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Abstract
We study inference for censored survival data where some covariates are dis-
torted by some unknown functions of an observable confounding variable in a
multiplicative form.An example of this kind of data inmedical studies is normal-
izing some important observed exposure variables by patients’ body mass index
, weight, or age. Such a phenomenon also appears frequently in environmen-
tal studies where an ambient measure is used for normalization and in genomic
studies where the library size needs to be normalized for the next generation
sequencing of data. We propose a new covariate-adjusted Cox proportional haz-
ards regression model and utilize the kernel smoothing method to estimate the
distorting function, then employ an estimated maximum likelihood method to
derive the estimator for the regression parameters. We establish the large sample
properties of the proposed estimator. Extensive simulation studies demonstrate
that the proposed estimator performs well in correcting the bias arising from dis-
tortion. A real dataset from the NationalWilms’ Tumor Study is used to illustrate
the proposed approach.

KEYWORDS
covariate adjustment, Cox regression model, distorting function, estimated maximum likeli-
hood method, multiplicative effect

1 INTRODUCTION

In real studies, the primary covariates sometimes are not directly recorded in their true values, but rather they are
observed in a distorted form, where the distortion is in the form of a multiplicative factor. These types of data do not get
sufficient attention as other types of covariate measurement error problems, even though they are also quite wide preva-
lent in real studies. For example, when releasing household data on energy use, in order to maintain confidentiality, the
U.S. Department of Energy multiplied the survey data by some randomly selected numbers before publication (Hwang,
1986). Therefore, the contaminated data available to the public are 𝑋 = 𝑋 ⋅ 𝑈, where 𝑋 and 𝑈, respectively, denote
the true data and the randomly selected number. This multiplicative contamination structure is also very common in
biomedical studies, in the form of normalization, as some primary covariates are often normalized by a confounder such
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as body mass index (BMI = weight∕height2) or by other measures of body configuration or age. For instance, in a study
of the relationship between the fibrinogen level (FIB) and serum transferrin level (TRF) among hemodialysis patients,
Kaysen et al. (2002) found that BMI has a great influence on FIB and TRF and may distort the true relationship between
them. Therefore, they proposed a calibration method where they divide the observed FIB and TRF by the confounding
variable BMI. This implies a multiplicative structure between the unobserved primary variables and the confounding
variable. Such a phenomenon also appears frequently in environmental studies where the ambient measure is used for
normalization and in genomic studies where the library size needs to be normalized for the next generation sequencing of
data.
In some situations, however, the precise nature of themultiplicative relationship between the primary variables and the

confounding variable could be unknown, and in this case the naive practice of dividing by the confounding variable may
result in biased estimators or losing the power of statistical inference. To overcome these difficulties, Sentürk and Müller
(2005) considered a more flexible multiplicative formwhich is an unknown function of the confounding variable𝑈. They
proposed a covariate adjustment method for the linear regression model, where both the response (𝑌) and the covariates
(𝑋) are distorted by an observable confounder 𝑈, that is, 𝑋 = 𝜙(𝑈)𝑋, 𝑌 = 𝜑(𝑈)𝑌, where 𝑋 and 𝑌 are observable dis-
torted covariates and response, 𝜙(⋅) and 𝜑(⋅) are unknown smooth distorting functions. Directly applying the widely used
ordinary least squares method to the contaminated data, (𝑋, 𝑌) will result in biased and inconsistent estimates. Sentürk
and Müller (2005) corrected the bias by linking it to a varying-coefficient regression model, then utilized the bin method
(Fan & Zhang, 2000) to obtain consistent estimators (Sentürk & Müller, 2006). Related research includes Nguyen and
Sentürk (2008) on generalizing this method to the case of multiple distorting covariates, Sentürk and Müller (2009) on
extending it to a generalized linear model, and Zhang et al. (2012, 2013) on the nonlinear regression model and the partial
linear model, respectively. More recently, Cui et al. (2009) developed a direct plug-in estimation procedure for a nonlin-
ear regression model with one confounding variable. They proposed to estimate the distorting functions 𝜑(⋅) and 𝜙(⋅) by
nonparametrically regressing the response and predictors on the distorting variable and obtained the estimates (𝑋, 𝑌) for
the unobservable response and predictors, then conducted the nonlinear least-squares method on the estimated counter-
parts (𝑋, 𝑌). Zhang et al. (2012) further applied this direct plug-in method to a semiparametric model by incorporating
dimension reduction techniques. To relax the parametric assumptions and some restrictive conditions on distorting func-
tions in the existing literature, Delaigle et al. (2016) proposed a more flexible nonparametric estimator for the regression
function.
In this paper, we focus on investigating censored survival data where the response of interest is a right-censored sur-

vival time and the primary predictor 𝑋 is distorted by an observable confounding variable 𝑈 through the multiplicative
form 𝑋 = 𝜙(𝑈)𝑋, where 𝜙(⋅) is the unknown distorted function. A reasonable identifiability condition for this structure
is 𝐸{𝜙(𝑈)} = 1 corresponding to the assumption that the mean distorting effect vanishes (Sentürk & Müller, 2005). The
existing methods mentioned earlier cannot be applicable here due to censoring. Furthermore, the existing methods for
censored survival data with mismeasured covariates (e.g., Prentice, 1982; Wang et al., 1997; Zhou & Pepe, 1995; Zhou &
Wang, 2000; Huang & Wang, 2000; Hu & Lin, 2002) cannot handle this multiplicative distortion. To make a valid infer-
ence, we propose a covariate-adjusted Cox proportional hazards regression to address this multiplicative contamination
structure. Inspired by Cui et al. (2009), we first employ the nonparametric regression to obtain the consistent estimator
of the distorting function 𝜙(⋅) through the kernel smoothing method,and then obtain the estimates for the true covariate
𝑋 by 𝑋̂ = 𝑋̃∕𝜙̂(𝑈). Then, the regression parameters are estimated by maximizing the partial likelihood on the estimated
data. The proposed approach has several distinctive advantages. First, the contamination structure we considered is more
general, which includes a large class of confounding mechanisms, for example, 𝜙(⋅) = 1 means there is no contamina-
tion and 𝜙(𝑈) = 𝑈 represents the contamination structure𝑋 = 𝑋 ⋅ 𝑈. So the applicability of our proposed method can be
quite broad. Second, the computation of this method is simple and fast, which will greatly facilitate its implementation in
real application.
The rest of the article is organized as follows. In Section 2, we introduce the covariate-adjusted Cox regres-

sion for the multiplicative contaminated data and present the proposed covariate-calibration method. In Sec-
tion 3, we establish the asymptotic properties of the proposed estimates. In Section 4, we present the simulation
results to evaluate the finite sample performance of the proposed estimates. In Section 5, we apply the proposed
method to a dataset from the National Wilms’ Tumor Study (NWTS). Some concluding remarks are given in Sec-
tion 6. The details of all technical proofs and the additional simulation results are presented in the Supporting
Information.
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2 COX REGRESSIONWITH THEMULTIPLICATIVE CONTAMINATION STRUCTURE

2.1 Model, data, and contamination structure

To fix notation, let 𝑇 denote the survival time, 𝐶 denote the censoring time, 𝑇 = min(𝑇, 𝐶) denote the observed time, and
Δ = 𝐼(𝑇 ≤ 𝐶) denote the failure indicator. Let 𝐙 = (𝑍1, 𝑍2, … , 𝑍𝑝)

T and 𝑋 be the associated covariates where 𝑋 is the one
that subjects to multiplicative contamination. Assume that the censoring mechanism is random, that is, the survival time
𝑇 and the censoring time 𝐶 are conditionally independent given 𝐙 and 𝑋. The proportional hazards regression model
(Cox, 1972) assumes that the conditional hazard function of the survival time 𝑇 associated with covariates 𝐙 and 𝑋 takes
the form of

