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Restricted mean survival time (RMST) evaluates the mean event-free survival
time up to a prespecified time point. It has been used as an alternative mea-
sure of treatment effect owing to its model-free structure and clinically mean-
ingful interpretation of treatment benefit for right-censored data. In clinical
trials, another type of censoring called interval censoring may occur if sub-
jects are examined at several discrete time points and the survival time falls
into an interval rather than being exactly observed. The missingness of exact
observations under interval-censored cases makes the nonparametric measure
of treatment effect more challenging. Employing the linear smoothing tech-
nique to overcome the ambiguity, we propose a new model-free measure for
the interval-censored RMST. As an alternative to the commonly used log-rank
test, we further construct a hypothesis testing procedure to assess the survival
difference between two groups. Simulation studies show that the bias of our
proposed interval-censored RMST estimator is negligible and the testing pro-
cedure delivers promising performance in detecting between-group difference
with regard to size and power under various configurations of survival curves.
The proposed method is illustrated by reanalyzing two real datasets containing
interval-censored observations.
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1 INTRODUCTION

In randomized clinical trials with time-to-event observations, one primary aim is to evaluate the benefit of new medical
treatment in comparison with the benchmark, that is, assessing the survival difference between two groups. The hazard
ratio (HR) is frequently used to quantify the between-group survival difference with right-censored data under the pro-
portional hazards (PH) assumption, that is, the ratio of two hazard functions is constant over time. However, the HR is
no longer an accurate and interpretable measure if the PH assumption does not hold. Distribution-free hypothesis testing
procedures for detecting the difference among survival curves have also been extensively studied for right-censored data,
such as the log-rank test and the generalized Wilcoxon-Mann-Whitney (WMW) test.1 Although these tests can be used
to assess whether there is any difference among survival curves, they cannot quantify the treatment effects. Recently, a
model-free and clinically meaningful measure, the so-called restricted mean survival time (RMST), has attracted much
attention in both the statistical and medical communities.2-4 Evaluating the mean event-free survival time up to a pre-
specified time point, the RMST provides a global summary of survival information. Furthermore, the RMST difference
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between two groups can be interpreted as survival gain on average during the follow-up period up to the prespecified time
point, which is explicit and valuable for assessing the between-group difference.

As a linear functional of the survival function, the estimate of the RMST with right-censored survival time can be
directly obtained by plugging in the Kaplan-Meier (KM) estimator.5 Nevertheless, another type of censoring named inter-
val censoring appears often when subjects cannot be continuously examined, leading to observations of an interval instead
of an exact time point. In such cases, subjects are observed at several discrete time points rather than being monitored
continuously during the follow-up period. Thus, the exact event time T of the specified survival endpoint is not avail-
able, and all we know is that the event has not happened up to time L, but has occurred by time R, that is, T lies in the
interval (L,R] between two consecutive examinations. The right-censored and exactly observed samples can be treated as
special cases of interval expression (L,R]: R=∞ indicates a right-censored observation; the event time is exactly observed
when L=R−, that is, the interval (L,R] shrinks to point R. A common case of interval censoring in clinical trials is that
patients are examined periodically. For example, in the Breast Cosmesis Study (BCOS),6 patients were supposed to visit
the clinic every 4 to 6 months, and thus the survival endpoint can only be detected discretely at several follow-up examina-
tion times. Model-based approaches are routinely adopted to analyze interval-censored survival data,6-8 which, however,
often rely upon certain model assumptions, for example, the PHs model6 and the proportional odds model.8 There are
few studies on nonparametric and model-free metrics for summarizing interval-censored survival information and quan-
tifying the between-group survival difference.9 Given n interval-censored observations {(Li,Ri]}n

i=1, Peto10 divided the
time axis into a set of disjoint intervals {(sj−1, sj]}m

j=1, where the points {sj}m
j=0 are m+ 1 unique ordered elements from

{(Li)n
i=1, (Ri)n

i=1}. Each observed interval (Li,Ri] can be formulated as a finite union of these disjoint intervals. Unlike the
KM estimator for right-censored data, the nonparametric maximum likelihood estimator (NPMLE) of the survival func-
tion with interval-censored data can only be estimated up to the boundary points of each interval, and its behaviors
within these intervals {(sj−1, sj)}m

j=1 can be versatile. Treating interval-censored observations as right-censored is a naive
but commonly used approach to circumventing ambiguity in estimation of the survival function. One recent example is
a study on laser peripheral iridotomy,11 which examined patients on the follow-up visits at 2 weeks, 6, 18, 36, 54, and 72
months, leading to interval-censored observations. Their statistical analysis was conducted on the right-censored approx-
imation by assuming that events would only happen at these discrete visits. However, naively treating interval-censored
observations as right-censored may introduce bias and underestimate the variance, which potentially results in false pos-
itive findings. Employing the linear smoothing technique to overcome the ambiguity caused by interval censoring, we
develop an estimator for the survival function and propose a new model-free measure for the interval-censored RMST.
We further construct a hypothesis testing procedure to evaluate the survival difference between two groups based on the
interval-censored RMST estimator. Compared with existing testing procedures with interval-censored data, our procedure
is not restricted by any model assumption, and can explicitly quantify the treatment benefit as well as the between-group
difference with direct and meaningful interpretations. The rest of this article is organized as follows. In Section 2, we intro-
duce the literature on interval-censored data and propose a nonparametric estimator for the RMST with interval-censored
observations as well as a hypothesis testing procedure for assessing survival difference. Section 3 presents the results of
simulation studies. We illustrate our interval-censored RMST with two real datasets in Section 4 and conclude the article
in Section 5.

2 INTERVAL- CENSORED RMST

2.1 Interval censoring

Interval-censored survival data occur naturally in medical studies with periodic follow-ups and examinations. Let
Ti,i= 1, … , n, be the event times with survival function S(⋅), the interval-censored observations of {Ti}n

i=1 are collections
of intervals {(Li,Ri]}n

i=1 for which the likelihood function has the form

L(S) ∝
n∏

i=1
Pr (Ti ∈ (Li,Ri]) =

n∏
i=1

{S(Li) − S(Ri)}.

