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Massive data sets pose great challenges to data analysis because of their heterogeneous data structure
and limited computer memory. Jordan et al. (2019, Journal of American Statistical Association) has pro-
posed a communication-efficient surrogate likelihood (CSL) method to solve distributed learning prob-
lems. However, their method cannot be directly applied to quantile regression because the loss
function in quantile regression does not meet the smoothness requirement in CSL method. In this paper,
we extend CSL method so that it is applicable to quantile regression problems. The key idea is to construct
a surrogate loss function which relates to the local data only through subgradients of the loss function.
The alternating direction method of multipliers (ADMM) algorithm is used to address computational
issues caused by the non-smooth loss function. Our theoretical analysis establishes the consistency
and asymptotic normality for the proposed method. Simulation studies and applications to real data
show that our method works well.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Massive data sets not only increase demand for data storage
and computer performance, but also pose challenges to the exist-
ing statistical theory and computational methodology. In massive
data analysis, the size of the data is so large that they often have
to be stored in multiple machines, where each contains a subset
of the data which can be of big size on its own right. In such situ-
ations, both the computational efficiency of statistical processing
and the cost of communication between machines are of critical
importance. In attempts to solve the problem, recent methodolog-
ical developments in statistics have mainly focused on sub-
sampling based methods [1,2] and divide-and-conquer (DC) or
the one-shot methods [3–11]. DC has become popular for analyz-
ing massive data because it is fast to compute and easy to imple-
ment. The key idea of DC is to first conduct statistical inference
on each local machine separately and then aggregate the results
from each subset to produce a final solution. One advantage of
DC methods is that only one round of communication between
machines is needed and the communication cost is therefore sig-
nificantly reduced. However, as discussed in [12], DC methods
are essentially average-based and have several drawbacks. For
example, to achieve the minimax convergence rate, the number
of subsets or machines where the data are stored can not be too
large [10]. Particularly in cases where the goal is to estimate some
unknown coefficients in a non-linear model, most of these DC
methods can only improve estimate efficiency slightly in compar-
ison with local estimates, and their estimation accuracy deterio-
rates as the number of machines/subsets gets small. More
recently, Wang et al. [13] and Jordan et al. [12] have proposed a
communication-efficient surrogate likelihood (CSL) procedure to
solve this distributed statistical learning problem. The approach
in [13] is designed for high-dimensional linear models, while the
approach in [12] is more flexible and is applicable in different set-
tings such as M-estimation, high-dimensional regularized estima-
tion and Bayesian inference [14–17]. CSL approach is appealing
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because it is communication cost effective as it only needs to
exchange the gradients of local data. Furthermore, it has been
shown that CSL approach is as efficient as the traditional likelihood
method on entire dataset. Although CSL has many attractive prop-
erties, it can not be directly applied to quantile regression (QR)
problems for the following reasons. Theoretically speaking, CSL
assumes that the loss function has strong convexity and has
Lipschitz-continuous second order derivatives. The loss function
in QR problems, however, is non-smooth. Therefore, it is unclear
whether those theoretical properties of CSL still hold in the context
of QR. Numerically speaking, the commonly used Newton algo-
rithm cannot be used to calculate the final solution in QR.

In this paper, we extend CSL to quantile regression by con-
structing a communication efficient surrogate loss function. As in
[12], we first set one machine as the master machine and calculate
the subgradients of quantile loss functions on each machine using
the current values of parameters. Then we transfer these updated
subgradients to the master machine to form a global subgradient
and update the surrogate loss function as well as the parameter
estimates via solving the surrogate loss function on the master
machine. Our extension of [12] to QR problems is nontrivial,
because replacing the smooth loss function in [12] by a non-
smooth one fundamentally alters the theoretical analysis and
raises significant computational issues. We develop the theory by
adapting the results from M-estimation and convex processes.
We prove the consistency and asymptotic normality for our
method. To address the computational challenges, we apply the
alternating direction method of multipliers (ADMM) algorithm
[18] to obtain the final solution on the master machine. As pointed
out in [19], ADMM is well suited for distributed convex optimiza-
tion in large-scale problems.

There are several existing approaches for large-scale QR prob-
lems. For instance, Yang et al. [20,21] have proposed well-
conditioned bases and subspace preserving sampling algorithms
(SPC). There are two drawbacks with SPC methods. First, large stor-
age space is needed for performing subsampling. It increases the
required amount of primary memory. Second, only a part of the
entire dataset are utilized. This results in loss of efficiency of their
estimates. Xu et al. [22] have developed a block average quantile
regression (BAQR) by taking average of the estimators obtained
from each local machine using the standard quantile regression
method. They have demonstrated through simulation studies that
BAQR performs better than SPC methods in terms of predictive
accuracy. BAQR still suffers from the aforementioned loss of effi-
ciency, as with DC methods. In comparison, our method reduces
such loss of efficiency by borrowing the strengths of CSL on effi-
cient communication between local machines. Our numerical com-
parison with BAQR shows that our proposed method outperforms
BAQR in terms of prediction accuracy. Furthermore, the proposed
method performs almost as well as the oracle method (i.e., the
standard quantile regression based on the entire dataset). Chen
et al. [23,24] have proposed using smoothing approximation to
the QR loss and then applying communication efficient Newton
type methods to solve the corresponding minimization. In both
[23,24] restrictions on the number of machines derived in [12]
have been reduced. Here, in our paper we treat the nonsmooth
QR loss directly without smoothing approximations. Wang and
Lian [25] considered Lasso penalized QR models in high dimen-
sions with p > n, while Chen et al. [23] and our paper focus on
p < n cases without penalty.