𝜆(𝑡|𝐙,𝑋) = 𝜆0(𝑡) exp(𝜷
T𝐙 + 𝛾𝑋),

where 𝜆0(𝑡) is the baseline hazard function, 𝜷 = (𝛽1, 𝛽2, … , 𝛽𝑝)
T and 𝛾 are the unknown regression coefficients.We assume

the scalar covariate𝑋 is not observed precisely, while the𝑝-dimensional covariate𝐙 could be accurately observed. Assume
that the observed data consist of 𝑛 subjects, denoted by (𝑇𝑖, Δ𝑖, 𝐙𝑖, 𝑈𝑖, 𝑋𝑖), 𝑖 = 1, … , 𝑛, which are independent samples from
(𝑇, Δ, 𝐙,𝑈,𝑋). Instead of exact 𝑋𝑖 , we observe 𝑋𝑖 such that

𝑋𝑖 = 𝜙(𝑈𝑖)𝑋𝑖, (1)

where 𝑈𝑖 is an observable variable and independent of 𝑋𝑖 and 𝜙(⋅) is an unknown link function. To make the model
identifiable, we assume that 𝐸{𝜙(𝑈𝑖)} = 1, which implies that the distorting effect vanishes on average.
We aim to infer the regression parameters 𝜷 and 𝛾 based on the observations available. When 𝑋𝑖 are observed without

contamination, maximizing the partial likelihood function (Cox, 1975)

𝐿𝑛(𝜷, 𝛾) =

𝑛∏
𝑖=1

⎧⎪⎨⎪⎩
exp(𝜷T𝐙𝑖 + 𝛾𝑋𝑖)∑𝑛

𝑗=1
𝐼(𝑇𝑗 > 𝑇𝑖) exp(𝜷T𝐙𝑗 + 𝛾𝑋𝑗)

⎫⎪⎬⎪⎭
Δ𝑖

(2)

can offer the estimates for 𝜷 and 𝛾. It is evident that (2) cannot be used when 𝑋𝑖 are unobservable or contaminated.
Note that the established methods of the Cox regression with additive contamination structure 𝑋 = 𝑋 + 𝑈 always

require error𝑈 to be independent of𝑋 (e.g., Huang &Wang, 2000; Li & Ryan, 2004). The direct application of the additive
error structure methods to the current setting is not feasible. To illustrate this, even though the multiplicative contamina-
tion structure (1) can also be rewritten as an additive structure,

𝑋 = 𝑋 + 𝑋{𝜙(𝑈) − 1}, (3)

or

log𝑋 = log𝑋 + log{𝜙(𝑈)}, (4)

the error 𝑋{𝜙(𝑈) − 1} is not independent of 𝑋; hence, the methods mentioned above cannot be applicable here. If one
takes the logarithmic transformation assuming the related quantities are positive, then one would arrive at the additive
covariate contamination structure (4). Here the error term log{𝜙(𝑈)} is independent of log𝑋, but extra variation needs to
be accounted for in the back-transformation procedure. Moreover, the routine approximately corrected score method for
the Cox regression at the scale log𝑋 would result in the biased estimate when the Cox regression is against 𝑋.

2.2 Covariate-calibration method

Our proposed approach is based on directly calibrating 𝑋𝑖 . Note that

𝜙(𝑢) =
𝐸(𝑋|𝑈 = 𝑢)

𝐸(𝑋)
=
𝐸(𝑋|𝑈 = 𝑢)

𝐸(𝑋)
.
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We can employ the commonly used the Nadaraya–Watson kernel smoothing estimate for 𝜓(𝑢) = 𝐸(𝑋|𝑈 = 𝑢), which is
given by

𝜓(𝑢) =

∑𝑛

𝑖=1
𝐾{(𝑢 − 𝑈𝑖)∕ℎ𝑛}𝑋𝑖∑𝑛

𝑖=1
𝐾{(𝑢 − 𝑈𝑖)∕ℎ𝑛}

,

where 𝐾(⋅) is the kernel smoothing function and ℎ𝑛 is the bandwidth. Since ̄̃𝑋𝑛 = 𝑛−1
∑𝑛

𝑖=1
𝑋𝑖 converges to 𝐸(𝑋) almost

surely by using the strong law of large numbers, we can obtain a consistent estimate for𝜙(𝑢) as𝜙(𝑢) = 𝜓(𝑢)∕ ̄̃𝑋𝑛. Following
(1), we propose a calibration of 𝑋𝑖 by 𝑋𝑖 = 𝑋𝑖∕𝜙(𝑈𝑖). Therefore, we can construct an estimated partial likelihood function
using 𝑋𝑖 as follows:

𝐿̂𝑛(𝜷, 𝛾) =

𝑛∏
𝑖=1

⎧⎪⎨⎪⎩
exp(𝜷T𝐙𝑖 + 𝛾𝑋𝑖)∑𝑛

𝑗=1
𝐼(𝑇𝑗 > 𝑇𝑖) exp(𝜷T𝐙𝑗 + 𝛾𝑋𝑗)

⎫⎪⎬⎪⎭
Δ𝑖

. (5)

The proposed estimator (𝜷, 𝛾) was defined as the maximizer for 𝐿̂𝑛(𝜷, 𝛾), that is,

(𝜷, 𝛾) = argmax(𝜷,𝛾)𝐿̂𝑛(𝜷, 𝛾). (6)

2.3 Bandwidth selection

In real data analysis, it is desirable to have an automatically data-driven method for selecting the bandwidth parameter
ℎ𝑛. Here we employ the cross-validation (CV) method to choose the optimal ℎ𝑛. In particular, let 𝑝(𝑢) denote the density
function of 𝑈, then the kernel estimate of 𝑝(𝑢) is denoted as

𝑝(𝑢) =
1

𝑛ℎ𝑛

𝑛∑
𝑖=1

𝐾

(
𝑢 − 𝑈𝑖

ℎ𝑛

)
.

Following Rudemo (1982) and Bowman (1984), we define an integrated squared error (ISE) as follows:

ISE(ℎ𝑛) = ∫ {𝑝(𝑢) − 𝑝(𝑢)}
2
d𝑢

= ∫ {𝑝(𝑢)}
2
d𝑢 − 2∫ 𝑝(𝑢)𝑝(𝑢)d𝑢 + ∫ {𝑝(𝑢)}

2
d𝑢. (7)

As the third term of (7) is free of ℎ𝑛, the minimizer of ISE(ℎ𝑛) is the same as the minimizer of the sum of the first two
terms of (7). Let 𝑝(−𝑖)(⋅) be the leave-one-out kernel density estimator, that is,

𝑝(−𝑖)(𝑢) =
1

𝑛ℎ𝑛

𝑛∑
𝑗≠𝑖

𝐾

(
𝑢 − 𝑈𝑗

ℎ𝑛

)
.

The second term of (7) can be consistently estimated by −2𝑛−1
∑𝑛

𝑖=1
𝑝(−𝑖)(𝑈𝑖). Therefore, we propose a CV criterion as

follows:

CV(ℎ𝑛) = ∫ {𝑝(𝑢)}
2
d𝑢 − 2𝑛−1

𝑛∑
𝑖=1

𝑝(−𝑖)(𝑈𝑖).

Denote

ℎ̂𝑛,opt = argminℎ𝑛
CV(ℎ𝑛),

which is considered as the optimal bandwidth parameter.
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3 ASYMPTOTIC PROPERTIES

We set 𝜽 = (𝜷T, 𝛾)T, let 𝜽 = (𝜷T, 𝛾)T and 𝜽0 = (𝜷T0 , 𝛾0)
T, respectively, represent the estimation and the true value of the

regression parameter 𝜽. The following theorem gives the consistency and asymptotic normality of the proposed estimator
𝜽 when 𝑛 → ∞. The regularity conditions and the proofs of this theorem are given in Appendixes A and B, respectively.