For right-censored survival data, the NPMLE has a product-limit closed form.5 However, there is no explicit formula for
the NPMLE in interval-censored cases and thus several iterative algorithms have been proposed for deriving the NPMLE.
Following the formulation of the likelihood function in Peto,10 Turnbull12 developed a self-consistency approach as a
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special case of the EM algorithm to calculate the NPMLE. The self-consistency algorithm is built upon the condition that
the behaviors of S in each disjoint interval would not influence the likelihood function L(S), and solving the NPMLE is
equivalent to computing the optimal probability assigned to each disjoint interval. Groeneboom and Wellner13 proposed
an iterative convex minorant (ICM) algorithm to speed up the convergence of Turnbull’s method. Wellner and Zhan14

introduced EM-ICM, a hybrid algorithm combining the self-consistency and ICM methods.
On the other hand, comparison of survival curves in the presence of interval-censored observations has also

been investigated, mainly relying on certain model assumptions. Specifically, Finkelstein6 formulated a score test for
interval-censored data based on a continuous grouped PHs model. Sun15 derived a nonparametric test mimicking the
usual log-rank test when the observed failure times are on a discrete scale. Fay8 showed that the generalized WMW test
with right-censored data proposed by Peto and Peto1 can be applied to interval-censoring cases under the proportional
odds model. Rather than directly conducting tests on interval-censored data, Pan16 and Huang et al17 treated the unob-
served exact failure time as missing data and generated right-censored data using a multiple imputation approach. Fang
et al9 extended the weighted KM test introduced by Pepe and Fleming18 to the continuous interval-censoring scenarios
and derived the asymptotic properties of the proposed statistic under the null hypothesis.

2.2 RMST with interval-censored data

The RMST of survival time T is defined as the mean of the restricted survival time X = min (T, 𝜏) limited to some specified
time point 𝜏,19 which is equivalent to the area under the survival curve S from 0 to 𝜏,

RMST(𝜏) = E(T ∧ 𝜏) = ∫
𝜏

0
S(t)dt.

In fact, the mean survival time E(T) is an essential metric for treatment benefit, which, however, is not estimable due to
the existence of censoring. As a remedy, RMST has been proposed as an alternative measure for quantifying the mean
survival time and assessing the between-group treatment difference.3,4,19,20

It is known that the log-rank test is the locally most powerful test under the PH assumption while it incurs power loss
when the PH assumption is violated. Moreover, under violation of the PH assumption, the HR derived from the Cox model
is not a meaningful quantity and its clinical interpretation is questionable. Owing to the nonparametric and model-free
structure, hypothesis testing based on RMST maintains its power regardless of the validity of model assumptions21 and
thus provides a robust and interpretable measure for assessing treatment effects.

The estimate of RMST can be obtained by plugging in the NPMLE S̃(⋅) of the survival function S(⋅),

R̃MST(𝜏) = ∫
𝜏

0
S̃(t)dt. (1)

However, unlike the KM estimator which provides a clear and consistent estimate of the survival function for
right-censored data, information contained in the interval-censored data is not adequate to derive a unique NPMLE of
the survival function. When interval censoring occurs, the NPMLE S̃ is a probability vector p = (pj)m

j=1 representing the
assigned probabilities on the disjoint intervals {(sj−1, sj]}m

j=1. As a result, S̃(⋅) can be determined at the boundary points
{sj}m

j=0, while its behaviors within the intervals (sj− 1,sj] cannot be identified. Therefore, in contrast to the KM estimator
for right-censored data, the NPMLE S̃ is no longer a nonincreasing step function, but displays rectangles in disjoint inter-
vals. Figure 1 shows the NPMLEs of survival curves for two treatment groups in the BCOS data.6 The NPMLE S̃ only
provides the estimated lower and upper bound of S in the shape of rectangles, and uncertainties within these rectangles
cause ambiguity in the estimation of RMST(𝜏).

To deal with the ambiguities in the NPMLE S̃, we consider a linear smooth Ŝ by connecting the diagonal lines of all
rectangles (eg, the dashed line in Figure 1), that is, we assume the event happens with equal probability within each
rectangle, mimicking Pan16 and Geskus.22 Thus, we can replace S̃ by the smoothed piecewise linear estimator Ŝ in (1) to
obtain the estimate of RMST as the area under the survival curve by connecting diagonal lines of all rectangles,

R̂MST(𝜏) = ∫
𝜏

0
Ŝ(t)dt, (2)
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F I G U R E 1 NPMLEs of survival curves for the radiation therapy only group (RT in red) and the radiation therapy plus adjuvant
chemotherapy group (RCT in blue) from the Breast Cosmesis Study with dashed diagonal lines in the rectangles. NPMLE, nonparametric
maximum likelihood estimator [Color figure can be viewed at wileyonlinelibrary.com]

where 𝜏 is the specified time point. Groeneboom and Wellner13 restricted the NPMLE S̃ to be piecewise constant with
jumps only at the points {sj}m

j=0 of the disjoint intervals and proved the uniform consistency of S̃ under some mild assump-
tions. The smoothed estimator Ŝ is also consistent since the total length of the intervals on which Ŝ and S̃ have different
values shrinks to zero as the sample size n→∞.23 However, unlike the n1/2-convergence rate of the KM estimator for
right-censored data, the NPMLE Ŝ of interval-censored observations only has the n1/3-convergence rate in 𝓁2-measure.23

Therefore, the weak convergence of
√

n{R̂MST(⋅) − RMST(⋅)} to a mean-zero Gaussian process cannot be derived as that
for right-censored data.24

On the other hand, consider the linear functionals of S,

𝜂(S) = ∫
∞

0
w(t)dS(t), (3)

where w(t) is a given weight function. The interval-censored RMST has the form of a linear functional of S if we take
w(t) = −(t ∧ 𝜏). Geskus and Groeneboom23,25 showed that although S̃ can only achieve a n1/3-convergence rate, its linear
functionals (3) can retain the usual n1/2-convergence rate and the asymptotic normality under mild conditions,

√
n{𝜂(S̃) − 𝜂(S)}


→ N(0, 𝜎2), (4)

where

→ represents convergence in distribution and 𝜎2 is the asymptotic variance. Due to the consistency of both Ŝ and

S̃, we can replace S̃ by Ŝ in (4), and for interval-censored data we set w(t) = −(t ∧ 𝜏), which leads to

√
n{R̂MST(𝜏) − RMST(𝜏)} = −

√
n∫

∞

0
(t ∧ 𝜏)d{Ŝ(t) − S(t)}


→  (0, 𝜎2(𝜏)).

However, there is no explicit formula for the asymptotic variance 𝜎2(𝜏), which is typically estimated by a
perturbation-resampling method.2,26

Following the testing procedure of the RMST under right-censored cases,2 we can construct a counterpart for
interval-censored data. Let S0(⋅) and S1(⋅) denote the survival functions of groups 0 and 1, respectively, and we consider
the hypothesis test for the equivalence of two survival curves in the interval (0, 𝜏]. Define the RMST difference by

D(𝜏) = RMST1(𝜏) − RMST0(𝜏) = ∫
𝜏

0
{S1(t) − S0(t)}dt,

http://wileyonlinelibrary.com
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which can be estimated by

D̂(𝜏) = R̂MST1(𝜏) − R̂MST0(𝜏) = ∫
𝜏

0
{Ŝ1(t) − Ŝ0(t)}dt.