The rest of this paper is organized as follows. Communication-
efficient distributed quantile regression is introduced in Section 2.
In Section 3, ADMM algorithm is extended to solve the correspond-
ing non-smooth optimization problem. We discuss the asymptotic
properties of our proposedmethod in Section 4. Section 5 evaluates
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the finite-sample performance of the proposed method by simula-
tion studies. Applications to real-world data are given in Section 6.
Section 7 concludes the article. The theoretical proofs are outlined
in the Appendix.

2. Distributed quantile regression for massive data

Compared with mean-based regression, quantile regression
(QR) [26] provides a more accurate portrayal of the complex asso-
ciation between a response variable Y and covariates

x ¼ x1; . . . ; xp
� �>. Instead of modeling the conditional mean

E Y jxð Þ, QR models the whole conditional distribution of Y. Consider
the following linear quantile regression model,

Qs Yjxð Þ ¼ x>b0 sð Þ; ð1Þ
where Qs Yjxð Þis the conditional s-th quantile function of response
Y, and b0 sð Þ is a vector of regression coefficients depending on a
specified quantile level s with s 2 0;1ð Þ. Suppose that there are N
i.i.d. samples yi;xið Þf gi¼1;...;N from the model (1). For ease of expres-
sion, we suppress the argument s in b0 sð Þ and denote them by b0 in
the following. The estimates of b0 can be obtained by solving the
following optimization problem,

bbN ¼ arg minb2Rp

XN
i¼1

qs yi � x>
i b

� �
; ð2Þ

where qs uð Þ ¼ u s� I u60f g
� �

is a check function and I �ð Þ is the indica-
tor function.

Consider the scenario that N is very large, where the solving of
(2) is infeasible on a single machine. Assume that the data are dis-
tributed among K machines. For simplicity, we suppose that every
machine holds the same sample size n, i.e. N ¼ nK. For k ¼ 1; . . . ;K ,
the sample on the k-th machine Mk is

yki;xki ¼ xki1; . . . ; xkip
� �>

; i ¼ 1; . . . ;n
n o

. For k ¼ 1; . . . ;K , define

Lk bð Þ ¼ 1
n

Xn
i¼1

qs yki � x>
kib

� �
and

TN bð Þ ¼ 1
N

XN
i¼1

qs yi � x>
i b

� � ¼ 1
K

XK
k¼1

Lk bð Þ

to be the local and global QR loss functions, respectively. Without of
loss of generality, we set the first machine as the master machine.
Since the loss functions are not smooth as required by the CSL
method, we define the surrogate loss function by replacing the gra-
dient in [12] with a subgradient as follows,

L
�
bð Þ :¼ L1 bð Þ þ rTN b0� ��rL1 b0� �

;b
� �

; ð3Þ
where b0 is any reasonable initial estimator of b0; �; �h i denotes the
inner product, andris the subgradient. After some algebra, we have

rL1 bð Þ ¼ @
@b

1
n

Xn
i¼1

qs y1i � x>
1ib

� �" #
¼ � 1

n

Xn
i¼1

x1iws y1i � x>
1ib

� �
;

rTN bð Þ ¼ @
@b

1
N

XN
i¼1

qs yi � x>
i b

� �" #
¼ � 1

N

XN
i¼1

xiws yi � x>
i b

� �
;

8>>>>><>>>>>:
where ws uð Þ ¼ rqs uð Þ ¼ sI u>0f g þ s� 1ð ÞI u<0f g þ nI u¼0f g, for any
n 2 s� 1; s½ �.

The estimator of b0 can be obtained by minimizing the surro-
gate loss function on the master machine, which is defined as

b
�
N ¼ arg minb2Rp L

�
bð Þ: ð4Þ
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3. Algorithm

For simplicity, let X 1ð Þ ¼ x11; . . . ;x1nð Þ> and y 1ð Þ ¼ y11; . . . ; y1nð Þ>
be the design matrix and the response vector on the first machine
M1, respectively. Define r ¼ y 1ð Þ � X 1ð Þ

b and Qs rð Þ ¼ n�1Pn
i¼1qs rið Þ,

where ri i ¼ 1; . . . ;nð Þ is the i-th element of r. According to [12],
solving (4) is equivalent to solving the following problem with lin-
ear constraint,

min
b;r

Qs rð Þ þ g>b; subject to X 1ð Þ
bþ r ¼ y 1ð Þ; ð5Þ

where g ¼ rTN b0� ��rL1 b0� �
.

Noting that Q s rð Þ is not smooth at zero, the solution of (5) can-
not be obtained by the Newton-Ralphson algorithm. To address
this problem, we resort to the ADMM algorithm [19]. We first
define the augmented Lagrangian function of (5) as follows,

/k b; r; hð Þ ¼ Qs rð Þ þ g>bþ h;X 1ð Þ
bþ r� y 1ð Þ

D E
þ k
2

X 1ð Þ
bþ r� y 1ð Þ

��� ���2
2
; ð6Þ

where k > 0 is a fixed constant and h 2 Rn is the Lagrange multi-
plier. As a result, we arrive at the iteration for the standard ADMM
algorithm as follows,

bmþ1 ¼ arg minb/k b; rm; hmð Þ;
rmþ1 ¼ arg minr/k bmþ1; r; hm

� �
;

hmþ1 ¼ hm þ k X 1ð Þ
bmþ1 þ rmþ1 � y 1ð Þ

� �
;