Theorem 1. Let 𝜽 = (𝜷T, 𝛾)T be defined by (6). If conditions C1–C9 in Appendix A are satisfied, the following results hold:

(i) 𝜽 converges in probability to the true value 𝜽0,

(ii)
√
𝑛(𝜽 − 𝜽0)

𝑑
⟶ N(𝟎, Σ−1(Σ + Ω)Σ−1),

where Σ =
(
Σ11 Σ12
Σ21 Σ22

)
is defined in condition C4, Σ11 denotes the 𝑝th-order sequential principal minor of Σ, and 𝜁 =

(−ΣT12𝛾0, −Σ22𝛾0)
T,Ω =

Var(𝑋)−Var(𝑋)
{𝐸(𝑋)}2

𝜁𝜁T.

The above theorem establishes the asymptotic normality of the proposed estimator 𝜽. Furthermore, we can obtain

the asymptotic distribution of 𝜷 and 𝛾, respectively. In particular,
√
𝑛(𝜷 − 𝜷0)

𝑑
⟶ N(𝟎, (Σ−1)𝑝),

√
𝑛(𝛾 − 𝛾0)

𝑑
⟶

N(0, (Σ−1)(𝑝+1,𝑝+1) +
Var(𝑋)−Var(𝑋)

{𝐸(𝑋)}2
𝛾20), where (Σ

−1)𝑝 denotes the 𝑝th-order sequential principal minor of matrix Σ−1 and

(Σ−1)(𝑝+1,𝑝+1) denotes its (𝑝 + 1)th diagonal element. We give a few remarks on the asymptotic covariance matrix. If
there is no distortion with 𝜙(⋅) = 1, we can estimate 𝜽 by maximizing the partial likelihood (2), the asymptotic covariance
matrix of 𝜽 is Σ−1. So the term Σ−1ΩΣ−1 is caused by the distortion. Furthermore, the limiting variance for 𝛾 includes
some unknown components which need to be estimated; therefore, we can use the sandwich method and the plug-in
estimation to obtain the standard error and construct the confidence region for 𝛾.

4 SIMULATION STUDIES

We conduct extensive simulations to investigate the finite-sample performance of the proposed estimator (𝜷, 𝛾) and com-
pare it with the other two estimators. The first one is the naive estimator (𝜷𝑁, 𝛾𝑁), which ignores the contamination and
directly uses 𝑋 to replace 𝑋, and the second one is the oracle estimator (𝜷𝑂, 𝛾𝑂), which is obtained by assuming that 𝑋
is known.
The survival times 𝑇𝑖 are generated from the Cox proportional hazards model with the conditional hazard function

given by

𝜆(𝑡|𝐙𝑖, 𝑋𝑖) = 𝜆0(𝑡) exp(𝜷0
T
𝐙𝑖 + 𝛾0𝑋𝑖),

where 𝜆0(𝑡) = 1, 𝜷0 = (1, 0.5)T, and 𝛾0 = 1.5. We generate the covariate 𝐙𝑖 = (𝑍𝑖1, 𝑍𝑖2)
T from a multivariate normal dis-

tribution 𝑁(𝟎, 𝚺) with 𝚺 = (0.8|𝑗−𝑘|) (𝑗, 𝑘 = 1, 2), 𝑋𝑖 from 𝑁(1, 0.52) and the confounding covariate 𝑈𝑖 from a uniform
distribution Unif(2,6). The censoring time 𝐶 = 𝐶 ∧ 𝜏, where 𝐶 is generated from Unif(0, 𝜏 + 2) and the study duration 𝜏
is chosen to yield the desirable censoring rates. Here we consider two forms of distortion function 𝜙(𝑢) = (𝑢 + 3)∕7 and
𝜙(𝑢) = 3(𝑢 + 1)2∕79, which satisfy 𝐸{𝜙(𝑈𝑖)} = 1. To estimate the distorting function, we choose the Gaussian kernel func-
tion 𝐾(𝑡) = exp(−𝑡2∕2)∕

√
2𝜋 and adopt the leave-one-out CV method to select the bandwidth. We consider the sample

size 𝑛 = 100 and 𝑛 = 200, coupled with the censoring rates (CR) of 20%, 40%, and 80%. For each configuration, we repeat
1,000 simulations.
Tables 1 and 2 summarize the simulation results of (𝜷, 𝛾), (𝜷𝑁, 𝛾𝑁), and (𝜷𝑂, 𝛾𝑂) under different distortion functions and

different censoring rates for sample sizes 𝑛 = 100 and 𝑛 = 200, respectively. We make the following observations: (i) As
expected, in terms of themean-square error or the coverage probability, the oracle estimator 𝛾𝑂 and our proposed estimator
𝛾 are all superior to the naive estimator 𝛾𝑁 . Not surprisingly, the naive estimator 𝛾𝑁 is seriously biased. For example, under
the censoring rate of 20% and 𝜙(𝑢) = 3(𝑢 + 1)2∕79 in Table 1, the bias for 𝛾𝑁 is −0.810, more than half of its real value 1.5,
while the bias for proposed estimator 𝛾 is only −0.047; moreover, the coverage probability for 𝛾𝑁 is 0.006, almost equals
to zero. It seems from the simulation results of 𝜷, 𝜷𝑁 , and 𝜷𝑂 that these three methods give similar performance on the
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TABLE 1 Simulation results for 𝜷 and 𝛾 under sample size 𝑛 = 100

𝝓(𝒖) = (𝒖 + 𝟑)∕𝟕 𝝓(𝒖) = 𝟑(𝒖 + 𝟏)𝟐∕𝟕𝟗

CR Method Para. Bias SD SE MSE CP Bias SD SE MSE CP
20% Proposed 𝛽1 0.020 0.224 0.222 0.051 0.960 0.006 0.225 0.221 0.051 0.946

𝛽2 0.007 0.211 0.206 0.044 0.942 0.001 0.212 0.206 0.045 0.943
𝛾 0.021 0.286 0.278 0.082 0.946 −0.047 0.292 0.267 0.087 0.906

Naive 𝛽1𝑁 −0.006 0.224 0.221 0.050 0.945 −0.089 0.223 0.217 0.058 0.911
𝛽2𝑁 −0.007 0.211 0.206 0.044 0.948 −0.045 0.211 0.205 0.047 0.933
𝛾𝑁 −0.217 0.254 0.235 0.112 0.780 −0.810 0.171 0.160 0.686 0.006

Oracle 𝛽1𝑂 0.030 0.222 0.222 0.050 0.953 0.030 0.222 0.222 0.050 0.953
𝛽2𝑂 0.011 0.210 0.206 0.044 0.936 0.011 0.210 0.206 0.044 0.936
𝛾𝑂 0.044 0.276 0.279 0.078 0.952 0.044 0.276 0.279 0.078 0.952

40% Proposed 𝛽1 0.024 0.259 0.253 0.068 0.944 0.011 0.260 0.252 0.068 0.941
𝛽2 0.012 0.251 0.237 0.063 0.932 0.007 0.251 0.237 0.063 0.939
𝛾 0.031 0.334 0.316 0.113 0.937 −0.042 0.341 0.303 0.118 0.897

Naive 𝛽1𝑁 0.001 0.258 0.251 0.067 0.946 −0.073 0.256 0.247 0.071 0.920
𝛽2𝑁 0.000 0.250 0.237 0.063 0.942 −0.034 0.250 0.236 0.063 0.933
𝛾𝑁 −0.220 0.299 0.265 0.137 0.791 −0.824 0.200 0.180 0.718 0.026

