalization is adopted for 
continuous variables. We keep the original 74 predictors as the main effects and 
construct two-way interactions among all non-dummy predictors, which ends up 
with a total of 378 predictors after removing terms that are perfectly collinear. Fur-
ther information on the dataset can be found in Chernozhukov and Hansen (2004).

We randomly select 1600 observations for determining the tuning parameters 
using the leave-one-machine-out CV procedure, and 7200 observations for training, 
and the remaining for testing. At the initial step, we apply the SIS procedure to rank 
all the predictors. Every 10 (or 20) predictors are grouped together to formulate the 
candidate submodels; accordingly the last candidate submodel has 8 (or 18) predic-
tors and Kn = 38 (or 19). We also consider sample size n = 100 or 400 on each local 
machine, leading to the number of local machines being J = 72 or 18, respectively. 
For each configuration, we replicate the experiment 100 times.

Figure 4 exhibits the MSE of prediction for the net financial asset. In general, the 
oracle global method yields the lowest MSE among all the three approaches. When 
the number of local machines is J = 72 , DGMA outperforms DCMA under the 
equal constant and uniform priors. In contrast, DCMA performs better than DGMA 
under the sorted uniform prior. Similar to conclusions from the simulation stud-
ies, DCMA benefits more from such an informative prior. Nevertheless, a sufficient 
number of communications among local machines can help DGMA to diminish the 
gap, which further demonstrates the merit of our distributed approach because an 
informative prior is typically not available but communications can be readily car-
ried out among machines. When J = 18 , DGMA and DCMA perform equally well 

Fig. 4  The mean squared error (MSE) for the prediction of the net financial asset in the testing data-
set using the proposed DGMA approach within 100 rounds of communications, the DCMA and oracle 
global approaches, respectively
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and both can even reach the prediction accuracy of the oracle global approach. Thus, 
the adequate size of the local samples that each machine can access significantly 
enhances the performances of DGMA and DCMA. In addition, the performances of 
all the three approaches can also be improved substantially when the number of can-
didate submodels is reduced from Kn = 38 to 19, indicating that the size of submod-
els is another key factor influencing the performance. We conclude that DGMA gen-
erally delivers better performances than DCMA, especially in the typical cases of 
practice where the local sample size is not adequate, the number of local machines 
(candidate submodels) is large, or there is no prior information on the weights.

5.2  Age prediction

We also apply the proposed DGMA, DCMA and the oracle global approaches to the 
human facial image dataset for predicting people’s age. The dataset is generated by 
using the pixel values of facial images of celebrities with ages from 14 to 62 years 
old. Our goal is to predict the age based on the facial image information. Although 
there could be multiple but different images for each celebrity, we label them as 
different samples and are finally end up with a total of 175633 facial images. The 
histogram of ages is shown in Fig. 5, which indicates a smaller proportion of facial 
images at the extremely young and elderly ages. The first 512 features are extracted 
by employing the default “ResNet18" method using the PyTorch from the ImageNet 
database. Based on the 512 features, we adopt the two hidden layers convolution 
method (Nair and Hinton 2010) to further generate 256 and 128 features for each 
layer respectively. We remove 34 features that are perfectly collinear with the others 
and eventually obtain a total of 862 features. The proportional stratification sam-
pling strategy is utilized to randomly sample from the 175633 facial images; 40000 
observations are used to determine the tuning parameter, 120000 observations for 
training and the remaining for testing. The age labels and all the features are normal-
ized. After the initial SIS screening step to rank the features, we construct Kn = 87 
(and 44) candidate submodels with sizes of 10 (and 20) (the last submodel is of 
size 2), respectively. The local sample size n varies from 500 to 8000, indicating the 

Fig. 5  The histogram of age corresponding to the 175633 facial images
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number of local machines J from 240 to 15. Under each configuration, the experi-
ment is repeated for 100 times.

As shown in Fig. 6, the oracle global approach delivers the lowest MSE for age 
prediction. The MSEs for age prediction using all the three approaches dramatically 
decrease when Kn is reduced from 87 to 44. It is interesting to see that all the three 
approaches are robust with respect to the three different types of prior information. 
The superiority of DGMA over DCMA is remarkable, especially in the scenario of 
n = 500 or J = 240 , while the performances of DGMA and the oracle approach are 
comparable when n = 2000 or J = 60 . Figure 7 exhibits the MSEs of age predic-
tion (of DGMA at the 10-th communication round) versus the local sample size n 

Fig. 6  The mean squared error (MSE) for the prediction of age in the testing dataset using the proposed 
DGMA approach within 10 rounds of communications, the DCMA and oracle global approaches, respec-
tively

Fig. 7  The mean squared error (MSE) for the prediction of age in the testing dataset using the proposed 
DGMA approach at the 10th communication round, the DCMA and oracle global approaches against the 
local sample size, respectively
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ranging from 500 to 8000, which further demonstrates that the MSE of age predic-
tion using DGMA decreases at a much faster rate than DCMA and both eventually 
achieve the benchmark of the oracle. Regardless of whether the massive dataset is 
stored on a large or a small number of local machines, DGMA is always a promising 
choice.