ð7Þ

where bm; rm; hmð Þ denotes the m-th iteration of the algorithm.
Specifically, bmþ1 has the following closed solution as

bmþ1 ¼ X 1ð Þ>X 1ð Þ
� ��1

X 1ð Þ> y 1ð Þ � rm � hm=k
� �� g=k

h i
:

rmþ1 also has a closed-form solution and can be implemented
component-wise. Namely, for i ¼ 1; . . . ;n, we have

rmþ1
i ¼ arg minri

1
n
qs rið Þ þ hmi ri þ

k
2

x>
1ib

mþ1 þ ri � y1i
� �2	 


¼ arg minri qs rið Þ þ nk
2

ri � y1i � x>
1ib

mþ1 � 1
k
hmi

� �2
" #( )

Proxqs y1i � x>
1ib

mþ1 � 1
k
hmi ;nk

� �
; ð9Þ

where the proximal mapping operator Proxqs �; �ð Þ is given in [27] as
follows,

Proxqs n;að Þ :¼ arg minu2R qs uð Þ þ a
2

u� nð Þ2
h i

¼ max n� s
a
;0

� �
�max �n� 1� s

a
; 0

� �
:

We summarize the above iterative procedure performed on the
master machine in Algorithm 1.
Algorithm 1. QR-ADMM (QA).
Input: Data yki;xki; k ¼ 1; � � � ;K; i ¼ 1; � � � ; nf g; constants
k > 0 and s > 0. � �

Initialize the algorithm with b0; r0; h0 ¼ 0;0;0ð Þ and
the maximum number of iterations M (M ¼ 1000 by
default); set m ¼ 0.

for m ¼ 0;1;2; . . . ;M � 1 do

until the convergence criterion is met.

Update bmþ1 via (8).

Update rmþ1 via (9).

Update hmþ1 via (7).
251
end for� �

Output: bM ; rM; hM .
In what follows, the communication-efficient distributed esti-
mation is outlined in Algorithm 2.
Algorithm 2. Distributed algorithm for QR.
Input: Constants k > 0 and s > 0. The number of rounds
of communication B ¼ B Kð Þ, which is allowed to
increase logarithmically with the total number of
machines.� �

Initialize b0; r0; h0 ¼ bM; rM ; hM

� �
via Algorithm1 by

setting g ¼ 0.

for b ¼ 0;1;2; . . . ;B� 1do

Broadcast the current values bb to local machines

M2; . . . ;MK ; � �

Calculate the sub-gradient rLk bb at local

machines Mk, k ¼ 1; . . . ;K;� �

Reduce rLk bb k ¼ 1; . . . ;Kð ) to the master

machine M1 to calculate the current value of g as

gb ¼ rTN bb
� �

�rL1 bb
� �

and update the augmented

Lagrangian function /b
k b; z; hð Þ by replacing g with gb

in (6);
Update (bbþ1, rbþ1; hbþ1) via Algorithm 1 at the
master machine M1.

end for
Output: bB is regarded as the estimate of b
�
N in (4).
4. Asymptotic properties

In this section, we present the theoretical properties of the pro-

posed estimator b
�
N . We begin by introducing the regular condi-

tions. Here b0 is the true parameter.

C1 The parameter spaceB is a compact subset of Rp, and b0 is an
inner point of B.
C2 b0 is the unique minimizer of the objective function
E qs Y � x>bð Þf g.
C3 The conditional distribution function Fi yð Þ ¼ P Y 6 yjxið Þ is
absolutely continuous in y. The corresponding conditional den-
sity f i �ð Þ is uniformly bounded away from 0 and 1at each con-
ditional s-th quantile ni ¼ Qs Y jxið Þ ¼ x>

i b0.
C4 For k ¼ 1; . . . ;K , there exists positive definite matrices R0

and R1 such thatP

(i) lim

n!1
n�1 n

i¼1xkix>
ki ¼ R0,

(ii) lim
n!1

n�1Pn
i¼1f i nið Þxkix>

ki ¼ R1, where ni ¼ x>
i b0,

(iii) max
16i6n

xkik k2=
ffiffiffi
n

p ! 0,

where �k k2 is the L2 norm, and the above convergence is almost
everywhere. Note that the conditions C1–C4 are common in stan-
dard quantile regression [28], and the condition C4 is the technical
condition, with (i) and (ii) being used in [22]. The following theo-
rems show the consistency and asymptotic normality of the pro-
posed estimators. Unless otherwise stated, all the limits are
taken as N ! 1.



Fig. 1. Boxplots of various methods on simulated data for K 2 20;50;80f g and r ¼ 0 (the homogeneous case).
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Theorem 1. Under conditions C1–C4, we have b
�
N converges weakly

to b0.
Theorem 2. Under conditions C3 and C4, we haveffiffiffiffi
N

p
b
�
N � b0

� �
!d N 0;DR�1

1 R0R
�1
1

� �
; ð10Þ
252
where D ¼ Ks 1� sð Þ þ K � 1ð Þ Var ws �eið Þð Þ � 2Cov ws �eið Þ;ws eið Þð Þf g,
�ei ¼ yi � x>i b

0, ei ¼ yi � x>i b0, and !d represents convergence in distri-
bution. �ei and ei represent the residuals corresponding to the i-th obser-
vation value calculated with the initial value of any parameter and the
real value of the parameter, respectively.