Oracle 𝛽1𝑂 0.034 0.257 0.253 0.067 0.942 0.034 0.257 0.253 0.067 0.942
𝛽2𝑂 0.015 0.250 0.237 0.063 0.928 0.015 0.250 0.237 0.063 0.928
𝛾𝑂 0.050 0.324 0.315 0.107 0.951 0.050 0.324 0.315 0.107 0.951

80% Proposed 𝛽1 0.072 0.454 0.436 0.212 0.932 0.065 0.461 0.435 0.217 0.931
𝛽2 0.031 0.454 0.413 0.207 0.914 0.028 0.452 0.412 0.205 0.912
𝛾 0.107 0.589 0.542 0.359 0.939 0.020 0.572 0.517 0.328 0.927

Naive 𝛽1𝑁 0.059 0.466 0.434 0.221 0.930 0.012 0.460 0.428 0.212 0.927
𝛽2𝑁 0.022 0.450 0.413 0.203 0.913 0.002 0.449 0.410 0.201 0.915
𝛾𝑁 −0.183 0.507 0.449 0.291 0.883 −0.830 0.340 0.304 0.805 0.254

Oracle 𝛽1𝑂 0.080 0.460 0.437 0.218 0.935 0.080 0.460 0.437 0.218 0.935
𝛽2𝑂 0.033 0.458 0.414 0.211 0.909 0.033 0.458 0.414 0.211 0.909
𝛾𝑂 0.125 0.592 0.539 0.366 0.939 0.125 0.592 0.539 0.366 0.939

The true value of the parameters 𝛽1 = 1, 𝛽2 = 0.5, 𝛾 = 1.5; 𝜙(⋅), the distortion function; CR, the censoring rate; Bias, the estimate value minus the true value; SD,
the standard deviation; SE, the estimate of SD; MSE, the mean-square error; CP, empirical coverage percentage of the 95% confidence interval.

estimation of 𝜷 which correspondes to 𝐙. This phenomenon is reasonable, as the covariates 𝐙 can be observed accurately;
the three methods all use the accurate information of covariates 𝐙 when estimating their corresponding parameters. (ii)
The proposed estimator (𝜷, 𝛾) is essentially unbiased and comparable with the oracle estimator under different settings,
even for the cases with a high censoring rate of 80%. For example, in the case of the censoring rate= 40% and 𝜙(𝑢) =
3(𝑢 + 1)2∕79 in Table 1, the relative efficiency 𝑆𝐷(𝛾)∕𝑆𝐷(𝛾𝑂) = 0.341∕0.324 = 1.05, very close to 1. (iii) Our proposed
method performs stably with the choice of the distortion function, while the naive method performs worse if we chose
𝜙(𝑢) = 3(𝑢 + 1)2∕79. The coverage probabilities of 𝛾𝑁 for 𝜙(𝑢) = 3(𝑢 + 1)2∕79 are almost equal or close to zero. These
simulation results demonstrate that the proposed covariate-calibration approach can effectively overcome the negative
effect arising from the covariate contamination and meanwhile exhibits good performance.
Furthermore, we consider the informative censoring mechanism where the censoring time 𝐶 is generated from

Unif (0, c ⋅ |Z1 − Z2|), 𝑐 is chosen to achieve the desirable censoring rates of 20%, 40%, and 80%. The remaining setups
are kept the same as before. The simulation results are summarized in Tables 3 and 4, from which we can see the pro-
posed method also performs well when the completely random censoring assumption does not hold.
To evaluate the performance of the proposed estimation procedure when the contamination structure is mis-specified,

we consider the additive contamination structure 𝑋 = 𝑋 + 𝑈, where 𝑋 is generated from𝑁(2, 0.52) and the confounding
covariate 𝑈 is generated from 𝑁(0, 0.32), the remaining setups are kept the same as before. The simulation results are
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TABLE 2 Simulation results for 𝜷 and 𝛾 under sample size 𝑛 = 200

𝝓(𝒖) = (𝒖 + 𝟑)∕𝟕 𝝓(𝒖) = 𝟑(𝒖 + 𝟏)𝟐∕𝟕𝟗

CR Method Para. Bias SD SE MSE CP Bias SD SE MSE CP
20% Proposed 𝛽1 0.009 0.156 0.151 0.024 0.939 0.004 0.157 0.151 0.025 0.936

𝛽2 0.004 0.151 0.142 0.023 0.936 0.002 0.152 0.142 0.023 0.935
𝛾 0.006 0.196 0.190 0.039 0.949 −0.021 0.202 0.186 0.041 0.932

Naive 𝛽1𝑁 −0.017 0.158 0.150 0.025 0.932 −0.094 0.158 0.147 0.034 0.865
𝛽2𝑁 −0.009 0.152 0.141 0.023 0.930 −0.049 0.153 0.140 0.026 0.907
𝛾𝑁 −0.234 0.178 0.159 0.087 0.649 −0.812 0.122 0.108 0.674 0.000

Oracle 𝛽1𝑂 0.015 0.154 0.151 0.024 0.935 0.015 0.154 0.151 0.024 0.935
𝛽2𝑂 0.007 0.150 0.142 0.022 0.939 0.007 0.150 0.142 0.022 0.939
𝛾𝑂 0.021 0.190 0.190 0.036 0.948 0.021 0.190 0.190 0.036 0.948

40% Proposed 𝛽1 0.015 0.177 0.172 0.032 0.941 0.010 0.178 0.172 0.032 0.938
𝛽2 0.002 0.169 0.163 0.029 0.946 −0.001 0.170 0.163 0.029 0.945
𝛾 0.015 0.225 0.215 0.051 0.944 −0.013 0.228 0.211 0.052 0.928

Naive 𝛽1𝑁 −0.007 0.180 0.171 0.032 0.929 −0.074 0.181 0.168 0.038 0.892
𝛽2𝑁 −0.010 0.171 0.162 0.029 0.936 −0.046 0.172 0.161 0.032 0.921
𝛾𝑁 −0.235 0.199 0.179 0.095 0.698 −0.822 0.134 0.122 0.693 0.001

Oracle 𝛽1𝑂 0.021 0.175 0.172 0.031 0.940 0.021 0.175 0.172 0.031 0.940
𝛽2𝑂 0.005 0.168 0.163 0.028 0.945 0.005 0.168 0.163 0.028 0.945
𝛾𝑂 0.028 0.220 0.215 0.049 0.948 0.028 0.220 0.215 0.049 0.948

80% Proposed 𝛽1 0.022 0.294 0.293 0.087 0.957 0.020 0.294 0.293 0.087 0.958
𝛽2 0.014 0.285 0.283 0.081 0.952 0.012 0.285 0.282 0.082 0.948
𝛾 0.023 0.383 0.360 0.147 0.934 −0.010 0.383 0.353 0.147 0.914

Naive 𝛽1𝑁 0.011 0.294 0.292 0.087 0.951 −0.028 0.293 0.289 0.087 0.943
𝛽2𝑁 0.006 0.285 0.282 0.081 0.943 −0.018 0.285 0.280 0.082 0.941
𝛾𝑁 −0.247 0.327 0.298 0.168 0.816 −0.850 0.223 0.202 0.773 0.035

Oracle 𝛽1𝑂 0.026 0.293 0.293 0.086 0.955 0.026 0.293 0.293 0.086 0.955
𝛽2𝑂 0.017 0.284 0.282 0.081 0.951 0.017 0.284 0.282 0.081 0.951
𝛾𝑂 0.036 0.376 0.360 0.143 0.941 0.036 0.376 0.360 0.143 0.941

The true value of the parameters 𝛽1 = 1, 𝛽2 = 0.5, 𝛾 = 1.5; 𝜙(⋅), the distortion function; CR, the censoring rate; Bias, the estimate value minus the true value; SD,
the standard deviation; SE, the estimate of SD; MSE, the mean-square error; CP, empirical coverage percentage of the 95% confidence interval.

summarized in Tables 1 and 2 of the Supporting Information, from which we can see the proposed method also performs
well even if the contamination structure is misspecified and performs better than the naive method.