For illustration, we select 10 celebrities to demonstrate the prediction of their 
ages in Fig. 8. The age prediction appears to be over-estimated for extremely young 
celebrities (e.g., 15 or 20 years), but under-estimated for extremely elderly ones 
(e.g., 60 years). One possible reason is the data are much more sparse for both 
extremely young and elderly people. All three methods perform similarly in terms of 
age prediction under different numbers of candidate submodels.

Fig. 8  Estimated age for 10 selected celebrities using the proposed DGMA approach at the 10th commu-
nication round, the DCMA and oracle global approaches with the uniform prior and n = 2000 , respec-
tively
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6  Discussion

We have developed a distributed gridding model aggregation approach for predict-
ing the conditional mean of the response given high-dimensional predictors when 
the datasets are stored across multiple machines. By defining a surrogate loss func-
tion for the infeasible oracle global approach, the weights for model aggregation can 
be obtained by elaborately designing a distributed algorithm. It further demonstrates 
that our method can strike a balance between statistical accuracy and communica-
tion cost. Numerical studies show that the proposed approach generally outperforms 
the simple divide-and-conquer model averaging approach and is comparable to the 
oracle global approach.

The regularization-based prediction methods generally require the assumption 
of correct model specification, which however may be violated, especially when 
dealing with massive data. The proposed method, aggregating the linear submodel 
bases as an approximation for the underlying unspecified model, could be consid-
ered as a model-free method and thus is more promising in practice. Furthermore, 
polynomial models can also be adopted as the submodel bases, which may provide 
a better approximation to the full model space. Yet, the computational burden would 
increase accordingly. The proposed method can be extended to generalized linear 
models if the conditional mean of other types of response variables, e.g., binary or 
ordinal, is of interest. Heterogeneity may be present in the massive dataset and it is 
thus more sensible to predict the conditional quantile of the response in practice. 
However, the cusp of the check loss function for quantile regression renders such 
extension non-trivial.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s00180- 022- 01242-3.

Acknowledgements We would like to thank the two referees and Associate Editor for many insightful 
comments that greatly improved the paper. Liu’s research was partly supported by the National Natural 
Science Foundation of China (11971362), Yin’s research was partly supported by the Research Grants 
Council of Hong Kong (17308321), and Wu’s research was partly supported by the National Natural Sci-
ence Foundation of China (12071483).

References

Ando T, Li K-C (2014) A model-averaging approach for high-dimensional regression. J Am Stat Assoc 
109:254–265

Ando T, Li K-C (2017) A weight-relaxed model averaging approach for high dimensional generalized 
linear models. Ann Stat 45:2645–2679

Battey H, Fan J, Liu H, Lu J, Zhu Z (2018) Distributed testing and estimation under sparse high dimen-
sional models. Ann Stat 46:1352–1382

Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011) Distributed optimization and statistical learning 
via the alternating direction method of multipliers. Trends Mach Learn 3:1–122

Buckland ST, Burnham KP, Augustin NH (1997) Model selection: an integral part of inference. Biomet-
rics 53:603–618

Burnham KP, Anderson DR (2003) Model selection and multimodel inference: a practical information-
theoretic approach. Springer, New York

https://doi.org/10.1007/s00180-022-01242-3
https://doi.org/10.1007/s00180-022-01242-3


 B. He et al.

1 3

Chen X, Xie M (2014) A split-and-conquer approach for analysis of extraordinarily large data. Stat Sin 
24:1655–1684

Chen X, Zhang Y, Li R, Wu X (2016) On the feasibility of distributed kernel regression for big data. 
IEEE Trans Knowl Data Eng 28:3041–3052

Chernozhukov V, Hansen C (2004) The impact of 401(k) participation on the wealth distribution: an 
instrumental quantile regression analysis. Rev Econ Stat 86:735–751

Dai D, Rigollet P, Zhang T (2012) Deviation optimal learning using greedy Q-aggregation. Ann Stat 
40:1878–1905

Eklund J, Karlsson S (2007) Forecast combination and model averaging using predictive measures. Econ 
Rev 26:329–363

