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Abstract The accelerated failure time model always offers a valuable complement to the traditional

Cox proportional hazards model due to its direct and meaningful interpretation. We propose a variable

selection method in the context of the accelerated failure time model for survival data, which can

simultaneously complete variable selection and parameter estimation. Meanwhile, the proposed method

can deal with the potential outliers in survival times as well as heteroscedastic model errors, which are

frequently encountered in practice. Specifically, utilizing the general nonconvex penalty, we propose the

adaptive penalized weighted least absolute deviation estimator for the accelerated failure time model.

Under some regularity conditions, we show that the proposed method yields consistent estimator and

possesses the oracle property. In addition, we propose a new algorithm to compute the estimate in the

high dimensional settings, and evaluate the practical utility of the proposed method through extensive

simulation studies and two real examples.
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penalty, oracle property, outliers, robustness, survival analysis
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1 Introduction

More explanatory variables are usually needed to be introduced into the model to achieve more
precise prediction. However, this method may take the risk of introducing unnecessary explana-
tory variables and increase the computational burdens. In recent two decades, lots of penalized
variable selection procedures have been proposed to obtain better prediction with the aims of
using as less explanatory variables as possible and meanwhile maintaining computational conve-
nience. Examples include the bridge (Frank and Friedman [4]), the least absolute shrinkage and
selection operator (Lasso, Tibshirani [19]), the smoothly clipped absolute deviation (Fan and
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Li [3]), the gradient directed regularization method (Friedman and Popescu [5]), the adaptive
Lasso (Zou [28]; Zhang and Lu [26]) and the minimax concave penalty (Zhang [25]).

Due to the direct interpretation of the log survival time using the covariates, the accelerated
failure time (AFT) model provides a useful alternative to the Cox proportional hazards model
(Wei [24]; Kalbfleisch and Prentice [11]). The AFT model has been frequently adopted to fit the
survival data in practice. Recently, the penalized methods for variable selection and estimation
in the AFT model has been attracted much attention. Huang et al. [8] studied the regularized
estimation in the AFT model with high-dimensional covariates. Huang and Ma [7] studied
variable selection in the AFT model via the bridge method. However, this work was built upon
the penalized weighted least squares. It may suffer the sensitivity from the possible outliers in
the response. When there exists heteroscedastic errors, it renders efficiency loss.

The least absolute deviation (LAD) method, however, can largely avoid the shortcomings
from the least squares and enables to handle the heteroscedastic errors and outliers in the
response and thus it is appealing in practice. Huang [9] studied the LAD estimation for the
AFT model and obtained the consistency and asymptotic normality of the estimator. However,
they did not consider the problem of variable selection. Cai et al. [2] studied the rank-based
estimation procedure with Lasso-type penalty to develop parsimonious prediction models for the
AFT model. Johnson et al. [10] proposed the Buckley–James estimation by using the SCAD
penalty. Zhou et al. [27] proposed a novel method without conducting the Kaplan–Meier
estimation to study the variable selection.

In this paper, we study the adaptive penalized weighted LAD (WLAD) estimator in the
AFT model by using the Kaplan–Meier weights to account for censoring. The adaptive weighted
penalty based on the nonconvex penalty is employed to complete the variable selection and
parameter estimation. Under some mild conditions, we obtain the consistency of the estimator.
Furthermore, with a proper choice of the tuning parameter, the resultant estimator enjoys the
oracle property. In simulation studies, we consider three scenarios to demonstrate the finite
sample performance of the penalized estimate. Furthermore, we use two real data examples to
illustrate applications of the proposed method. The advantage of our method, based on the
simulation studies, is that our method performs better than the adaptive Lasso. Unlike the
adaptive Lasso, we adopt the derivative of the general nonconvex penalty as the weight, which
contains the SCAD and MCP as special cases. In addition, we propose a new algorithm to
compute the estimate in high dimensional settings, and study the finite sample performance
of our method through simulations and real examples. When we analyze the high-dimensional
microarray gene expression data, we do not screen the genes before modeling.