5 ANALYSISWITHWILMS’ TUMOR STUDY

We apply the proposed covariate-calibration method to the Wilms’ tumor data, which were collected in two randomized
studies inWilms’ tumor patients. Wilms’ tumor is a rare kidney cancer occurring in young children. The National Wilms’
Tumor StudyGroup (NWTSG) conducted several randomized studies to test different treatments inWilms’ tumor patients.
We use a Wilms’ tumor data including 3,915 patients participating in two of the NWTSG trials NWTS-3 and NWTS-4
(D’Angio et al., 1989; Green et al., 1998) to evaluate the joint effect of tumor weight, histological type, and other risk
factors. The primary endpoint of the study was the survival time (in years). During the follow-up, 444 patients died of
Wilms’ tumor and the other 3,471 patients were censored, which led to the censoring rate of 88.66%. The mean observed
time was 10.33 years (ranging from 0.01 to 22.50 years). We divide the data into two groups according to the histological
type (favorable and unfavorable) and summarize the size and mean of each covariate in Table 5. It can be seen that 3,476
patients have favorable tumor, and the other 439 patients have unfavorable tumor. The mean observed time for patients
with favorable tumor is 10.68 years, which is larger than the corresponding value (7.55) of the unfavorable tumor group.
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TABLE 3 Simulation results for 𝜷 and 𝛾 under sample size 𝑛 = 100 and informative censoring mechanism

𝝓(𝒖) = (𝒖 + 𝟑)∕𝟕 𝝓(𝒖) = 𝟑(𝒖 + 𝟏)𝟐∕𝟕𝟗

CR Method Para. Bias SD SE MSE CP Bias SD SE MSE CP
20% Proposed 𝛽1 0.021 0.221 0.216 0.049 0.945 0.007 0.222 0.215 0.049 0.946

𝛽2 0.007 0.206 0.199 0.043 0.936 0.001 0.208 0.199 0.043 0.940
𝛾 0.026 0.292 0.282 0.086 0.937 −0.041 0.296 0.271 0.089 0.899

Naive 𝛽1𝑁 −0.006 0.222 0.215 0.049 0.938 −0.090 0.220 0.211 0.057 0.897
𝛽2𝑁 −0.006 0.207 0.199 0.043 0.943 −0.044 0.207 0.198 0.045 0.932
𝛾𝑁 −0.211 0.261 0.239 0.112 0.794 −0.806 0.176 0.163 0.681 0.013

Oracle 𝛽1𝑂 0.031 0.220 0.217 0.049 0.956 0.031 0.220 0.217 0.049 0.956
𝛽2𝑂 0.011 0.206 0.199 0.042 0.934 0.011 0.206 0.199 0.042 0.934
𝛾𝑂 0.049 0.283 0.282 0.083 0.948 0.049 0.283 0.282 0.083 0.948

40% Proposed 𝛽1 0.034 0.244 0.239 0.061 0.944 0.021 0.245 0.238 0.060 0.943
𝛽2 0.010 0.232 0.221 0.054 0.938 0.004 0.233 0.220 0.054 0.933
𝛾 0.035 0.341 0.323 0.118 0.939 −0.036 0.342 0.311 0.119 0.905

Naive 𝛽1𝑁 0.010 0.244 0.237 0.060 0.938 −0.067 0.242 0.233 0.063 0.917
𝛽2𝑁 −0.003 0.231 0.220 0.053 0.940 −0.037 0.232 0.219 0.055 0.934
𝛾𝑁 −0.214 0.302 0.273 0.137 0.810 −0.819 0.199 0.186 0.711 0.030

Oracle 𝛽1𝑂 0.044 0.243 0.240 0.061 0.946 0.044 0.243 0.240 0.061 0.946
𝛽2𝑂 0.013 0.231 0.221 0.054 0.937 0.013 0.231 0.221 0.054 0.937
𝛾𝑂 0.053 0.331 0.323 0.113 0.948 0.053 0.331 0.323 0.113 0.948

80% Proposed 𝛽1 0.072 0.408 0.396 0.171 0.940 0.064 0.410 0.395 0.172 0.939
𝛽2 0.048 0.399 0.368 0.162 0.927 0.044 0.398 0.367 0.160 0.928
𝛾 0.103 0.589 0.571 0.357 0.938 0.021 0.588 0.548 0.346 0.934

Naive 𝛽1𝑁 0.058 0.411 0.393 0.172 0.942 0.010 0.411 0.386 0.169 0.941
𝛽2𝑁 0.038 0.393 0.367 0.156 0.935 0.015 0.395 0.365 0.157 0.930
𝛾𝑁 −0.176 0.530 0.478 0.312 0.888 −0.827 0.368 0.324 0.820 0.277

Oracle 𝛽1𝑂 0.078 0.410 0.396 0.174 0.938 0.078 0.410 0.396 0.174 0.938
𝛽2𝑂 0.050 0.402 0.369 0.164 0.931 0.050 0.402 0.369 0.164 0.931
𝛾𝑂 0.117 0.583 0.566 0.354 0.942 0.117 0.583 0.566 0.354 0.942

The true value of the parameters 𝛽1 = 1, 𝛽2 = 0.5, 𝛾 = 1.5; 𝜙(⋅), the distortion function; CR, the censoring rate; Bias, the estimate value minus the true value; SD,
the standard deviation; SE, the estimate of SD; MSE, the mean-square error; CP, empirical coverage percentage of the 95% confidence interval.

Figure 1 shows theKaplan–Meier curves for the two different tumor histological types, fromwhichwe can see that patients
with favorable tumor experienced longer survival time.
The covariates included in this analysis are theweight of tumor-bearing specimen (abbreviated aswgt, in kilograms), the

histological type of the tumor (type, being 0 if favorable and 1 otherwise), tumor stage (stage, coded by 1 and 0, indicating
the spread of the tumor from localized to metastatic), age at diagnosis (age, measured in years), and the study number
(num, 1 denotes NWTS-3 and 0 denotes NWTS-4).
We examine the following Cox proportional hazards regression model:

𝜆(𝑡) = 𝜆0(𝑡) exp(𝛾 ⋅ wgt + β1 ⋅ type + β2 ⋅ stage + β3 ⋅ age + β4 ⋅ num).