It holds that √
n{D̂(𝜏) − D(𝜏)}


→  (0, 𝜎2(𝜏))

where 𝜎2
D(𝜏) = 𝜎2

0 (𝜏)∕𝜌0 + 𝜎2
1(𝜏)∕𝜌1, 𝜌k > 0 is the limit of nk/n with n=n0 +n1 and nk being the size of group k, and 𝜎2

k(𝜏)
is the asymptotic variance of

√
nR̂MSTk, k = 0, 1. Under the significance level 𝛼, the 100(1 − 𝛼)% confidence interval (CI)

of D̂(𝜏) is
[D̂(𝜏) − z1−𝛼∕2n−1∕2�̂�D(𝜏), D̂(𝜏) + z1−𝛼∕2n−1∕2�̂�D(𝜏)], (5)

where z1−𝛼∕2 is the (1 − 𝛼∕2)th quantile of the standard normal distribution. We can obtain �̂�D(𝜏) via the
perturbation-resampling method, for which the details are presented in Algorithm 1. The null hypothesis H0 would be
rejected if point zero is not included in the CI (5) of D(𝜏). The corresponding P-value takes the form of

P-value = 2 max

{
Φ

(
D̂(𝜏)

�̂�D(𝜏)∕
√

n

)
, 1 − Φ

(
D̂(𝜏)

�̂�D(𝜏)∕
√

n

)}
,

where Φ(⋅) is the cumulative distribution function of the standard normal distribution.
Our test statistic D̂(𝜏) shares the same form of the integrated weighted difference of the estimated survival functions

in Fang et al9 when the weight function is a constant. Fang et al9 constructed a two-sample test for the equivalence of
two survival functions, and proved that under the null hypothesis their test statistic asymptotically follows a normal
distribution and a bootstrap procedure can be used to obtain the P-value. Our goal is to first estimate the interval-censored
RMST and derive its asymptotical distribution, and then for two-sample comparison the difference in RMSTs can be used
for hypothesis testing.

The hypothesis testing procedure for the survival difference using the interval-censored RMST is described in
Algorithm 1.

Algorithm 1. Hypothesis test using interval-censored RMST

Input: Interval-censored observations Y k =
{(

L(k)
j ,R(k)

j

]}nk

j=1
(k = 0, 1);and the specified time point 𝜏.

Step 1: Calculate the NPMLEs S̃0 and S̃1 using the EM-ICM algorithm and their linear smooth
(

Ŝ0, Ŝ1
)
;

Step 2: Compute the interval-censored RMST difference D̂(𝜏);
Step 3: Approximate the asymptotic standard deviation �̂�D(𝜏) of D̂(𝜏) by a perturbation-resampling method:

(a) For b = 1,… ,B, draw the weights {𝜔(b)
kj }

nk
j=1

i.i.d.∼ Exp(1) and reweight the original data Y k to obtain the perturbed
sample Y (b)

k (k = 0, 1);

(b) Based on each Y (b)
k (k = 0, 1), calculate the NPMLEs

(
Ŝ(b)

0 , Ŝ(b)
1

)
and their linear smooth

(
S̃(b)

0 , S̃(b)
1

)
; and then obtain

theRMST difference D̂(b)(𝜏);
(c) Obtain �̂�D(𝜏) as the standard deviation of {D̂(b)(𝜏)}B

b=1.

Step 4: Derive the 100(1 − 𝛼)% confidence interval in (5).
Output: Reject the null hypothesis if the confidence interval does not contain zero.

2.3 Choice of the time point 𝝉

The choice of 𝜏 is an important issue for RMST as an inappropriately specified 𝜏 may lead to invalid inference. For
right-censored data, Tian et al21 pointed out that the RMST estimator using the KM curve is valid if P(X > 𝜏) > 0, where
X denotes the observed time and thus 𝜏 should be smaller than the largest observed time. Under some mild conditions
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F I G U R E 2 NPMLEs of survival curves for the radiation therapy only group (RT in red) and radiation therapy plus adjuvant
chemotherapy group (RCT in blue) in the BCOS data with the colored areas as the estimated interval-censored RMSTs. BCOS, Breast
Cosmesis Study; NPMLE, nonparametric maximum likelihood estimator; RMST, restricted mean survival time [Color figure can be viewed at
wileyonlinelibrary.com]

on the distribution of censoring time, Tian et al27 proved that the RMST estimator can still be asymptotically valid with 𝜏

equal to the largest observed time.
For interval-censored data, the asymptotic normality of the proposed RMST at time 𝜏 holds if in the interval [0, 𝜏],

the event time and censoring time distributions satisfy the conditions listed as (M1) to (M3) and (D1) to (D3) in Geskus
and Groeneboom.25 Given the interval-censored observation (L,R], consider a new variable U where U =L if R=∞ and
U =R if R <∞. Let hL,hU denote the density functions of L,U, respectively, and let f denote the density function of the
event time T. To satisfy the conditions, one need to choose 𝜏 such that (i) hL(t)+ hU (t) > 0; (ii) f (t)≥ c for some c > 0 and
all t ∈ [0, 𝜏]. A suitable choice of 𝜏 should be the one not greater than the maximum left endpoint max {Li}n

i=1 of the
observed intervals {(Li,Ri]}n

i=1.
We use the BCOS data to illustrate the empirical choice of 𝜏 in the two-sample comparison cases. Following the

criterion described above, we choose 𝜏RT = 46 months for the RT group and 𝜏RCT = 48 months for the RCT group as the
maximum left time point of the observations in RT and RCT groups, respectively. We take 𝜏 = min (𝜏RT, 𝜏RCT) = 46 months
such that the asymptotic properties of the proposed interval-censored RMST hold for both treatments. We calculate the
RMSTs as the areas under the survival curves with diagonally connected rectangles up to 46 months, which are shown as
the colored areas in Figure 2. Note that for the RCT group, 𝜏 = 46 months falls in the rectangle with X-axis [44,48], while
only the area under the linear smoothed survival curve in the interval [44,46] months is counted for the RMST calculation.