The main contributions of this work are two-fold. First, the proposed method inherits the
advantages of the least absolute deviation method over the least squares method, which includes
the robustness for potential outliers in survival response times and the ability of handling
heteroscedastic model errors. Second, by utilizing the local asymptotic normality theory (Le
Cam [15]; van der Vaart [20]), we make painstaking efforts to overcome the non-smooth loss
function encoupled with a non-convex penalty to establish the asymptotic properties of the
proposed method.

The rest of the paper is organized as follows. We propose the APWLAD estimator in Sec-
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tion 2. We establish the asymptotic selection consistency of the proposed method in Section 3.
Some computational issues for the APWLAD estimator and the choice of the tuning parameter
are discussed in Section 4. We show the practical utility of the proposed method through both
simulated and real data sets in Section 5. We conclude with some remarks in Section 6 and
delineate the proofs of theorems in the Appendix.

2 Method

Let T denote the transformed failure time under a known monotone transformation, e.g., the
logarithm function. Let C denote the censoring time under the same transformation. Consider
the linear regression model

T = β�X + ε, (2.1)

where β is an unknown d-vector regression coefficient, X = (X1, . . . , Xd)� is the associated
d-dimensional predictor, and ε is the random error with an unknown distribution. Here we do
not consider the intercept. Due to the right censoring, the observed survival time is denoted
by Y = min(T, C) and the censoring indicator by δ = I(T ≤ C), where I(·) is an indicator
function. For i = 1, . . . , n, let (Yi, δi, Xi) be an independent and identically distributed sample
distributed as (Y, δ, X).

Let Y(1) ≤ · · · ≤ Y(n) be the order statistics of Yi’s, δ(1), . . . , δ(n) be the associated censoring
indicators, and X(1), . . . ,X(n) be the associated covariates. Let F be the cumulative distri-
bution function of T and F̂n be one minus its Kaplan–Meier estimator. Following Stute and
Wang [18],

F̂n(t) =
n∑

i=1

wiI(Y(i) ≤ t),

where

w1 =
δ(1)

n
and wi =

δ(i)

n − i + 1

i−1∏

j=1

(
n − j

n − j + 1

)δ(j)

, i = 2, . . . , n

are the so-called Kaplan–Meier weights. Consequently, the WLAD estimator is defined as the
minimizer of

Ln(β) ≡
n∑

i=1

wi|Y(i) − β�X(i)|. (2.2)

We consider the penalized LAD objective function for estimating β as follows,

Qn(β) ≡ Ln(β) +
d∑

j=1

p′λn
(|β0

j |)|βj |, (2.3)

where β0 = (β0
1 , β0

2 , . . . , β0
d)� is the initial estimator which could be set as the unpenalized

WLAD, and pλn
(t) is a nonconvex penalty function. We consider a class of penalties that

satisfy the following conditions: (a) Let p′λ(·) be nonnegative, nonincreasing and continuous
over (0,∞); (b) There exists a constant a > 0 such that limt→0+ p′λ(t) = λ, p′λ(t) ≥ λ − t/a

(0 < t < aλ) and p′λ(t) = 0 (t ≥ aλ). This class includes the smoothly clipped absolute
deviation (Fan and Li [3]) and the minimax concave penalty (Zhang [25]) as special cases. The
minimizer β̂ of (2.3) is called the adaptive penalized WLAD (APWLAD) estimator.
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3 Asymptotic Properties

Let H be the cumulative distribution function of Y and let τY , τT , and τC be the end points of
the support of Y , T , and C, respectively. Let F 0 be the joint distribution function of (X, T ).
Denote

F̃ 0(x, t) =

⎧
⎨

⎩
F 0(x, t), t < τY ,

F 0(x, τY −) + F 0(x, τY )I(τY ∈ A), t ≥ τY ,

where A is the set of atoms of H. Define two sub-distribution functions

H̃11(x, y) = Pr(X ≤ x, Y ≤ y, δ = 1),

H̃0(y) = Pr(Y ≤ y, δ = 0).