It is known that patients’ wgt may be affected by their diam (i.e., the diameter of tumor); the scatter points of wgt versus
diam shown in Figure 2 demonstrate that there exists a strong positive correlation between them. Here we directly adjust
the potential distorting covariate with the proposedmethod and assume that the distortionmodel as w̃gt = 𝜙(diam) ⋅ wgt,
where 𝜙(⋅) is an unknown link function and w̃gt is the observed wgt. The analysis results of the covariate effects are sum-
marized in Table 6. As a comparison, we also present the results of the naive method which ignore the contamination of
wgt. By observing the results, the 𝑝-value of wgt is 0.008 for our proposed method, which means wgt has significant influ-
ence on patients’ survival time, while the corresponding value is 0.244 for the naivemethod. From themedical standpoint,
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TABLE 4 Simulation results for 𝜷 and 𝛾 under sample size 𝑛 = 200 and informative censoring mechanism

𝝓(𝒖) = (𝒖 + 𝟑)∕𝟕 𝝓(𝒖) = 𝟑(𝒖 + 𝟏)𝟐∕𝟕𝟗

CR Method Para. Bias SD SE MSE CP Bias SD SE MSE CP
20% Proposed 𝛽1 0.009 0.150 0.146 0.023 0.938 0.003 0.151 0.145 0.023 0.937

𝛽2 0.006 0.145 0.136 0.021 0.942 0.003 0.146 0.136 0.021 0.939
𝛾 0.011 0.199 0.191 0.040 0.946 −0.016 0.204 0.188 0.042 0.936

Naive 𝛽1𝑁 −0.018 0.152 0.144 0.023 0.935 −0.097 0.151 0.142 0.032 0.861
𝛽2𝑁 −0.007 0.147 0.135 0.022 0.932 −0.047 0.148 0.135 0.024 0.912
𝛾𝑁 −0.229 0.181 0.160 0.085 0.663 −0.807 0.124 0.109 0.667 0.000

Oracle 𝛽1𝑂 0.015 0.149 0.146 0.022 0.938 0.015 0.149 0.146 0.022 0.938
𝛽2𝑂 0.008 0.145 0.136 0.021 0.940 0.008 0.145 0.136 0.021 0.940
𝛾𝑂 0.026 0.193 0.192 0.038 0.949 0.026 0.193 0.192 0.038 0.949

40% Proposed 𝛽1 0.010 0.165 0.161 0.027 0.939 0.005 0.166 0.161 0.028 0.940
𝛽2 0.007 0.159 0.150 0.025 0.948 0.004 0.160 0.150 0.026 0.940
𝛾 0.015 0.221 0.218 0.049 0.948 −0.013 0.227 0.214 0.052 0.932

Naive 𝛽1𝑁 −0.012 0.167 0.160 0.028 0.940 −0.082 0.168 0.157 0.035 0.889
𝛽2𝑁 −0.005 0.161 0.150 0.026 0.934 −0.040 0.163 0.149 0.028 0.918
𝛾𝑁 −0.231 0.201 0.183 0.094 0.696 −0.816 0.140 0.124 0.685 0.000

Oracle 𝛽1𝑂 0.017 0.162 0.161 0.027 0.943 0.017 0.162 0.161 0.027 0.943
𝛽2𝑂 0.009 0.159 0.150 0.025 0.944 0.009 0.159 0.150 0.025 0.944
𝛾𝑂 0.030 0.217 0.219 0.048 0.950 0.030 0.217 0.219 0.048 0.950

80% Proposed 𝛽1 0.030 0.259 0.256 0.068 0.942 0.026 0.259 0.256 0.068 0.939
𝛽2 0.020 0.254 0.243 0.065 0.944 0.019 0.255 0.243 0.065 0.945
𝛾 0.057 0.397 0.376 0.161 0.936 0.023 0.392 0.368 0.154 0.931

Naive 𝛽1𝑁 0.015 0.261 0.255 0.068 0.939 −0.029 0.262 0.252 0.069 0.928
𝛽2𝑁 0.012 0.257 0.243 0.066 0.945 −0.013 0.261 0.241 0.068 0.937
𝛾𝑁 −0.219 0.343 0.312 0.165 0.841 −0.831 0.235 0.211 0.746 0.062

Oracle 𝛽1𝑂 0.034 0.257 0.256 0.067 0.942 0.034 0.257 0.256 0.067 0.942
𝛽2𝑂 0.022 0.254 0.244 0.065 0.944 0.022 0.254 0.244 0.065 0.944
𝛾𝑂 0.069 0.400 0.375 0.165 0.931 0.069 0.400 0.375 0.165 0.931

The true value of the parameters 𝛽1 = 1, 𝛽2 = 0.5, 𝛾 = 1.5; 𝜙(⋅), the distortion function; CR, the censoring rate; Bias, the estimate value minus the true value; SD,
the standard deviation; SE, the estimate of SD; MSE, the mean-square error; CP, empirical coverage percentage of the 95% confidence interval.

TABLE 5 The data of the NWTSG trials grouped by the histological type

Overall Favorable Unfavorable
size 3915 3476 439
wgt 604.56 603.74 611.12
diam 11.21 11.20 11.32
age 3.53 3.52 3.68
stage (%) 64.78 66.28 52.85
num (%) 42.68 42.55 43.74
time 10.33 10.68 7.55
cen.rate (%) 88.66 92.23 60.36

Overall, the total patients; favorable, the patients with favorable tumor; unfavorable, the patients with unfavorable tumor; size, the sample size; wgt, the mean
weight of tumor-bearing specimens; diam, the mean diameter of tumors; age, the mean age of patients at diagnosis; stage, the percentage of patients with tumor
localized spread; num, the percentage of patients in NWTS-3 trial; time, the mean observed time; cen.rate, the censoring rate.



10 LIU et al.

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Time to death (years)

S
ur

vi
va

l p
ro

ba
bi

lit
y

Unfavorable
favorable

F IGURE 1 Kaplan–Meier survival curves stratified by
two different histological types of the tumor in in the NWTSG
trials

0

1

2

3

4

0302010
Diameter of tumor (diam)

W
ei

gh
t o

f t
um

or
-b

ea
rin

g 
sp

ec
im

en
 (

w
gt

)

F IGURE 2 The scatter diagram of tumor-bearing specimen’s weight (wgt) versus tumor’s diameter (diam) for the NWTSG trials



LIU et al. 11

TABLE 6 The analysis results of the covariate effects in the NWTSG trials under the cases which includes and not includes “diag” as a
covariate in the model

Method Covariate EST SE 𝑷-value
Case 1 Proposed wgt −0.482 0.180 0.008

type 1.820 0.096 <0.001
stage −0.900 0.097 <0.001
age 0.070 0.020 <0.001
num 0.171 0.098 0.081

Naive wgt −0.139 0.119 0.244
type 1.821 0.096 <0.001
stage −0.908 0.099 <0.001
age 0.066 0.020 0.001
num 0.187 0.097 0.055

Case 2 Proposed wgt −0.485 0.190 0.011
type 1.820 0.101 <0.001
stage −0.907 0.050 <0.001
age 0.072 0.021 <0.001
num 0.174 0.097 0.074
diam −0.005 0.014 0.726

Naive wgt −0.253 0.170 0.136
type 1.822 0.101 <0.001
stage −0.898 0.049 <0.001
age 0.068 0.021 0.001
num 0.180 0.097 0.064
diam 0.017 0.018 0.364

Case 1: does not include “diam” as a covariate in the model; Case 2: include “diam” as a covariate in the model; wgt: the weight of tumor-bearing specimen; type:
the histological type of the tumor; stage: the tumor stage; age: the age of patients at diagnosis; num: the study number; EST: the estimate of the parameters; SE:
the standard error estimate; 𝑃-value: the 𝑝-value of the parameters.

wgt has great influence on patients’ survival time, whereas ignoring the contamination leads to this covariate insignifi-
cant. Furthermore, from all these two methods, we can conclude that patients with favorable tumor will possess longer
survival time compared with ones with unfavorable tumor, which coincides with Figure 1.
For comparison, we further analyze these data by including diam as a covariate in themodel. The corresponding results

of the proposed method and the naive method are also summarized in Table 6, from which we can draw similar conclu-
sions, that is, the naive method which ignores the contamination leads to wgt insignificant. As we all know, both wgt and
diam have great influence on patients’ survival time; however, the results show that if we add these two variables to the
model simultaneously then it will lead to diam insignificant. This phenomenon may be caused by the strong correlation
between diam and wgt, so we do not recommend adding the confounding variable “diam” to the model.