3 NUMERICAL STUDIES

3.1 Simulation settings

We first describe the data generation procedure for interval-censored cases. For each subject, the baseline examination is
conducted at 𝜏0, and then K follow-up examinations are taken at {𝜏k = 𝜏0 + k × l, k = 1, … ,K}, where l is the time gap
between two adjacent examinations and K is the number of follow-up visits. The time interval is chosen as a constant
to fit the pattern of many real clinical trials, in which patients visit clinics periodically, for example, weekly or monthly.
A dropout probability vector pdropout of length K is included to account for the missingness of visits at each follow-up
time point, and we assume that all patients have the baseline examination. To investigate how the proportion of exactly

http://wileyonlinelibrary.com
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observed data influences the performance of our interval-censored RMST, we introduce a parameter pexact to control the
proportion of exact observations under the partially interval-censored cases.28 In each simulation, the study ends at time
tend, and the randomly interval-censored outcomes {(Li,Ri),i= 1, … , n} are generated as follows. We first specify n, K, l,
pdropout, pexact, and tend, and for i= 1, … , n, repeat steps 1 to 4.

Step 1. Generate the baseline examination time 𝜏0i from a specified distribution, and construct the examination time
grid Gi = {0, 𝜏0i, 𝜏1i, … , 𝜏Ki,∞}.

Step 2. Generate event time Ti from a specified distribution and the missingness of follow-ups at 𝜏ji, j = 1, … ,K,

according to the dropout probabilities pdropout. Sample the exact observation indicator 𝜉i from Bernoulli(pexact).
Step 3. If 𝜉i = 1, let Li = Ti − 𝜖 and Ri =Ti, where 𝜖 is a small positive number close to 0; otherwise, find 𝜏i1 , 𝜏i2 ∈ Gi

such that (𝜏i1 , 𝜏i2] is the shortest interval covering Ti and subject i does not miss the visits at both 𝜏i1 and 𝜏i2 .
The interval expression for patient i is then (Li = 𝜏i1 ,Ri = 𝜏i2].

Step 4. Adjust the observed interval (Li,Ri] according to the end time tend of the study, such that Li cannot exceed tend
and we set Ri =∞ if Ri > tend.

For simplicity, the baseline examination time 𝜏0i is sampled from Unif(0,l) in all simulations. We set tend = 1, 𝜖 = 10−6.
In practice, the interval-censored survival data are often naively treated as right-censored observations {Xi,Δi}. If the
event of subject i is observed within a finite interval, that is, Ri <∞, its right-censored approximation would be equal to
the first time detecting the occurrence of the event, that is, Xi = Ri, Δi = 1. If subject i is originally right-censored with
Ri =∞, then we have Xi = Li, Δi = 0.

3.2 One-sample simulation study

For one-sample analysis, we explore different parameter settings to evaluate the performance of the interval-censored
RMST estimator. The probabilities of missing any visit are set to be the same for all follow-up examinations except the
last one, for which the probability is doubled. Four dropout scenarios are considered,

1. None: pdropout,k = 0, for k= 1, … , K;
2. Low: pdropout,k = 0.1, for k= 1, … , K − 1, pdropout,K = 0.2;
3. Medium: pdropout,k = 0.2, for k= 1, … , K − 1, pdropout,K = 0.4;
4. High : pdropout,k = 0.3, for k= 1, … , K − 1, pdropout,K = 0.6.

With regard to the event time distribution, we consider the Weibull distributions with various combinations of shape
𝜉 and scale 𝜆, and six distributions with piecewise-linear hazard functions:

(i) h(t)= 1, t ∈ [0,0.5); h(t)= 2,t ∈ [0.5,1];
(ii) h(t)= 2, t ∈ [0,0.5); h(t)= 1, t ∈ [0.5,1];

(iii) h(t)= 2t + 1, t ∈ [0,0.5); h(t)= 3− 2t, t ∈ [0.5,1];
(iv) h(t)=−2t + 2, t ∈ [0,0.5); h(t)= 2t, t ∈ [0.5,1];
(v) h(t)= 1, t ∈ [0,0.5); h(t)= 2t, t ∈ [0.5,1];

(vi) h(t)= 2, t ∈ [0,0.5); h(t)= 3− 2t, t ∈ [0.5,1];

where h(⋅) denotes the hazard function. Figure 3 displays the hazard functions of six piecewise-linear hazard cases
(i) to (vi). The default simulation setting in Tables 1 and 2 is n= 100, K = 5, pexact = 0, with a medium dropout rate and
T ∼Weibull(1,1). We change one configuration at a time with the other settings fixed to examine the effects of sample size
n, the number of follow-up visits K, the proportion of exactly observed samples pexact, the dropout rate and distributions
of event time T, respectively.

We replicate 5000 simulations for each configuration and present simulation results with 𝜏 = 1 and 𝜏 = 0.8 in Tables 1
and 2, respectively. The column “SD” represents the sample standard deviation of R̂MST(𝜏), the column “ESE” is the aver-
age of estimated standard errors using the perturbation-resampling method, the column “CP” is the empirical coverage
probability of the proposed CI. Our interval-censored RMST estimator is close to the ground truth, and the sample stan-
dard deviations and estimated standard errors match well under all simulation settings, which indicates the accuracy and
robustness of our estimator. The empirical coverage probabilities under different simulation settings and specified time
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F I G U R E 3 Hazard functions of six piecewise-linear hazard cases for one-sample analysis [Color figure can be viewed at
wileyonlinelibrary.com]

points 𝜏 range from 0.92 to 0.95, which further confirms the consistency and asymptotic normality of the interval-censored
RMST estimator.

On the other hand, if naively treated as right-censored observations, the RMST estimation is biased, especially with
a small number of observed time points, severe dropout and a low proportion of fully observed samples. The bias of the
RMST estimator based on naive right-censored adjustment and underestimation of standard errors result in low coverage
probabilities under almost all configurations. Therefore, it is inappropriate to naively treat interval-censored observations
as right-censored in the estimation of RMST.

3.3 Two-sample simulation study

In two-sample cases, we first evaluate the performance of the estimates for RMST difference under null and alternative
cases,

• T0,T1∼Weibull(1,1);
• T0∼Weibull(1,1), T1∼Weibull(0.5,1).

As shown in Table 3, both the estimates of the RMST difference using linear smoothing and the logarithm of HR
are close to the ground truth, and the sample standard deviations and estimated standard errors match well. The cov-
erage probabilities of the RMST difference and log(HR) are close to the nominal level 95% under all settings. For both
the RMST difference and log(HR), their precisions exhibit insensitivity to the simulation settings, although slight reduc-
tions in the SD and ESE are observed with a larger value of K, a higher proportion of exact observations and a lower
dropout rate.