Fig. 2. Boxplots of various methods on simulated data for K 2 20;50;80f g and r ¼ xki;1 (the heterogeneous case).
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Remark 1. If the initial value b0 satisfies kb0 � b0k2 ¼ Op n�1=2
� �

,
then we can prove that D ¼ s 1� sð Þ. Therefore, the limiting distri-

bution of b
�
N in (10) is the same as that of the global QR estimatorbbN based on the whole dataset. Generally, the initial value b0 can

be obtained from the first machine and satisfies
kb0 � b0k2 ¼ Op n�1=2

� �
. This means that our proposed estimator is

asymptotically unbiased and applicable.
1 The repository’s website is located athttps://archive.ics.uci.edu/ml/datasets/Wine
+Quality
5. Numerical examples

We present numerical examples to illustrate the finite sample
performance of the proposed method. All the experiments are per-
formed in MATLAB R2010b on a laptop with a quad-core Intel Core
i5 (2.60 GHz) CPU and 8 GB of RAM running 64-bit Windows 8.1.
We compare the performance of the proposed method (Proposed)
with other two approaches. The first one is referred to as the oracle
approach (Oracle), which implements the standard quantile
regression on the entire dataset. The second one is the
averaging-based one-shot communication approach (OneShot),
which is also known as the BAQR method in [22].

The data are generated from

yki ¼ x>
kib0 þ 1þ rð Þ�ki; k ¼ 1; . . . ;K; i ¼ 1; . . . ;n;

where the elements of b0 are generated from U �3;3½ �. We consider
two kinds of r : r ¼ 0 for homogeneous data and r ¼ xki;1 for
heterogeneous data, where xki;1 denotes the first element of xki.
The p-dimensional covariates xki are generated from a multivariate

normal distribution Np 0;Rð Þ, with R ¼ Rjl

� �
p�p, where Rjl ¼ 0:5jj�lj.

We generate the error � from three different distributions: the stan-
dard normal distribution N 0;1ð Þ, the t distribution with 1 degree of
freedom t 1ð Þ, and the chi-squared distribution with 2 degrees of
freedom v2 2ð Þ. These three distributions represent a symmetric thin
tail distribution, a symmetric thick tail distribution and an asym-
metric distribution, respectively. We perform 100 simulations for
each setting. We consider two cases of the sample size: the medium
sample size and the large scale one.

5.1. Medium sample size case

Set the total sample size N ¼ 8000 and the covariate dimension
p ¼ 30. The number of machines is set to be K 2 20;50;80f g. Then,
n ¼ N=Kb c is the sample size on each machine, where ab c denotes
the integer part of a positive number a. For quantile regression,
we consider three different values of s : 0:25;0:5 and 0:75. We
compare the performance of the aforementioned different meth-

ods in terms of the estimation error defined as kbb sð Þ � b0k2. Figs. 1
and 2 show the boxplots of the estimation error for homogeneous
(r ¼ 0) and heterogeneous (r ¼ xki;1) data, respectively. Figs. 3 and
4 show the change of the estimation error with the rounds of com-
munication for homogeneous and heterogeneous data, respec-
tively. From Figs. 1 and 2, we make the following observations.
The performance of our proposed method is very close to that of
the Oracle method. In the OneShot method, the estimation error
increases with the number of machines, but the estimation error
of our proposed method is very robust to the number of machines.
When r ¼ 0, the OneShot method performs the worst with the lar-
gest estimation error in most settings, especially when the distri-
bution of � is symmetric (e.g. N 0;1ð Þ and t 1ð Þ). For heterogeneous
(r ¼ xki;1) data, both our method and the Oracle method perform
much better than the OneShot method.

From Figs. 3 and 4, we observe that the proposed method con-
verges quickly and it clearly performs much better than the One-
Shot method after a few rounds of communication. On average,
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our proposed method only needs about 80 rounds of communica-
tion to reach the level close to the Oracle method. To reach the
level close to the Oracle method, our method needs more rounds
of communication for heterogeneous data than for the homoge-
neous data.

5.2. Large scale case

Set the total sample size N ¼ 50;000, the dimension
p 2 100;150f g, and the number of machines
K 2 5;10;20;50;80;100;200f g. We fix the quantile level s ¼ 0:25
to compare the Proposed method with the OneShot method. All
simulation results are based on 100 independent replications.

To compare the performance of two solvers, we use the average
estimation error (AEE) over 100 independent repetitions defined as

100�1
X100
s¼1

kbb sð Þ � bk2:

The change of AEE of our method and the Oneshot method to
the machine number K is shown in Fig. 5.

From Fig. 5, we observe that in the case of homogeneous data, if
the number of machines is less than 50, our proposed method is
comparable to the OneShot method. With increasingly larger K,
our approach significantly outperforms the OneShot method. For
heterogeneous data, even if the number of machines is small, our
method outperforms the OneShot method with smaller AEEs. In
addition, the AEEs of the OneShot method increase with increasing
K, whereas those of our method are more stable with respect to K.

6. Application to real-world data

We illustrate our proposed method via two real data examples.
We compare the proposed method with the Oracle and OneShot
methods via cross-validation. To this end, we partition N samples
100 times. In eachpartition,we randomlyselect 2=3of theN samples
as the training dataset and use the remaining as the test dataset. For
all threemethods, we compute the estimation coefficients using the
training dataset Dtrain and then calculate the prediction error (PE)
based on the test dataset Dtest, where PE is defined asP

i2Dtest
qs yi � byi
� �

[29].Weset thequantile levels 2 0:25;0:5;0:75f g.