Fan J, Lv J (2008) Sure independence screening for ultrahigh dimensional feature space. J R Stat Soc B 
70:849–911

Hansen BE (2007) Least squares model averaging. Econometrica 75:1175–1189
Hansen BE, Racine JS (2012) Jackknife model averaging. J Econ 167:38–46
Hjort NL, Claeskens G (2003) Frequentist model average estimators. J Am Stat Assoc 98:879–899
Hoeffding W (1963) Probability inequalities for sums of bounded random variables. J Am Stat Assoc 

58:13–30
Hoeting JA, Madigan D, Raftery AE, Volinsky CT (1999) Bayesian model averaging: a turorial. Stat Sci 

14:382–401
Jakovetic D, Xavier J, Moura JMF (2014) Fast distributed gradient methods. IEEE Trans Autom Control 

59:1131–1146
Johnson R, Zhang T (2013) Accelerating stochastic gradient descent using predictive variance reduction. 

Adv Neural Inf Process Syst 26:315–323
Jordan MI, Lee JD, Yang Y (2019) Communication-efficient distributed statistical learning. J Am Stat 

Assoc 114:668–681
Kleiner A, Talwalkar A, Sarkar P, Jordan MI (2014) A scalable bootstrap for massive data. J R Stat Soc 

B 76:795–816
Lee JD, Liu Q, Sun Y, Taylor JE (2017) Communication-efficient sparse regression. J Mach Learn Res 

18:1–30
Liang H, Zou G, Wan ATK, Zhang X (2011) Optimal weight choice for frequentist model average estima-

tors. J Am Stat Assoc 106:1053–1066
Mateos G, Bazerque JA, Giannakis GB (2010) Distributed sparse linear regression. IEEE Trans Signal 

Process 58:5262–5276
Nair V, Hinton GE (2010) Rectified linear units improve restricted boltzmann machines. In: ICML’10 

Proceedings of the 27th international conference on international conference on machine learning, 
pp 807–814

Newbold P, Granger CWJ (1974) Experience with forecasting univariate time series and the combination 
of forecast (with discussion). J R Stat Soc Ser A 137:131–165

Raftery AE, Madigan D, Hoeting JA (1997) Bayesian model averaging for linear regression models. J 
Am Stat Assoc 92:179–191

Rosenblatt J, Nadler B (2016) On the optimality of averaging in distributed learning. Inf Inference 
5:379–404

Shamir O, Srebro N, Zhang T (2014) Communication-efficient distributed optimization using an approxi-
mate Newton-type method. Proc Int Conf Mach Learn 32:1000–1008

Shang Z, Cheng G (2017) Computational limits of a distributed algorithm for smoothing spline. J Mach 
Learn Res 18:1–37

Shvachko K, Kuang H, Radia S, Chansler R (2010) The hadoop distributed file system. In: IEEE 26th 
symposium on mass storage systems and technologies, pp 1–10

van de Geer SA (2008) High-dimensional generalized linear models and the lasso. Ann Stat 36:614–645
Wan ATK, Zhang X, Zou G (2010) Least squares model averaging by Mallows criterion. J Econ 

156:277–283
Wang J, Kolar M, Srebro N, Zhang T (2017) Efficient distributed learning with sparsity. Proc Mach Learn 

Res 70:3636–3645
Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I (2010) Spark: cluster computing with work-

ing sets. In: Proceedings of the 2nd USENIX conference on hot topics in cloud computing, pp 10–10
Zhang C, Lee H, Shin K (2012) Efficient distributed linear classification algorithms via the alternating 

direction method of multipliers. Proc Int Conf Artif Intell Stat 22:1398–1406



1 3

Model aggregation for doubly divided data with large size and…

Zhang X, Zou G, Liang H (2014) Model averaging and weight choice in linear mixed-effects models. 
Biometrika 101:205–218

Zhang Y, Duchi J, Jordan JC, Wainwright MJ (2013) Information-theoretic lower bounds for distributed 
statistical estimation with communication constraints. Adv Neural Inf Process Syst 26:2328–2336

Zhang Y, Duchi J, Wainwright M (2013) Divide and conquer kernel ridge regression. Conf Learn Theory 
30:1–26

Zhao T, Cheng G, Liu H (2016) A partially linear framework for massive heterogeneous data. Ann Stat 
44:1400–1437

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.


	Model aggregation for doubly divided data with large size and large dimension
	Abstract
	1 Introduction
	2 Distributed gridding model aggregation
	3 Distributed algorithm
	4 Simulation studies
	5 Real examples
	5.1 Asset prediction
	5.2 Age prediction

	6 Discussion
	Acknowledgements 
	References