Simulation studies for the two-sample RMST test are conducted under both the PH and non-PH assumptions as the
settings in Pan.16 We use the Weibull distributions with the same shape parameter 𝜉 but distinct scale parameters 𝜆0, 𝜆1

http://wileyonlinelibrary.com
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T A B L E 1 Simulation results for the interval-censored RMST estimation with 𝜏 = 1 using the proposed linear smoothing method
and the naive method which treats interval-censored data as right-censored based on 5000 replications

Linear smooth Naive right-censored

Parameter setting True RMST R̂MST SD ESE CP R̂MST SD ESE CP

n

100* 0.63 0.63 0.037 0.036 0.9430 0.71 0.032 0.032 0.3208

200 0.63 0.63 0.026 0.026 0.9446 0.71 0.023 0.022 0.0752

400 0.63 0.63 0.018 0.018 0.9496 0.71 0.016 0.016 0.0012

K†

3 0.63 0.63 0.037 0.036 0.9336 0.73 0.030 0.030 0.1080

5 0.63 0.63 0.037 0.036 0.9374 0.69 0.032 0.032 0.5364

10 0.63 0.63 0.036 0.036 0.9424 0.66 0.034 0.034 0.8336

20 0.63 0.63 0.035 0.036 0.9478 0.65 0.034 0.035 0.9206

pexact

0.2 0.63 0.63 0.037 0.036 0.9404 0.69 0.033 0.033 0.5078

0.5 0.63 0.63 0.036 0.036 0.9476 0.67 0.034 0.034 0.7716

1 0.63 0.63 0.036 0.036 0.9416 0.63 0.036 0.036 0.9460

Dropout rate

None 0.63 0.63 0.037 0.036 0.9374 0.69 0.032 0.032 0.5364

Low 0.63 0.63 0.036 0.036 0.9452 0.70 0.032 0.032 0.4082

High 0.63 0.63 0.038 0.036 0.9394 0.72 0.032 0.031 0.2370

Distribution of T

Weibull(1,0.5) 0.53 0.53 0.043 0.042 0.9418 0.60 0.038 0.038 0.4740

Weibull(1,2) 0.75 0.75 0.029 0.028 0.9298 0.82 0.023 0.023 0.1418

Weibull(0.5,1) 0.43 0.43 0.034 0.033 0.9398 0.54 0.032 0.031 0.0576

Weibull(2,1) 0.79 0.79 0.033 0.032 0.9354 0.83 0.027 0.027 0.5682

Piecewise-linear hazard (I) 0.59 0.59 0.034 0.033 0.9370 0.68 0.031 0.030 0.1328

Piecewise-linear hazard (II) 0.46 0.46 0.037 0.036 0.9396 0.56 0.033 0.033 0.1388

Piecewise-linear hazard (III) 0.53 0.53 0.035 0.034 0.9382 0.63 0.031 0.031 0.0984

Piecewise-linear hazard (IV) 0.51 0.51 0.038 0.037 0.9438 0.61 0.034 0.034 0.1936

Piecewise-linear hazard (V) 0.62 0.62 0.036 0.035 0.9414 0.70 0.032 0.031 0.2288

Piecewise-linear hazard (VI) 0.44 0.44 0.035 0.034 0.9428 0.55 0.032 0.032 0.0798

Abbreviation: RMST, restricted mean survival time.
*The default simulation setting is n= 100,K = 5,pexact = 0, medium dropout rate and T ∼Weibull(1,1).
†We set no dropout in the simulations with various K.

in the PH scenarios to fulfill the assumption of a constant HR between two treatment groups, where the HR has the form
(𝜆0∕𝜆1)𝜉 . For piecewise-linear hazard functions, we consider both PH and non-PH cases, and hazard functions under
non-PH cases are classified as early difference, late difference, crossing hazards, and crossing survivals:

Null cases
Weibull

(i) T0,T1 ∼Weibull(1,0.5).
(ii) T0,T1 ∼Weibull(1,1).

(iii) T0,T1 ∼Weibull(1,2).
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T A B L E 2 Simulation results for the interval-censored RMST estimation with 𝜏 = 0.8 using the proposed linear smoothing
method and the naive method which treats interval-censored data as right-censored based on 5000 replications

Linear smooth Naive right-censored

Parameter setting True RMST R̂MST SD ESE CP R̂MST SD ESE CP

n

100* 0.55 0.55 0.029 0.028 0.9358 0.62 0.024 0.024 0.2032

200 0.55 0.55 0.021 0.020 0.9376 0.62 0.017 0.017 0.0304

400 0.55 0.55 0.015 0.014 0.9438 0.62 0.012 0.012 0.0006

K†

3 0.55 0.55 0.030 0.028 0.9344 0.63 0.022 0.022 0.0516

5 0.55 0.55 0.029 0.028 0.9418 0.60 0.025 0.024 0.4242

10 0.55 0.55 0.028 0.028 0.9436 0.58 0.026 0.026 0.7908

20 0.55 0.55 0.028 0.028 0.9452 0.57 0.027 0.027 0.9030

pexact

0.2 0.55 0.55 0.029 0.028 0.9382 0.60 0.025 0.025 0.4172

0.5 0.55 0.55 0.028 0.028 0.9370 0.58 0.026 0.026 0.7288

1 0.55 0.55 0.028 0.028 0.9388 0.55 0.028 0.028 0.9388

Dropout rate

None 0.55 0.55 0.029 0.028 0.9418 0.60 0.025 0.024 0.4242

Low 0.55 0.55 0.029 0.028 0.9346 0.61 0.024 0.024 0.3046

High 0.55 0.55 0.029 0.029 0.9338 0.63 0.024 0.024 0.1326

Distribution of T

Weibull(1,0.5) 0.45 0.45 0.034 0.034 0.9380 0.52 0.030 0.029 0.3370

Weibull(1,2) 0.66 0.66 0.021 0.020 0.9262 0.71 0.016 0.016 0.1126

Weibull(0.5,1) 0.40 0.40 0.029 0.028 0.9380 0.50 0.025 0.025 0.0292

Weibull(2,1) 0.66 0.66 0.025 0.024 0.9280 0.70 0.020 0.020 0.4600

Piecewise-linear hazard (i) 0.53 0.53 0.028 0.027 0.9356 0.61 0.023 0.023 0.0966

Piecewise-linear hazard (ii) 0.41 0.41 0.030 0.029 0.9424 0.50 0.026 0.026 0.0562

Piecewise-linear hazard (iii) 0.48 0.48 0.028 0.028 0.9414 0.57 0.024 0.024 0.0406

Piecewise-linear hazard (iv) 0.46 0.46 0.031 0.031 0.9398 0.54 0.026 0.027 0.1270

Piecewise-linear hazard (v) 0.55 0.55 0.029 0.028 0.9352 0.62 0.024 0.024 0.1724

Piecewise-linear hazard (vi) 0.40 0.40 0.029 0.029 0.9390 0.50 0.025 0.026 0.0326

Abbreviation: RMST, restricted mean survival time.
*The default simulation setting is n= 100,K = 5,pexact = 0, medium dropout rate and T ∼Weibull(1,1).
†We set no dropout in the simulations with various K.