6 CONCLUSION

The covariate-adjusted problem is a common contamination problem in biomedical studies. Similar issues are also
reported in other fields, for example, in environmental studies exposures are often calibrated by the daily environment or
ambient measures, like the role of BMI in medical studies, or genomic studies where the library size is being normalized.
Our method deals with the type of some primary covariates that are observed after being distorted by a multiplicative
factor (an unknown function of an observable confounding variable). We fill in the gap in the literature on censored sur-
vival data with the distorting function in a primary risk factor, which is lacking in terms of the statistical method. We
propose a direct estimation procedure to estimate the regression parameters in the Cox proportional hazards regression
model. Numerical results show that the proposed method is working very well in correcting the bias arising from covari-
ate distortion. It performs stably to a variety of distortion functions. An important improvement of our method is that we
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allow flexible distorting models to handle various confounding mechanisms. It is easy to compute and will provide a crit-
ical tool for researchers facing with this type data in practice. The proposed method is actually a two-step procedure, we
first obtain a consistent estimator of the distorted covariate by employing the kernel smoothing method and then obtain
the parameter estimation by plugging in the estimated covariate. In the first step, we can also employ other methods to
estimate the distorted covariate, such as spline or local polynomial approximation.
A few remarks on using the proposed method in real studies. First, on the construction of confidence interval of the

proposed estimation, we note that because of the nonlinear structure of the estimated partial likelihood and themaximum
partial likelihood estimation do not have a closed form, the establishment of theoretical properties in this paper is more
difficult than the linear model. The asymptotic covariance matrix derived in Theorem 3.1 depends on several unknown
components; therefore, it is difficult to construct confidence region based on normal approximation. We recommend to
use the common sandwich approach to obtain the standard error estimation, which has been tested and demonstrated to
perform well in our numerical studies.
Second, for ease of exposition, we consider only one confounding variable. In many applications, there may exist mul-

tiple distortion variables simultaneously affecting the primary covariate. The proposed method can handle this case, and
the sandwich method can also be employed to obtain the standard error estimation. But deriving theoretical properties of
the corresponding estimators will be more difficult and need additional technicalities.
Finally, if we require to divide the distorted variable by the estimated distorting function, we impose some regularity

assumptions on the curve of the distorting function. In particular, the proposedmethod cannot be applied if𝐸(𝑋) vanishes.
Delaigle et al. (2016) proposed a more flexible nonparametric estimator for the regression function, which significantly
weakens some of the strong assumptions on the distorting function. Further research is underway to extend this work to
censored survival data.
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APPENDIX A: REGULARITY CONDITIONS
Unless otherwise stated, all limits are taken as 𝑛 → ∞. Suppose a = (𝑎1, … , 𝑎𝑝)

T and b = (𝑏1, … , 𝑏𝑝)
T are 𝑝-vectors, then

we write a⊗ b for the matrix abT. Also we write a⊗2 for thematrix a⊗ a. For a matrixA or vector a, let ‖A‖ = sup𝑖,𝑗 |𝑎𝑖𝑗|
and ‖a‖ = sup𝑖 |𝑎𝑖|. For matrix or vector sequences A𝑛 and B𝑛, denote A𝑛

𝑝
⟶ A if ‖A𝑛 −A‖ 𝑝

⟶ 0 and denote 𝐴𝑛 =

𝐵𝑛 + 𝑜𝑝(1) if ‖𝐴𝑛 − 𝐵𝑛‖ 𝑝
⟶ 0. Denote |a| = (

∑
𝑎2
𝑖
)1∕2 and diag(a) as the diagonal matrix whose diagonal vector is a. We

set 𝜽 = (𝜷T, 𝛾)T, V = (𝐙T, 𝑋)T, 𝑁𝑖(𝑡) = 𝐼(𝑇𝑖 ≤ 𝑡, Δ𝑖 = 1), 𝑁̄ =
∑𝑛

𝑖=1
𝑁𝑖 , and 𝑌𝑖(𝑡) = 𝐼(𝑇𝑖 ≥ 𝑡). Let 𝜏 denote the end time of

https://doi.org/10.1002/bimj.202000209
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the study. Here, we introduce the following notations:

𝑆(𝑙)(𝜽, 𝑡) =
1

𝑛

𝑛∑
𝑖=1

V⊗𝑙
𝑖
𝑌𝑖(𝑡) exp

(
VT𝑖 𝜽

)
,

𝐸(𝜽, 𝑡) =
𝑆(1)(𝜽, 𝑡)

𝑆(0)(𝜽, 𝑡)
,

𝑉(𝜽, 𝑡) =
𝑆(2)(𝜽, 𝑡)

𝑆(0)(𝜽, 𝑡)
− 𝐸(𝜽, 𝑡)⊗2,

for 𝑙 = 0, 1, 2. Note that 𝑆(0)(𝜽, 𝑡) is a scalar, 𝑆(1)(𝜽, 𝑡) and 𝐸(𝜽, 𝑡) are (𝑝 + 1)-vectors, and 𝑆(2)(𝜽, 𝑡) and𝑉(𝜽, 𝑡) are (𝑝 + 1) ×

(𝑝 + 1)matrices. Before proving the theorem, we first describe the regular conditions needed as follows:

C1. (Finite interval). ∫ 𝜏

0
𝜆0(𝑡)d𝑡 < ∞.

C2. (Asymptotic stability). There exists a neighborhoodℬ of 𝜽0, and scalar, vector, and matrix functions 𝑠(0), 𝑠(1) and 𝑠(2)
defined onℬ × [0, 𝜏] such that for 𝑗 = 0, 1, 2,

sup
𝑡∈[0,𝜏],𝜽∈ℬ

‖𝑆(𝑗)(𝜽, 𝑡) − 𝑠(𝑗)(𝜽, 𝑡)‖ 𝑝
⟶ 0.

C3. (Lindeberg condition). There exists 𝛿 > 0 such that

𝑛−1∕2 sup
𝑖,𝑡

|𝐕𝑖|𝑌𝑖(𝑡) 𝐼{𝜽T0V𝑖 > −𝛿 |V𝑖|} 𝑝
⟶ 0.

C4. (Asymptotic regularity conditions). Let ℬ, 𝑠(0), 𝑠(1), and 𝑠(2) be as in condition C2 and define 𝑒 = 𝑠(1)∕𝑠(0) and 𝑣 =
𝑠(2)∕𝑠(0) − 𝑒⊗2. For all 𝜽 ∈ ℬ, 𝑡 ∈ [0, 𝜏]:

𝑠(1)(𝜽, 𝑡) =
𝜕

𝜕𝜽
𝑠(0)(𝜽, 𝑡), 𝑠(2)(𝜽, 𝑡) =

𝜕2

𝜕𝜽2
𝑠(0)(𝜽, 𝑡),

𝑠(0)(⋅, 𝑡), 𝑠(1)(⋅, 𝑡), and 𝑠(2)(⋅, 𝑡) are continuous functions of 𝜽 ∈ ℬ, uniformly in 𝑡 ∈ [0, 𝜏], 𝑠(0), 𝑠(1), and 𝑠(2) are bounded
onℬ × [0, 𝜏], 𝑠(0) is bounded away from zero onℬ × [0, 𝜏], and the matrix

Σ = ∫
𝜏

0

𝑣(𝜽0, 𝑡)𝑠
(0)(𝜽0, 𝑡)𝜆0(𝑡) d𝑡

is positive definite.
C5. 𝑝(𝑢) and 𝜙(𝑢) are bounded away from zero and have bounded second derivatives.
C6. ∫ ∞

−∞
𝐾(𝑥) d𝑥 = 1, ∫ ∞

−∞
𝑥𝐾(𝑥) d𝑥 = 0 and ∫ ∞

−∞
𝑥2𝐾(𝑥) d𝑥 < ∞.