For j = 1, . . . , d, let

γ0(y) = exp
{∫ y−

0

H̃0(dw)
1 − H(w)

}
,

γ1j(y; β) =
1

1 − H(y)

∫∫
I(w > y)sgn(w − β�x)xjγ0(w)H̃11(dx, dw),

γ2j(y; β) =
∫∫

I(v < y, v < w)sgn(w − β�x)xjγ0(w)
{1 − H(v)}2

H̃0(dw)H̃11(dx, dw),

where x = (x1, . . . , xd)� and the sign function sgn(x) is defined as −1, 0, and 1 if x < 0, x = 0,
and x > 0, respectively. Let

ϕj = xjsgn(Y − β�
0 X)γ0(Y )δ + γ1j(y; β0)(1 − δ) − γ2j(y; β0).

Denote σij = Cov(ϕi, ϕj) for i, j = 1, . . . , d. Furthermore, let

Σ = (σij)

and

A = 2E[XX�fε(0|X)].

Let β0 = (β01, . . . , β0d)� be the true parameter value. We consider the sparsity model which
means that the d covariates contain both important and trivial components. For simplicity, let
β0 = (β�

10, β
�
20)

�, where β20 = 0. Here β10 = (β01, . . . , β0d0)
� is a d0-vector and 0 is a

(d − d0)-vector. Corresponding to the partition of β0, rewrite

X = (X�
1 , X�

2 )�

and

Xi = (X�
1i, X

�
2i)

�.

Likewise, rewrite

Σ =

⎡

⎣Σ11 Σ12

Σ12 Σ22

⎤

⎦ and A =

⎡

⎣A11 A12

A12 A22

⎤

⎦ .

We impose the following conditions to establish the theoretic properties of the APWLAD
estimator.



816 Wang M. Q. et al.

(C1) Let Fε(·|x) be the conditional distribution function of ε given X = x and fε(·|x)
be its conditional density function. Then Fε(0|x) = 0.5 and fε(e|x) is continuous in e in a
neighborhood of 0 for almost all x.

(C2) The censoring mechanism is completely random censoring in the sense that C is inde-
pendent of T and X.

(C3) τT < τC or τT = τC = ∞.
(C4) The matrix A is finite and nonsingular.
(C5) (i) The covariate X is bounded and the right end point of the support of β�

0 X is strictly
less than τY ; (ii) E[‖X‖2γ2

0(Y )δ] < ∞ and
∫ |xj |D1/2(w)F̃ 0(dx, dw) < ∞ for j = 1, . . . , d,

where

D(y) =
∫ y−

0

[{1 − H(w)}{1 − G(w)}]−1G(dw)

and G is the distribution function of the censoring time C.
These conditions are common in survival analysis. The consistency of the resultant estimator

is summarized in the following theorem.

Theorem 3.1 (Consistency) Under Conditions (C1)–(C5), if λn → 0 as n → ∞, then we
have

‖β̂ − β0‖ = OP

(
1√
n

)
.

Theorem 3.1 states that the APWLAD estimator is a
√

n-consistent estimator under the
assumption λn → 0 and other mild conditions. The proof of Theorem 3.1 is presented in the
Appendix.

Lemma 3.2 (Sparsity) Let β̂ = (β̂�
1 , β̂�

2 )�. Under Conditions (C1)–(C5), if λn → 0 and√
nλn → ∞ as n → ∞, then

Pr(β̂2 = 0) → 1.

This lemma shows that the APWLAD estimator enjoys the sparsity, namely, some compo-
nents of the estimator are zero. Note that the condition

√
nλn → ∞ is important to achieve

variable selection. The proof is provided in the Appendix. Furthermore, the oracle property of
the proposed method is summarized in the following theorem.

Theorem 3.3 (Oracle property) Under Conditions (C1)–(C5), if λn → 0 and
√

nλn → ∞ as
n → ∞, then

(1) Sparsity:

Pr(β̂2 = 0) → 1.