6.1. Analysis of wine quality data

We apply the proposed method to the wine quality data, which
consists of two datasets, namely, red and white vinho verde wine
samples from the north of Portugal. The datasets are available from
the UCI Machine Learning Repository 1. The goal is to model the wine
quality based on physicochemical tests (cf., e.g., [30]). We focus on
the white wine dataset, since it contains a larger number of samples.
This dataset contains 4898 samples and 12 attribute variables,
where the latter includes 11 physicochemical (explanatory) vari-
ables and one sensory (response) variable. Thus, the total sample
size is N ¼ 4898, and the dimensionality is p ¼ 11. In the wine qual-
ity dataset, the score of response variable quality ranges from 3 to 9;
the greater the score is, the better the wine quality. We transform
the response variable into the natural logarithm form but use the
original explanatory variables rather than their logarithms. The
names of the explanatory variables and the corresponding explana-
tions are listed in Table 1.

Set K ¼ 31 and 62. Then the local sample size are
n ¼ N=Kb c ¼ 158 and 79, respectively. We use the 11 explanatory
variables to predict the wine quality. The results are summarized

https://archive.ics.uci.edu/ml/datasets/Wine+Quality
https://archive.ics.uci.edu/ml/datasets/Wine+Quality


Fig. 3. Comparison of three methods in terms of estimation errors for K 2 20;50;80f g and r ¼ 0 (the homogeneous case) with 3 error distributions.
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in Fig. 6. From Fig. 6, we observe clearly that at quantile s ¼ 0:5, all
the three methods are comparable.

6.2. Analysis of remote sensing data

The second example is a collection of geographic characteris-
tics of Xuchang city in China, which contains 18,301 samples (ob-
255
servations) and 30 attribute variables. All the attribute variables
are continuous. The response variable is the sandy land type
named as ‘‘LengthWidth”. The remaining 29 variables are predic-
tors. Explanatory analysis shows that the distribution of
‘‘LengthWidth” is non-normal, therefore, the quantile regression
approach may be more attractive than other methods in analyz-
ing this data.



Fig. 4. Comparison of three methods in terms of estimation errors for K 2 20;50;80f g and r ¼ xki;1 (the heterogeneous case) with 3 error distributions.
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The sizes of the training data and the test data are 12,000 and
6301, respectively. We set the number of machines K 2 40;80f g.
Simulation results for the quantile levels s ¼ 0:25;0:5 and 0:75
are shown in Fig. 7. From Fig. 7, we see that the PEs for each of
the three considered methods are smaller when K ¼ 40 than those
256
when K ¼ 80. This is because the loss incurred by the partition data
is larger as K increases. Our proposed method has smaller PEs than
the OneShot method and is comparable to the Oracle method.
These results indicate that, compared with the OneShot method,
our proposed method is more precise and stable.



Table 1
Variable names and corresponding explanations for the wine quality data.

Name Explanation

fixed.acidity Most acids involved with wine or fixed or nonvolatile (do not evaporate readily)
volatile.acidity Refers to the steam distillable acids present in wine
citric.acid A weak organic acid that has the chemical formula C6H8O7

residual.sugar Refers to any natural grape sugars that are leftover after fermentation ceases
chlorides A compound of chlorine with another element or group especially: a salt or ester of hydrochloric acid
free.sulfur.dioxide A measure of the amount of SO2 that is not bound to other molecules
total.sulfur.dioxide A measure of both the free and bound forms of SO2

density The mass per unit volume of wine or must at 20�C
pH A scale used to specify how acidic or basic a water-based solution is
sulphates A chemical formed from sulphur, oxygen, and another element
alcohol An organic substance formed when a hydroxyl group is substituted for a hydrogen atom in a hydrocarbon
quality Score between 3 and 9

Fig. 5. Comparison of accuracy in terms of the average estimation error (AEE) between the proposed method and the OneShot method for K 2 5;10;20;50;80;100;200f g
under three error distributions.
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To further evaluate the influence of K on PE, we set
K 2 5;10;20;50;80;100;200f g. Fig. 8 shows the comparison of
average PE over 100 repetitions for s ¼ 0:25;0:5 and 0:75. We
can see in Fig. 8 that the Xuchang dataset is obviously heteroge-
neous. With increasing K, the average PE of both our method and
the OneShot method increases.

However, the PE obtained by our method increases steadily
with a lower rate while the PE of the OneShot method increases
257
sharply, which further shows that our method is more accurate
and stable than the OneShot method, especially for heterogeneous
data.
7. Conclusions

For massive datasets, partition of data across multiple machines
is the only practical way to overcome the limitation of storage and



Fig. 6. Boxplots of PE for all methods using cross validation based on 100 random partitions of the wine quality dataset.

Fig. 7. Boxplots of PE for all methods using cross validation based on 100 random partitions of the remote sensing data.
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computer memory. In this paper, we extend the CSL method in [12]
to distributed quantile regression. Inspired by the idea of CSL, we
proposed a communicate-efficient surrogate loss function to
approximate the global loss function that uses all samples and
obtain the estimate by minimizing the surrogate loss function at
the master machine. At each iteration, only the subgradient of loss
258
function at each local machine needs to be transferred to the mas-
ter machine. Since the target loss function in quantile regression
does not satisfy the smoothness assumption in CSL, the existing
theoretical analysis and computing algorithms can not handle
the problem properly. In our extension, we make use of convex
process theory to establish the consistency of the proposed estima-



Fig. 8. The average prediction errors (PE) of all methods for K 2 5;10;20;50;80;100;200f g based on the remote sensing data.
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tor. We also show that our distributed estimator has the same
asymptotic distribution as the oracle estimate, which is based on
the entire dataset. To address computational issues, we utilize
ADMM to solve the non-smooth optimization problem. Simulation
studies show that our proposed method is more accurate and
stable than the OneShot method, especially in cases where the data
are heterogeneous.