Piecewise-linear hazard
(iv) h0(t)= h1(t)= 2,t ∈ [0,0.5];h0(t)= h1(t)= 1,t ∈ (0.5,1].
(v) h0(t)= h1(t)= 1,t ∈ [0,0.5];h0(t)= h1(t)= 2t,t ∈ (0.5,1].

Alternative cases
Proportional hazards

Weibull
(i) T0 ∼Weibull(1,0.5), T1 ∼Weibull(0.5,0.5).

(ii) T0 ∼Weibull(1,1), T1 ∼Weibull(0.5,1).
(iii) T0 ∼Weibull(1,2), T1 ∼Weibull(0.75,2).
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T A B L E 3 Simulation results for the two-sample RMST difference with 𝜏 = 1 using the proposed linear smoothing
method and the logarithm of hazard ratio (HR) with interval-censored data

RMST difference (linear smoothing) log(HR)
Parameter
setting

RMST
difference Est. SD SE CP True log(HR) Est. SD ESE CP

T0,T1∼Weibull (1,1) (under H0)

Default* 0.000 0.000 0.053 0.051 0.940 0.000 0.001 0.185 0.186 0.951

K †

3 0.000 0.000 0.053 0.051 0.938 0.000 0.003 0.184 0.182 0.950

5 0.000 0.000 0.051 0.050 0.944 0.000 0.000 0.179 0.181 0.954

10 0.000 −0.001 0.050 0.050 0.944 0.000 −0.001 0.179 0.181 0.954

20 0.000 −0.001 0.050 0.050 0.943 0.000 −0.001 0.179 0.181 0.953

pexact

0.2 0.000 0.000 0.052 0.051 0.942 0.000 0.001 0.183 0.185 0.953

0.5 0.000 −0.001 0.052 0.051 0.946 0.000 −0.005 0.181 0.183 0.954

1 0.000 −0.001 0.051 0.050 0.949 0.000 −0.005 0.178 0.179 0.945

Dropout rate

None 0.000 0.000 0.051 0.050 0.944 0.000 0.000 0.179 0.181 0.954

Low 0.000 0.000 0.052 0.051 0.939 0.000 0.001 0.182 0.183 0.951

High 0.000 0.000 0.053 0.051 0.940 0.000 0.001 0.190 0.191 0.953

T0∼Weibull(1,1), T1∼Weibull(0.5,1) (under H1)

Default* 0.200 0.199 0.049 0.051 0.940 0.693 0.698 0.176 0.173 0.958

K †

3 0.200 0.200 0.049 0.050 0.939 0.693 0.705 0.173 0.169 0.957

5 0.200 0.199 0.048 0.050 0.941 0.693 0.703 0.172 0.169 0.950

10 0.200 0.199 0.048 0.049 0.941 0.693 0.702 0.171 0.168 0.950

20 0.200 0.199 0.048 0.049 0.943 0.693 0.701 0.170 0.168 0.950

pexact

0.2 0.200 0.198 0.049 0.050 0.942 0.693 0.695 0.174 0.171 0.957

0.5 0.200 0.198 0.049 0.050 0.949 0.693 0.694 0.172 0.168 0.958

1 0.200 0.198 0.048 0.049 0.944 0.693 0.690 0.168 0.167 0.950

Dropout rate

None 0.200 0.199 0.048 0.050 0.941 0.693 0.703 0.172 0.169 0.950

Low 0.200 0.198 0.049 0.050 0.939 0.693 0.697 0.173 0.170 0.956

High 0.200 0.199 0.050 0.051 0.941 0.693 0.699 0.180 0.178 0.954

Abbreviation: RMST, restricted mean survival time.
*The default simulation setting is n= 100,K = 5,pexact = 0, a medium dropout rate.
†We set no dropout in the simulations with various K.
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F I G U R E 4 Patterns of survival functions under H1 for two-sample tests [Color figure can be viewed at wileyonlinelibrary.com]

Piecewise-linear hazard

(iv) h0(t)= 2, h1(t)= 3, t ∈ [0,0.5]; h0(t)= 1, h1(t)= 1.5, t ∈ (0.5,1].
(v) h0(t)= 1, h1(t)= 1.5, t ∈ [0,0.5]; h0(t)= 2t, h1(t)= 3t, t ∈ (0.5,1].

Non-proportional hazards
Early difference

(vi) h0(t)= 3t + 0.25,h1(t)= 1.75,t ∈ [0,0.5];h0(t)= h1(t)= t + 1.25,t ∈ (0.5,1].

Late difference

(vii) h0(t)= h1(t)= 2,t ∈ [0,0.2]; h0(t)=−2t + 2.4, h1(t)= 4t + 1.2, t ∈ (0.2,1].

Crossing hazards

(viii) h0(t)= 1.5t + 0.5,h1(t)=−1.5t + 2,t ∈ [0,1].
(ix) h0(t)= t + 0.5,h1(t)= 1.5,t ∈ [0,0.5];h0(t)= t + 0.5,h1(t)= 0.5,t ∈ (0.5,1].

Crossing survivals

(x) Early: h0(t)= 10t + 1, h1(t)=−10t + 3, t ∈ [0,0.2]; h0(t)= 3,h1(t)= 1,t ∈ (0.2,1].
(xi) Intermediate: h0(t)= 1,h1(t)= 2,t ∈ [0,0.25]; h0(t)= 3,h1(t)= 2,t ∈ (0.25,1].

(xii) Late: h0(t)= 2.5t + 1,h1(t)=−2.5t + 3,t ∈ [0,0.8]; h0(t)= 3,h1(t)= 1,t ∈ (0.8,1].