(2) Asymptotic normality:
√

n(β̂1 − β10)
D→ N(0,A−1

11 Σ11A−1
11 ).

Theorem 3.3 demonstrates that, with proper choice of the tuning parameter, the APWLAD
estimator has an oracle property. As a result, we can conclude that variable selection and pa-
rameter estimation can be completed simultaneously with a suitable penalty for the accelerated
failure time model. The proof is given in the Appendix.
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4 Computation

In this section, we introduce the selection of the tuning parameter and the computation algo-
rithm of the APWLAD estimator.

Selection of the tuning parameter. The tuning parameter λn plays an extremely important
role in variable selection, and determines the sparsity of the final model. So it is critical to
choose a proper λn. Wang et al. [23] and Wang et al. [21] found that Bayesian information
criterion (BIC) is consistent in model selection. Following this idea, we propose the following
BIC-type selector

BICλn
= log

( n∑

i=1

wi|Y(i) − β̂�
λn

X(i)|
)

+ dλn

log(n)
n

,

where β̂λn
is the estimator with a given λn and dλn

is number of nonzero components of β̂λn
.

Algorithm. It is easy to get the APWLAD estimator since it can be computed by the
existing software. Specifically, let Y ∗

(i) = wiY(i) and X∗
(i) = wiX(i). We consider the augmented

data {(Ỹ(i), X̃(i)): i = 1, . . . , n + d}, where Ỹ(i) = Y ∗
(i), X̃(i) = X∗

(i) for i = 1, . . . , n and Ỹi = 0,
X̃i = p′λn

(|β0|)ei for i = n + 1, . . . , n + d. Here,

p′λn
(|β0|) = (p′λn

(|β0
j |), j = 1, . . . , d )�,

and ei is a d-vector with the ith component being 1 and the remaining 0. The objective
function (2.3) can be transformed into the following form

Qn(β) =
n+d∑

i=1

|Ỹ(i) − β�X̃(i)|.

Consequently, we can apply some common optimization algorithms, such the Nelder–Meader
method or the rq( ) function in the R package quantreg for quantile regression (Koenker [13]),
to obtain the desired estimator when d is not large. However, when d is larger than n, we
need a new method to compute the penalized estimate. Since the usual unpenalized WLAD
β0 is unavailable in high dimensionality, we treat the marginal WLAD estimates as the initial
estimates. To compute the penalized estimate, we approximate the objective function (2.2)
by the square function, and then adopt the coordinate descent algorithm to carry out the
minimization of (2.3) (Breheny and Huang [1]).

5 Numerical Examples

In this section, we evaluate the finite sample performance of the APWLAD estimator via several
simulation experiments and two real examples. Since the SCAD and MCP are special cases of
the nonconvex penalty considered in this paper, and they perform similarly, we only give the
simulated results of the SCAD penalty, for simplicity. As suggested by Fan and Li [3], we fix
a = 3.7.

5.1 Simulation Studies

For comparison, we also consider the other three methods including the Lasso, adaptive Lasso
(ALasso) and Oracle. The weight of adaptive Lasso is chosen based on the unpenalized WLAD
estimator. The Oracle estimator, which estimates the nonzero coefficients by excluding the
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covariates of zero coefficients in advance, can not be obtained in practice. We treat it as the
benchmark here.

For each simulation setting, 500 simulated data sets are generated. To examine the perfor-
mances of estimators, we compute the median of the mean absolute prediction error (MAPE)
evaluated based on another 500 independent testing samples for each iteration (Wang et al. [22]).
The variable selection performance is assessed by (NT, NF, Corrfit, Overfit), where “NT” de-
notes the average number of zero coefficients truly set to zero, and “NF” gives the average
number of nonzero coefficients incorrectly set to zero. “Corrfit” is average number the correct
model is selected, and “Overfit” is average number including all the significant variables and
some noise variables.