It is worth mentioning that the implementation of our proposed
Algorithm 2 can be further improved in several ways. For example,
at each iteration of the ADMM algorithm, we have to update the
subgradient on each machine before the iteration can be com-
pleted, therefore the total computation speed is limited by the
slowest computing machine. The asynchronous version of ADMM
algorithm suggested by Zhang and Kwok [31] is helpful in address-
ing this limitation. In addition, splitting data along sample size and
dimension directions (e.g., [32]) can be useful in extending our
method to cases where the data is both large in size and high in
dimension.
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Appendix A. Proofs

A.1. Proof of Theorem 1

We compute the negative subgradient of the objective function

L
�
bð Þ defined in (3) as



:
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Wn bð Þ :¼ �r L
�
bð Þ ¼ �rL1 bð Þ þ rL1 b0� ��rTN b0� �

¼ 1
n

Xn
i¼1

x1iws y1i � x>
1ib

� �� 1
n

Xn
i¼1

x1iws y1i � x>
1ib

0� �
þ 1
N

Xn
i¼1

XK
j¼1

xjiws yji � x>
ji b

0
� �

¼ 1
n

Xn
i¼1

x1iws y1i � x>
1ib

� �� x1iws y1i � x>
1ib

0� �þ 1
K

XK
j¼1

xjiws yji � x>
ji b

0
� �( )

Denote

W bð Þ :¼ E x1iws y1i � x>
1ib

� �� x1iws y1i � x>
1ib

0� �þ 1
K

XK
j¼1

xjiws yji � x>
ji b

0
� �" #

:

Then we obtain

W b0ð Þ ¼ E x1iws y1i � x>
1ib0

� �� � ¼ 0:

Because b0 is the solution of W bð Þ, it is in the interior of a com-

pact parameter space B. Therefore, the consistency of b
�
N is the

direct conclusion of Theorem 5.9 in [33], which can be shown by
verifying the following two conditions.

(a) sup
b2B

kWn bð Þ �W bð Þk2 !
p
0, where !p denotes converge in

probability.
(b) inf

b:d b;b0ð ÞP�
kW bð Þk2 > 0 ¼ kW b0ð Þk2, where d �; �ð Þ is the Eucli-

dean distance function and � is any positive constant.

We first verify that condition (a) holds. Define

g yi;xi;bð Þ ¼ x1iws y1i � x>
1ib

� �� x1iws y1i � x>
1ib

0� �
þ 1
K

XK
j¼1

xjiws yji � x>
ji b

0
� �

:

It is continuous with a probability of one at each b by condition
C3. In addition,

kgs yi;xi;bð Þk2 6 h xð Þ;

where h xð Þ ¼ 2 x1ik k2 þ 1
K

PK
j¼1 xji

�� ��
2. Under condition C4, we have

Ekh xð Þk2 < 1. Together with condition C1, it leads to the conclusion
that condition (a) holds in accordance with Theorem 2 in [34].

Below, we verify that condition (b) holds. Note that

W bð Þ ¼ E x1iws y1i � x>
1ib

� �� �
is a continuous function with respect to b under condition C3. By
combining conditions C1 and C2, the above condition (b) is verified
(see Problem 5.27 in [33]). This completes the proof of Theorem 1.

A.2. Proof of Theorem 2

For d 2 Rp, define

ZN dð Þ ¼ L
�

b0 þ d=
ffiffiffiffi
N

p� �
¼ L1 b0 þ d=

ffiffiffiffi
N

p� �
� b0 þ d=

ffiffiffiffi
N

p
;rL1 b0� ��rTN b0� �D E

¼ 1
n

Xn
i¼1

qs e1i � x>
1id=

ffiffiffiffi
N

p� �
� b0 þ d=

ffiffiffiffi
N

p� �> rL1 b0� ��rTN b0� �� �
;

where e1i ¼ y1i � x>
1ib0. Function ZN dð Þ is convex with respect to d

and is minimized at d
�
N ¼ ffiffiffiffi

N
p

b
�
N � b0

� �
. Furthermore, we have

d
�
N ¼ argminZ 1ð Þ

N dð Þ, where
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Z 1ð Þ
N dð Þ ¼
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p 1
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ffiffiffiffi
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0. Following [35], it can be

shown that the limiting distribution of d
�
N is determined by the lim-

iting behavior of function Z 1ð Þ
N dð Þ. Using Knight’s identity
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and letting v i ¼ 1ffiffiffi
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1id, we rewrite
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where

Z1N dð Þ ¼ � 1ffiffi
n

p
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i¼1

x>
1idws e1ið Þ;
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ffiffiffiffi
Nn

p
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R v i
0 I e1i 6 sð Þ � I e1i 6 0ð Þð Þds �
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Z2Ni dð Þ:

Using conditions C3 and C4, according to the Lindeberg-Feller

central limit theorem, we obtain Z1N dð Þ!d �d>W, where
W � N 0; s 1� sð ÞR0ð Þ. Now, we write the second term as

Z2N dð Þ ¼
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almost surely. On the other hand, under condition C4 (iii),
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It follows that
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where ¼d indicates that it has the same distribution on both sides.
Consequently,
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where
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Under conditions C3 and C4, by the Lindeberg-Feller central
limit theorem, we have
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where W0 � N 0;DR0=Kð Þ. The convexity of the limiting objective
function Z0 dð Þ assures the uniqueness of the minimizer. Conse-
quently, by computing the derivative of Z0 dð Þ with respect to d,
we obtain the minimizer, given by

d
�
0 ¼ �

ffiffiffiffi
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p
R�1

1 W0:

Immediately, we obtain

d
�
0 !d N 0;DR�1

1 R0R
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Therefore,ffiffiffiffi
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b
�
N � b0
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¼ argmin ZN dð Þ ¼ argmin Z 1ð Þ

N dð Þ ¼ d
�
N!d d

�
0

¼ argmin Z0 dð Þ;

which completes the proof of Theorem 2 by asymptotics for mini-
mizers of the convex processes.