C7. The kernel function satisfies condition 𝐾1 in Giné and Guillou (2002). Let

𝒦 =

{
𝑦 ↦ 𝐾(

𝑥 − 𝑦

ℎ𝑛
) ∶ 𝑥 ∈ 𝑅, ℎ𝑛 > 0

}
,

then for any 𝜖 > 0,𝒦 satisfies that

sup
𝑃
𝑁
(
𝒦,𝐿2(𝑃), 𝜖‖𝐹‖𝐿2(𝑃)) ≤

(
𝐴

𝜖

)𝜈

for some positive constants 𝐴 and 𝜈, where𝑁(Ω, 𝑑, 𝜖) denotes the 𝜖-covering number of the metric space (Ω, 𝑑), 𝐹 is
the envelope function of𝒦, the supremum is taken over 𝑅, and the norm ‖𝐹‖2

𝐿2(𝑃)
is defined as ∫

𝑅
|𝐹(𝑥)|2d𝑃(𝑥).

C8. | log ℎ𝑛|∕ log log 𝑛 → ∞ and 𝑛ℎ𝑛∕| log ℎ𝑛| →∞, ℎ𝑛 and (𝑛ℎ𝑛)−1 monotonically converge to zero as 𝑛 → ∞.
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C9. 𝐸(𝑋) and 𝐸(𝑍𝑖) (𝑖 = 1, … , 𝑝) are bounded away from 0.

These conditions are mild and can be satisfied in most of circumstances. Conditions C1–C4 are essential for the asymp-
totic results of the Cox proportional hazards regression model. Condition C5 is a mild smoothness condition on the
involved functions. Condition C6 is common for a kernel function, and C7 is to regularize the complexity of the ker-
nel function so that the supremum norm for kernel functions can be bounded in probability, which are also imposed in
Chen et al. (2016, 2018). Specially, the Gauss kernel function satisfies the conditions C6 and C7. Condition C8 states that
the bandwidth ℎ𝑛 converges to zero at a certain rate with respect to the sample size 𝑛. Condition C9 is necessary in the
study of covariate-adjusted problems; see Sentürk and Müller (2006).

APPENDIX B: PROOFS OF ASYMPTOTIC PROPERTIES
As a preparation, we state a lemma, which is extracted from Lemma B.2 of Zhang et al. (2012) and frequently used in the
process of the proof.
LemmaB.1. Let 𝜂(z) be a continuous function satisfying 𝐸[𝜂(𝐙)]2 < ∞. Assume that conditions C5−C9 hold. The following
asymptotic representation holds:

1

𝑛

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋𝑖)𝜂(𝐙𝑖) =
1

𝑛

𝑛∑
𝑖=1

(𝑋𝑖 − 𝑋𝑖)
𝐸[𝑋𝜂(𝐙)]

𝐸(𝑋)
+ 𝑜𝑝(𝑛

−1∕2).

Proof of Theorem 3.1
Proof of (i). Denoted by 𝜽 = (𝜷T, 𝛾)T, V = (𝐙T, 𝑋)T, and V̂ = (𝐙T, 𝑋)T, the log partial likelihood of this covariate-adjusted
Cox model can be written as

𝐿̂𝑛(𝜷, 𝛾) =

𝑛∑
𝑖=1

∫
𝜏

0

V̂
T

𝑖 𝜽 d𝑁𝑖(𝑡) − ∫
𝜏

0

log

{
𝑛∑
𝑖=1

𝑌𝑖(𝑡) exp(V̂
T

𝑖 𝜽)

}
d𝑁̄(𝑡).

Set

𝐿𝑛(𝜷, 𝛾) =

𝑛∑
𝑖=1

∫
𝜏

0

VT𝑖 𝜽 d𝑁𝑖(𝑡) − ∫
𝜏

0

log

{
𝑛∑
𝑖=1

𝑌𝑖(𝑡) exp(V
T
𝑖 𝜽)

}
d𝑁̄(𝑡).

The main point of the proof lies in stating that, for any 𝜽 ∈ Θ,

𝐿̂𝑛(𝜷, 𝛾) − 𝐿𝑛(𝜷, 𝛾) = 𝑜𝑝(𝑛).

This implies, by the fact, that 𝜽 = argmax𝜽∈Θ𝐿̂𝑛(𝜷, 𝛾) and the consistency of the Cox model under conditions C1–C4, and
the consistency of 𝜽 follows from Lemma 1 of Wu (1981). The detailed proof is given in the Supporting Information. □

Proof of (ii). Let

𝑈(𝜽) =

𝑛∑
𝑖=1

∫
𝜏

0

V̂𝑖 d𝑁𝑖(𝑡) − ∫
𝜏

0

∑𝑛

𝑖=1
𝑌𝑖(𝑡)V̂𝑖 ⋅ exp(V̂

T

𝑖 𝜽)∑𝑛

𝑖=1
𝑌𝑖(𝑡) exp(V̂

T

𝑖 𝜽)
d𝑁̄(𝑡).

By the Taylor expansion, there exists 𝜽∗ between 𝜽0 and 𝜽 such that

1√
𝑛
𝑈(𝜽) −

1√
𝑛
𝑈(𝜽0) =

1

𝑛

𝜕𝑈(𝜽∗)

𝜕𝜽

√
𝑛(𝜽 − 𝜽0).
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By the definition of 𝜽, we know that 𝑈(𝜽) = 𝟎. So we have

√
𝑛(𝜽 − 𝜽0) =

{
−
1

𝑛

𝜕𝑈(𝜽∗)

𝜕𝜽

}−1

⋅
1√
𝑛
𝑈(𝜽0).

We can prove that

−
1

𝑛

𝜕𝑈(𝜽∗)

𝜕𝜽

𝑝
⟶ Σ, (B.1)

and

1√
𝑛
𝑈(𝜽0)

𝑑
⟶ N(0, Σ + Ω), (B.2)

where Σ =
(
Σ11 Σ12
Σ21 Σ22

)
is defined in condition C4, 𝜁 = (−ΣT12𝛾0, −Σ22𝛾0)

T, and Ω =
Var(𝑋)−Var(𝑋)

{𝐸(𝑋)}2
𝜁𝜁T.

Combining (B.1) and (B.2), we have

√
𝑛(𝜽 − 𝜽0)

𝑑
⟶ N(0, Σ−1(Σ + Ω)Σ−1),

where

Σ−1(Σ + Ω)Σ−1 = Σ−1ΣΣ−1 +
Var(𝑋) − Var(𝑋)

{𝐸(𝑋)}
2

Σ−1𝜁𝜁TΣ−1

= Σ−1ΣΣ−1 +
Var(𝑋) − Var(𝑋)

{𝐸(𝑋)}
2

⎛⎜⎜⎜⎜⎝
0 ⋯ 0 0

⋮ ⋮ 0

0 ⋯ 0 0

0 ⋯ 0 𝛾20

⎞⎟⎟⎟⎟⎠
.

We can obtain that √
𝑛(𝜷 − 𝜷0)

𝑑
⟶ N

(
𝟎, (Σ−1)𝑝

)
,

and

√
𝑛(𝛾 − 𝛾0)

𝑑
⟶ N

(
0, (Σ−1)(𝑝+1,𝑝+1) +

Var(𝑋) − Var(𝑋)

{𝐸(𝑋)}
2

𝛾20

)
,

where (Σ−1)𝑝 and (Σ−1)(𝑝+1,𝑝+1), respectively, represent the 𝑝th-order sequential principal minor and the (𝑝 + 1)th diag-
onal element of matrix Σ−1. The detailed proof of (B.1) and (B.2) is given in the Supporting Information. □
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