The patterns of survival curves under alternative hypothesis H1 are shown in Figure 4.

http://wileyonlinelibrary.com
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T A B L E 4 Size and power of the interval-censored RMST test with 𝜏 = 1 and 0.8, respectively, in comparison with five existing
methods under the significance level 𝛼 = 0.05 and n= 100 for each arm based on 5000 replications

RMST difference Size/power

𝝉 = 1 𝝉 = 0.8 RMST Log-rank-type WMW-type

Survival curves True Est. True Est. 𝝉 = 1 𝝉 = 0.8 Sun Finkelstein Log-rank Fay WMW

Under H0 (size)

Weibull (H0) (i) 0.00 0.00 0.00 0.00 0.0536 0.0586 0.0498 0.0500 0.0502 0.0508 0.0506

Weibull (H0) (ii) 0.00 0.00 0.00 0.00 0.0526 0.0584 0.0488 0.0490 0.0508 0.0494 0.0500

Weibull (H0) (iii) 0.00 0.00 0.00 0.00 0.0586 0.0598 0.0536 0.0534 0.0546 0.0498 0.0506

Piecewise-linear hazard (H0)
(iv)

0.00 0.00 0.00 0.00 0.0546 0.0580 0.0516 0.0510 0.0528 0.0510 0.0518

Piecewise-linear hazard (H0)
(v)

0.00 0.00 0.00 0.00 0.0554 0.0584 0.0532 0.0532 0.0552 0.0506 0.0510

Under H1 (power)

Proportional hazards

Weibull (H1) (i) 0.12 0.12 0.09 0.09 0.5166 0.4798 0.5120 0.5126 0.5126 0.4890 0.4864

Weibull (H1) (ii) 0.20 0.20 0.15 0.15 0.9792 0.9598 0.9846 0.9846 0.9848 0.9776 0.9772

Weibull (H1) (iii) 0.12 0.12 0.08 0.08 0.8668 0.7386 0.9132 0.9130 0.9144 0.8886 0.8906

Piecewise-linear hazard (H1)
(iv)

0.12 0.12 0.10 0.10 0.7302 0.6906 0.7302 0.7326 0.7344 0.6718 0.6710

Piecewise-linear hazard (H1)
(v)

0.11 0.11 0.08 0.08 0.6510 0.5566 0.6884 0.6892 0.6914 0.6470 0.6480

Nonproportional hazards

Early difference (vi) 0.15 0.15 0.13 0.13 0.8928 0.9192 0.6916 0.6708 0.6966 0.8828 0.8868

Late difference (vii) 0.10 0.10 0.06 0.05 0.5566 0.2872 0.8368 0.8550 0.8394 0.3526 0.3542

Crossing hazards (viii) 0.14 0.14 0.13 0.13 0.8060 0.8982 0.3598 0.3428 0.3654 0.7144 0.7148

Crossing hazards (ix) 0.13 0.13 0.12 0.12 0.7078 0.8378 0.2494 0.2404 0.2546 0.5384 0.5402

Early crossing survivals (x) −0.15 −0.16 −0.10 −0.11 0.8870 0.7334 0.9672 0.9720 0.9678 0.7096 0.7092

Intermediate crossing
survivals (xi)

0.02 0.02 0.03 0.03 0.0880 0.1516 0.0482 0.0520 0.0512 0.1348 0.1372

Late crossing survivals (xii) 0.10 0.10 0.10 0.10 0.5484 0.7388 0.1998 0.1730 0.2078 0.6492 0.6538

Abbreviations: RMST, restricted mean survival time; WMW, Wilcoxon-Mann-Whitney.

For two-sample simulation studies, we follow the data generation procedure in the former subsection and set
n0 =n1 = 100,k= 5,l= 0.2,pexact = 0,tend = 1 with a medium dropout rate for each arm. In terms of size and power, we com-
pare the proposed interval-censored RMST test with 𝜏 = 1 and 0.8, respectively, against five existing methods: three score
tests proposed by Finkelstein,6 Sun,15 Fay,8 respectively, and two commonly used approaches for right-censored data (the
log-rank test and generalized WMW test) after imputing the exact failure time for interval-censored observations via the
multiple imputation method.17 Note that Sun’s and Finkelstein’s score tests would reduce to two forms of log-rank scores
in Peto and Peto1 for right-censored data; Fay’s score test and the WMW test with multiple imputation are variants of the
generalized WMW test for right-censored data. We can group the five existing tests into two types: (i) log-rank-type tests
including Sun’s, Finkelstein’s score tests and the log-rank test with multiple imputation; (ii) WMW-type tests including
Fay’s score test and the WMW test with multiple imputation. The size and power are reported in Table 4 based on 5000
replications.

Under H0, the sizes of all testing procedures are close to the significance level 𝛼 = 0.05, indicating that they
perform well and successfully control the type I error. For the interval-censored RMST test with 𝜏 = 0.8, only part of
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survival information is used, and there appears to be slight inflation in the type I error. In terms of power under H1, the
three log-rank-type tests perform slightly better than the others under the PH cases, which tallies with the results for
right-censored data, as the log-rank test is the locally most powerful test when the PH assumption is satisfied. For the
WMW-type tests and RMST test with 𝜏 = 1, their performances are comparable, while the RMST test with 𝜏 = 0.8 suffers
from power loss due to partial use of survival information.

In Lee and Wang,29 it is shown that when the PH assumption is violated, for right-censored data the log-rank test
is usually more powerful in detecting late survival differences, while the generalized WMW test is more sensitive to
early differences between survival curves. Our simulation results with interval-censored data display similar patterns.
Three log-rank-type tests, Sun’s, Finkelstein’s score tests, and the log-rank test with multiple imputation, substantially
outperform others in the late difference scenario.

Under the early difference and crossing survivals scenarios, the interval-censored RMST test shows great advan-
tages over all five existing approaches in terms of power. Although the two WMW-type tests are as powerful as our
interval-censored RMST test in the early difference case, their relatively poor performances in the crossing hazards
scenarios indicate that the WMW-type tests might not detect the treatment difference efficiently when the two hazard
functions cross. For the late difference case, our interval-censored RMST test is outperformed by the log-rank-type tests,
while it can still produce much higher power than the WMW-type ones. The power of our RMST test with 𝜏 = 0.8 is
higher than that with 𝜏 = 1 under the early difference and crossing hazards cases since the ratio between the estimated
RMST difference and 𝜏, that is, D̂(𝜏)∕𝜏, is larger for 𝜏 = 0.8. As the difference between two survival curves in [0.8,1] is
ignored, power loss incurs for the late difference case.

Moreover, we consider the cases where the two survival curves cross, respectively, at the early (t = 0.2), intermediate
(t = 0.5) and late (t = 0.8) parts of the follow-up period [0,1]. When the survival curves cross at the intermediate follow-up
period, it might be difficult to detect survival difference and all methods yield low power (less than 0.2). The WMW-type
tests and the RMST test with 𝜏 = 0.8 perform relatively better. The early crossing survival curves is similar to the late
difference case, and the log-rank-type tests show advantages over other methods in terms of power. When the survival
curves cross at the late part of the study (t = 0.8), the two groups also display the crossing hazards pattern in [0,0.8] and,
as a result, the negative RMST difference between the two groups in [0.8,1] offsets the positive one in [0,0.8] to some
extent. Thus, the proposed interval-censored RMST test with 𝜏 = 1 is not as powerful as the WMW-type tests, although
the RMST test with 𝜏 = 0.8 still performs the best. For the three crossing survivals cases, the interval-censored RMST tests
also perform reasonably well under each scenario.