References

[1] A. Kleiner, A. Talwalkar, P. Sarkar, M.I. Jordan, A scalable bootstrap for massive
data, J. Roy. Stat. Soc. Ser. B (Stat. Methodol.) 76 (4) (2014) 795–816.

[2] P. Ma, M.W. Mahoney, B. Yu, A statistical perspective on algorithmic
leveraging, J. Mach. Learn. Res. 16 (1) (2015) 861–911.
261
[3] R. Mcdonald, M. Mohri, N. Silberman, D. Walker, G.S. Mann, Efficient large-
scale distributed training of conditional maximum entropy models, Advances
in Neural Information Processing Systems (2009) 1231–1239.

[4] L.W. Mackey, M.I. Jordan, A. Talwalkar, Divide-and-conquer matrix
factorization, Advances in Neural Information Processing Systems (2011)
1134–1142.

[5] J.C. Duchi, A. Agarwal, M.J. Wainwright, Dual averaging for distributed
optimization: convergence analysis and network scaling, IEEE Trans. Autom.
Control 57 (3) (2012) 592–606.

[6] M.I. Jordan, On statistics, computation and scalability, Bernoulli 19 (4) (2013)
1378–1390.

[7] X. Chen, M.-G. Xie, A split-and-conquer approach for analysis of extraordinarily
large data, Stat. Sin. 24 (4) (2014) 1655–1684.

[8] J.C. Duchi, M.I. Jordan, M.J. Wainwright, Y. Zhang, Optimality guarantees
for distributed statistical estimation, arXiv preprint arXiv:1405.0782v2
(2014)..

[9] Y. Zhang, M.J. Wainwright, J.C. Duchi, Communication-efficient algorithms for
statistical optimization, J. Mach. Learn. Res. 14 (1) (2013) 3321–3363.

[10] Y. Zhang, J. Duchi, M. Wainwright, Divide and conquer kernel ridge regression:
a distributed algorithm with minimax optimal rates, J. Mach. Learn. Res. 16 (1)
(2015) 3299–3340.

[11] J.D. Lee, Q. Liu, Y. Sun, J.E. Taylor, Communication-efficient sparse regression, J.
Mach. Learn. Res. 18 (5) (2017) 1–30.

[12] M.I. Jordan, J.D. Lee, Y. Yang, Communication-efficient distributed statistical
inference, J. Am. Stat. Assoc. 114 (526) (2019) 668–681.

[13] J. Wang, M. Kolar, N. Srebro, T. Zhang, Efficient distributed learning with
sparsity, in: Proceedings of the 34th International Conference on Machine
Learning-Volume 70, JMLR.org, 2017, pp. 3636–3645..

[14] O. Shamir, N. Srebro, T. Zhang, Communication-efficient distributed
optimization using an approximate newton-type method, in: International
Conference on Machine Learning, 2014, pp. 1000–1008.

[15] A. Garg, T. Ma, H. Nguyen, On communication cost of distributed statistical
estimation and dimensionality, Advances in Neural Information Processing
Systems (2014) 2726–2734.

[16] W. Neiswanger, C. Wang, E.P. Xing, Asymptotically exact, embarrassingly
parallel mcmc, in: Proceedings of the Thirtieth Conference on Uncertainty in
Artificial Intelligence, 2014, pp. 623–632.

[17] X. Wang, F. Guo, K.A. Heller, D.B. Dunson, Parallelizing MCMC with random
partition trees, in: Advances in Neural Information Processing Systems, 2015,
pp. 451–459..

[18] D. Gabay, B. Mercier, A dual algorithm for the solution of nonlinear variational
problems via finite element approximation, Comput. Math. Appl. 2 (1) (1976)
17–40.

[19] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and
statistical learning via the alternating direction method of multipliers, Found.
Trends Mach. Learn. 3 (1) (2011) 1–122.

[20] J. Yang, X. Meng, M. Mahoney, Quantile regression for large-scale applications,
in: International Conference on Machine Learning, 2013, pp. 881–887..

[21] J. Yang, X. Meng, M.W. Mahoney, Quantile regression for large-scale
applications, SIAM J. Sci. Comput. 36 (5) (2014) S78–S110.

[22] Q. Xu, C. Cai, C. Jiang, F. Sun, X. Huang, Block average quantile regression for
massive dataset, Stat. Pap. (2017) 1–25.

[23] X. Chen, W. Liu, Y. Zhang, Quantile regression under memory constraint, Ann.
Stat. 47 (6) (2019) 3244–3273.

[24] X. Chen, W. Liu, X. Mao, Z. Yang, Distributed high-dimensional regression
under a quantile loss function, J. Mach. Learn. Res. 21 (182) (2020) 1–43.

[25] L. Wang, H. Lian, Communication-efficient estimation of high-dimensional
quantile regression, Anal. Appl. 18 (06) (2020) 1057–1075.

[26] R.W. Koenker, G. Bassett, Regression quantiles, Econometrica 46 (1) (1978) 33–
50.