Example 5.1 This example considers the case that the number of covariates is fixed. In this
example, n observations are generated from

T = β�X + ε,

where β = (2.0, 1.5, 1.0, 0.5, 0, 0, 0, 0), i.e., d = 8 and the covariate X = (X1, . . . , X8)� are gen-
erated from independent N(0, 1). We consider three different error distributions: the standard
normal distribution, the standard extreme value distribution and the standard Cauchy distri-
bution. The censoring time C = min(C̃, τ ), where C̃ is generated from a uniform distribution
U(0, τ + 1) and the study duration τ is chosen to yield a censoring rate (Cen.) of 20% or 50%.
Set n = 50 and 100.

Table 1 summarizes the mean absolute prediction errors and variable selection results. Stan-
dard errors are given in parentheses. We conclude conclusions from Table 1 as follows.

(1) All the three methods can reduce the model complexity in all considered cases. The
prediction accuracy is similar for these methods in terms of median MAPE. However, the
selection results and the accuracy of variable selection differ significantly. For example, when
the error follows normal distribution and the censoring rate is 50%, the proportion of correctly
fitted of the SCAD is 63.6% in the case of n = 100, but it is only 18.4% for the Lasso in that
case and 54.8% for the adaptive Lasso. Overall, the SCAD penalty performs better than the
Lasso and adaptive Lasso.

(2) Although the Lasso can also achieve a sparse model, while the proportion of correctly
fitted is relatively lower than the other two penalties. A good method should not only exclude
the superfluous variables but also give a relatively high accuracy. Therefore, it is unreasonable
if we only evaluate a variable selection method by the indexes “NT” and “NF”.

(3) We can also see that both the number of true zero coefficients identified and the pro-
portion of the correct model selected increase as n increases for every fixed censoring rate. In
addition, the censoring rate also affects estimation accuracy. When the censoring rate increases,
both “NT” and “Correctly fitted” decrease for every fixed sample size.

(4) For the different error distributions, the proposed method always performs well. Since
the results in terms of variable selection and prediction accuracy are reasonable, although the
results of the Cauchy distribution are not better than that of the other two distributions.
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Error Cen. n Method Corrfit Overfit NT NF MAPE

Normal 0.2 50 Lasso 0.178 (0.383) 0.644 (0.479) 2.704 (1.058) 0.188 (0.421) 1.026

ALasso 0.408 (0.492) 0.278 (0.448) 3.596 (0.646) 0.326 (0.494) 1.036

SCAD 0.464 (0.499) 0.254 (0.436) 3.604 (0.666) 0.288 (0.466) 1.039

Oracle 1.000 (0.000) 0.000 (0.000) 4.000 (0.000) 0.000 (0.000) 1.009

100 Lasso 0.264 (0.441) 0.692 (0.462) 2.822 (0.990) 0.044 (0.205) 0.968

ALasso 0.668 (0.471) 0.226 (0.419) 3.722 (0.538) 0.106 (0.308) 0.975

SCAD 0.688 (0.464) 0.184 (0.388) 3.766 (0.521) 0.128 (0.334) 0.983

Oracle 1.000 (0.000) 0.000 (0.000) 4.000 (0.000) 0.000 (0.000) 0.974

0.5 50 Lasso 0.098 (0.298) 0.696 (0.460) 2.118 (1.226) 0.208 (0.411) 1.537

ALasso 0.282 (0.450) 0.426 (0.495) 3.068 (1.015) 0.294 (0.460) 1.565

SCAD 0.362 (0.481) 0.338 (0.474) 3.238 (1.029) 0.302 (0.464) 1.586

Oracle 1.000 (0.000) 0.000 (0.000) 4.000 (0.000) 0.000 (0.000) 1.546

100 Lasso 0.184 (0.388) 0.756 (0.430) 2.538 (1.091) 0.060 (0.238) 1.476

ALasso 0.548 (0.498) 0.316 (0.465) 3.542 (0.688) 0.138 (0.351) 1.505

SCAD 0.636 (0.482) 0.228 (0.420) 3.670 (0.656) 0.136 (0.343) 1.527

Oracle 1.000 (0.000) 0.000 (0.000) 4.000 (0.000) 0.000 (0.000) 1.514

Extreme 0.2 50 Lasso 0.190 (0.393) 0.512 (0.500) 2.956 (0.984) 0.340 (0.563) 1.299