Overall, our interval-censored RMST test provides an accurate measure for the RMST difference which can explic-
itly assess the between-group survival difference. For the PH cases, our RMST test produces slightly lower power than
the log-rank-type tests which are known to be the most powerful tests under the PH assumption. For the non-PH
cases, the interval-censored RMST test performs the best in the early difference and crossing hazards scenarios with
regard to power, and can maintain high power under the late difference and crossing survivals case compared with the
other tests.

4 EXAMPLES

4.1 Analysis of BCOS dataset

For illustration, we apply the proposed RMST method to two real datasets, the BCOS6 and the HIV-1 infection dataset
studied by Goedert et al.30 The BCOS dataset recorded interval-censored observations of 94 patients who were treated
by either radiation therapy plus adjuvant chemotherapy (RCT, 48 patients) or only radiation therapy (RT, 46 patients)
with breast retraction as the survival endpoint. The missingness of exact event times occurred since the patients were
supposed to visit the clinic every 4 to 6 months and the actual visit time varied among patients. The goal of this
study was to compare the treatment effects of two therapies, and their nonparametric survival curves are displayed
in Figure 1.

The P-values of the five existing hypothesis tests discussed in Section 3 are .008 (Sun), .007 (Finkelstein), .030 (Fay),
.008 (the log-rank test with imputation), and .031 (the WMW test with imputation).

As all P-values are smaller than the significance level 𝛼 = .05, we can draw the conclusion that the adjuvant
chemotherapy significantly increased the breast retraction rate and thus radiation therapy alone achieved long-term
benefit.
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F I G U R E 5 NPMLEs of survival curves for the no factor (blue) and low-dose factor (red) groups from the HIV-1 infection dataset with
dashed diagonal lines in the rectangles. NPMLE, nonparametric maximum likelihood estimator [Color figure can be viewed at
wileyonlinelibrary.com]

We take 𝜏 = 46 months as the specified time point for the calculation of RMST, which is the minimum of the largest
left endpoints of the interval-censored observations for each arm. The other five tests can only provide P-values, while
the proposed interval-censored RMST estimator delivers a clinically interpretable quantity on the survival difference. The
RMST of the RT and RCT groups are 33.04 (95% CI [28.50, 37.58]) and 23.91 (95% CI [20.33, 27.49]) months, respectively.
It implies that for patients treated by RT (or RCT) the expected event-free time is 33.04 (or 23.91) months with a follow-up
period of 46 months. Furthermore, the estimated interval-censored RMST difference between the RT and RCT groups is
9.14 (95% CI [3.35, 14.92]) months, which indicates that during the 46-month follow-up, on average patients in the RT
group would gain 9.14 months more event-free time than those in the RCT group.

4.2 Analysis of HIV-1 infection dataset

The second dataset arises from a multicenter trial which enrolled patients with hemophilia to investigate HIV-1 infection
risk.30 A total of 368 patients were randomized to receive no or low-dose factor VIII concentrate with respective sample
sizes of 236 and 132. Figure 5 shows the two estimated survival curves for interval-censored data.

The P-values from five existing hypothesis testing procedures are all smaller than .001, indicating that there exists
significant survival differences between patients with no or low-dose factor VIII concentrate.

We specify 𝜏 = 57 quarters and for the no factor and low-dose factor groups, the estimated RMSTs are 52.79 (95% CI
[51.32, 54.26]) and 36.21 (95% CI [33.05, 39.36]) quarters, respectively. The estimated RMST difference is 16.58 quarters
(95% CI [13.10, 20.06]), which indicates that with a 57-quarter follow-up period, on average patients who received no
factor VIII concentrate would have 16.58 quarters more infection-free time than those receiving low-dose factor VIII
concentrate. Apparently, this clinically meaningful interpretation is not implied by the other five testing procedures which
can only produce a P-value.

We observe that after 32 quarters the two survival curves are flat without any jumps. Thus, treatment benefit
during a relatively short follow-up period for each group might be of interest. For the low-dose factor arm, the max-
imum left endpoint of the observed finite intervals is 31 quarters, and that of the no factor arm is 29 quarters. We
then choose the minimum, 29 quarters, as the prespecified time 𝜏 for the interval-censored RMST analysis. For the
no factor arm, the estimated RMST is 28.22 (95% CI [27.82, 28.63]) quarters, and for the low-dose factor arm the
RMST is 23.90 (95% CI [22.84, 24.96]) quarters. The significant RMST difference (4.32, 95% CI [3.19, 5.46]) between
the two groups demonstrates the superiority of the no factor treatment, which is consistent with the result using
𝜏 = 57 quarters.

http://wileyonlinelibrary.com
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5 CONCLUSION

The RMST, as a nonparametric and model-free estimator, provides an interpretable and global summary of treatment
benefit for survival data. We have developed an estimation method for the RMST (difference) with interval-censored data
and established the asymptotic properties. It is known that when the PH assumption is not satisfied, the HR, a commonly
used measure for assessing the difference of treatment effects, is difficult to interpret, while the RMST difference remains
clinically meaningful and interpretable regardless of any model assumptions.3,31

We focus on the RMST estimation with case II interval-censored survival data, while the proposed method can be
adapted to estimate the RMST with case I interval-censored survival data (also known as current status data). For the
current status data, a closed form is available for the NPMLE of the survival function, calculated by the max-min formula
for an isotonic regression.32,33 Huang and Wellner34 established 𝓁2-consistency and the n1/3-convergence rate for the
NPMLE of current status data, while its linear functionals maintain asymptotic normality at the n1/2 order with an explicit
formula for the asymptotic variance. Thus, the estimation and hypothesis testing procedures for the RMST with current
status data can be developed along the lines.

Rather than using the linear smoothing technique as a solution to circumvent ambiguity in the survival curve,
Turnbull12 and Groeneboom and Wellner13 assumed a discrete scale of event time T, that is, events would only happen on
the points {sj}m

j=1. The survival curve then has a shape of a nonincreasing step function. Apparently, this strategy would
result in an over-optimistic estimate of the survival curve, and the discrete event times may not be in accordance with
real cases where events occur continuously over time.

The selection of the time point 𝜏 is an important issue for RMST-based methods. Different time points may lead to
different hypothesis testing results due to the varying patterns of survival difference over time and the amount of sur-
vival information ignored after the specified time point. For right-censored data, to obtain a robust and flexible estimator
which can adapt to various event time distributions, Horiguchi et al35 calculated the RMST estimates at a set of 𝜏’s and
utilized the maximum of Z-statistic at each time point for hypothesis testing. A similar procedure can be developed for
interval-censored data based on the RMST estimator to solve the inconsistency of hypothesis testing results with different
time points.
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