[27] Y. Gu, J. Fan, L. Kong, S. Ma, H. Zou, ADMM for high-dimensional sparse
penalized quantile regression, Technometrics 60 (3) (2018) 319–331.

[28] R. Koenker, Quantile Regression, Cambridge University Press, New York, 2005.
[29] L. Wang, Y. Wu, R. Li, Quantile regression for analyzing heterogeneity in ultra-

high dimension, J. Am. Stat. Assoc. 107 (497) (2012) 214–222.
[30] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, J. Reis, Modeling wine preferences

by data mining from physicochemical properties, Decis. Support Syst. 47 (4)
(2009) 547–553.

[31] R. Zhang, J. Kwok, Asynchronous distributed ADMMfor consensus optimization,
in: International Conference onMachine Learning, 2014, pp. 1701–1709..

[32] L. Yu, N. Lin, ADMM for penalized quantile regression in big data, Int. Stat. Rev.
85 (3) (2017) 494–518.

[33] A.W. Van der Vaart, Asymptotic Statistics, Cambridge University Press, 1998.
[34] R.I. Jennrich, Asymptotic properties of non-linear least squares estimators,

Ann. Math. Stat. 40 (2) (1969) 633–643.
[35] K. Knight, Limiting distributions for L1 regression estimators under general

conditions, Ann. Stat. 26 (2) (1998) 755–770.

http://refhub.elsevier.com/S0925-2312(21)00409-4/h0005
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0005
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0010
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0010
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0015
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0015
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0015
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0020
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0020
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0020
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0025
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0025
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0025
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0030
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0030
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0035
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0035
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0045
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0045
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0050
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0050
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0050
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0055
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0055
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0060
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0060
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0070
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0070
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0070
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0070
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0075
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0075
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0075
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0080
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0080
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0080
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0080
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0090
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0090
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0090
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0095
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0095
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0095
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0105
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0105
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0110
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0110
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0115
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0115
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0120
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0120
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0125
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0125
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0130
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0130
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0135
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0135
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0140
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0140
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0145
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0145
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0150
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0150
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0150
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0160
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0160
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0165
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0165
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0170
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0170
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0175
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0175
http://refhub.elsevier.com/S0925-2312(21)00409-4/h0175


A. Hu, Y. Jiao, Y. Liu et al. Neurocomputing 448 (2021) 249–262
Aijun Hu received his M.Sc. degree in probability and
mathematical statistics from Wuhan University,
Wuhan, China, in 2006. He is currently pursuing the Ph.
D. degree in statistics from Huazhong University of
Science and Technology, Wuhan, China. His research
interests include statistical computing, big data analy-
sis, and distributed computing.
Yuling Jiao received his Ph.D. degree in applied math-
ematics from Wuhan University in 2014. He is currently
an Associate Professor with the School of Mathematics
and Statistics, Wuhan University, Wuhan, China. He has
authored or co-authored over 50 research papers,
including SIAM Journal on Numerical Analysis, SIAM
Journal on Scientific Computing, Journal of Machine
Learning Research, Applied and Computational Har-
monic Analysis, IEEE Transactions on Signal Processing,
Inverse Problems, IEEE Signal Processing Letters, and
Statistical Science. His current research interests
include compressed sensing, inverse problem, sparse

optimization, statistical computing, fast stochastic, parallel, distributed algorithms,
and deep learning.
Yanyan Liu received her B. Sc. Degree from Wuhan
University, Wuhan, China in 1989, and the Ph.D. degree
from Wuhan University in 2001. She is currently a full
professor in the School of Mathematics and Statistics,
Wuhan University. She has authored or co-authored
more than 50 research papers, including Biometrics,
Biostatistics, Statistica Sinica, Lifetime Data Analysis,
Scandinavian Journal of Statistics, Computational
Statistics and Data Analysis, and Journal of Machine
Learning Research. Her current research interests
include statistical analysis for high dimensional data,
262
machine learning, statistical computing, distributed
algorithm and model average for large scale data.

Yueyong Shi received his Ph.D. degree in probability
and mathematical statistics from Wuhan University in
2013. He is currently an Associate Professor with the
School of Economics and Management, China University
of Geosciences, Wuhan, China. He has published more
than 10 papers including IEEE Transactions on Neural
Networks and Learning Systems and Journal of Statis-
tical Computation and Simulation. His current research
interests include semiparametric models, high-
dimensional data analysis, machine learning, and sta-
tistical computing.
Yuanshan Wu is currently a full professor in the School
of Statistics and Mathematics, Zhongnan University of
Economics and Law, Wuhan, China. He received his Ph.
D. degree in statistics from Wuhan University in 2010.
He worked as Assistant Professor (2010–2015) and
Associate Professor (2015–2018) at Wuhan University.
His main research interests include high-dimensional
data analysis, statistical machine learning, distributed
algorithm for large-scale data. He has been published
over 20 peer-viewed papers on the Journal of American
Statistical Association, Biometrika, Bernoulli and so on.


	Distributed quantile regression for massive heterogeneous data
	1 Introduction
	2 Distributed quantile regression for massive data
	3 Algorithm
	4 Asymptotic properties
	5 Numerical examples
	5.1 Medium sample size case
	5.2 Large scale case

	6 Application to real-world data
	6.1 Analysis of wine quality data
	6.2 Analysis of remote sensing data

	7 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgment
	Appendix A Proofs
	A.1 Proof&blank;of Theorem&blank;1
	A.2 Proof&blank;of Theorem&blank;2

	References