ALasso 0.356 (0.479) 0.190 (0.393) 3.668 (0.582) 0.502 (0.592) 1.306

SCAD 0.462 (0.499) 0.182 (0.386) 3.686 (0.559) 0.374 (0.520) 1.317

Oracle 1.000 (0.000) 0.000 (0.000) 4.000 (0.000) 0.000 (0.000) 1.288

100 Lasso 0.318 (0.466) 0.584 (0.493) 3.028 (0.972) 0.098 (0.298) 1.241

ALasso 0.622 (0.485) 0.166 (0.372) 3.782 (0.497) 0.214 (0.415) 1.255

SCAD 0.652 (0.477) 0.108 (0.311) 3.862 (0.409) 0.242 (0.433) 1.264

Oracle 1.000 (0.000) 0.000 (0.000) 4.000 (0.000) 0.000 (0.000) 1.249

0.5 50 Lasso 0.134 (0.341) 0.538 (0.499) 2.540 (1.134) 0.372 (0.571) 2.044

ALasso 0.238 (0.426) 0.316 (0.465) 3.194 (0.943) 0.498 (0.599) 2.126

SCAD 0.316 (0.465) 0.252 (0.435) 3.354 (0.948) 0.472 (0.574) 2.150

Oracle 1.000 (0.000) 0.000 (0.000) 4.000 (0.000) 0.000 (0.000) 2.101

100 Lasso 0.230 (0.421) 0.600 (0.490) 2.836 (1.045) 0.174 (0.390) 1.969

ALasso 0.446 (0.498) 0.270 (0.444) 3.570 (0.703) 0.288 (0.462) 2.032

SCAD 0.536 (0.499) 0.154 (0.361) 3.754 (0.575) 0.314 (0.473) 2.047

Oracle 1.000 (0.000) 0.000 (0.000) 4.000 (0.000) 0.000 (0.000) 2.042

Cauchy 0.2 50 Lasso 0.106 (0.308) 0.122 (0.328) 3.532 (0.776) 1.446 (1.146) 3.328

ALasso 0.132 (0.339) 0.036 (0.186) 3.802 (0.493) 1.342 (0.940) 3.247

SCAD 0.302 (0.460) 0.114 (0.318) 3.562 (0.689) 0.674 (0.639) 3.107

Oracle 1.000 (0.000) 0.000 (0.000) 4.000 (0.000) 0.000 (0.000) 3.137

100 Lasso 0.286 (0.452) 0.170 (0.376) 3.648 (0.627) 0.746 (0.853) 3.099

ALasso 0.304 (0.460) 0.028 (0.165) 3.948 (0.256) 0.822 (0.695) 3.059

SCAD 0.466 (0.499) 0.034 (0.181) 3.930 (0.278) 0.514 (0.528) 3.009

Oracle 1.000 (0.000) 0.000 (0.000) 4.000 (0.000) 0.000 (0.000) 3.023
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Error Cen. n Method Corrfit Overfit NT NF MAPE

Cauchy 0.5 50 Lasso 0.076 (0.265) 0.104 (0.306) 3.518 (0.874) 2.090 (1.453) 3.221

ALasso 0.072 (0.259) 0.048 (0.214) 3.694 (0.711) 1.798 (1.113) 3.384

SCAD 0.154 (0.361) 0.082 (0.275) 3.498 (0.812) 1.058 (0.785) 3.532

Oracle 1.000 (0.000) 0.000 (0.000) 4.000 (0.000) 0.000 (0.000) 3.536

100 Lasso 0.184 (0.388) 0.168 (0.374) 3.620 (0.670) 1.540 (1.561) 2.997

ALasso 0.210 (0.408) 0.018 (0.133) 3.942 (0.251) 1.264 (1.034) 3.067

SCAD 0.276 (0.447) 0.014 (0.118) 3.970 (0.171) 0.804 (0.595) 3.081

Oracle 1.000 (0.000) 0.000 (0.000) 4.000 (0.000) 0.000 (0.000) 3.082

Table 1 Simulation results in Example 5.1

Error Method Corrfit Overfit NT NF MAPE

Normal Lasso 0.136 (0.343) 0.772 (0.420) 9.006 (1.617) 0.092 (0.289) 0.979

ALasso 0.530 (0.500) 0.346 (0.476) 10.490 (0.777) 0.124 (0.330) 0.985

SCAD 0.552 (0.498) 0.310 (0.463) 10.546 (0.754) 0.138 (0.345) 0.997

Oracle 1.000 (0.000) 0.000 (0.000) 11.000 (0.000) 0.000 (0.000) 0.978

LS-Lasso 0.108 (0.311) 0.880 (0.325) 8.450 (1.719) 0.012 (0.109) 0.953

LS-ALasso 0.792 (0.406) 0.078 (0.268) 10.910 (0.293) 0.130 (0.337) 0.960

LS-SCAD 0.474 (0.500) 0.510 (0.500) 10.120 (1.070) 0.016 (0.126) 0.987

LS-Oracle 1.000 (0.000) 0.000 (0.000) 11.000 (0.000) 0.000 (0.000) 0.965

Extreme Lasso 0.160 (0.367) 0.644 (0.479) 9.326 (1.423) 0.200 (0.410) 1.273

ALasso 0.490 (0.500) 0.258 (0.438) 10.612 (0.686) 0.252 (0.435) 1.278

SCAD 0.564 (0.496) 0.180 (0.385) 10.730 (0.608) 0.256 (0.437) 1.290

Oracle 1.000 (0.000) 0.000 (0.000) 11.000 (0.000) 0.000 (0.000) 1.274

LS-Lasso 0.038 (0.191) 0.826 (0.379) 7.256 (1.929) 0.136 (0.343) 1.881

LS-ALasso 0.272 (0.445) 0.360 (0.480) 10.194 (0.956) 0.376 (0.501) 1.903

LS-SCAD 0.048 (0.214) 0.778 (0.416) 7.976 (1.662) 0.176 (0.386) 2.052

LS-Oracle 1.000 (0.000) 0.000 (0.000) 11.000 (0.000) 0.000 (0.000) 2.064

Cauchy Lasso 0.124 (0.330) 0.206 (0.405) 10.472 (0.786) 1.050 (0.997) 3.068

ALasso 0.228 (0.420) 0.058 (0.234) 10.858 (0.467) 0.898 (0.702) 3.114

SCAD 0.414 (0.493) 0.108 (0.311) 10.750 (0.540) 0.494 (0.532) 3.069

Oracle 1.000 (0.000) 0.000 (0.000) 11.000 (0.000) 0.000 (0.000) 3.108

LS-Lasso 0.016 (0.126) 0.212 (0.409) 7.384 (3.275) 1.408 (1.056) 3.923

LS-ALasso 0.030 (0.171) 0.168 (0.374) 7.576 (3.345) 1.356 (0.963) 4.450

LS-SCAD 0.002 (0.045) 0.674 (0.469) 3.468 (2.645) 0.366 (0.566) 4.972

LS-Oracle 1.000 (0.000) 0.000 (0.000) 11.000 (0.000) 0.000 (0.000) 4.008

Table 2 Simulation results in Example 5.2

Example 5.2 This example considers the case that the number of covariates is high but
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smaller than the sample size. Set d = 15 for n = 100. The censoring rate is 20%. The
remaining settings are the same as that in Example 5.1. This example shows the comparisons
between the LAD method and the least squares method. The least squares estimators with
the Lasso, adaptive Lasso (ALasso), SCAD and Oracle are denoted by LS-Lasso, LS-ALasso,
LS-SCAD, and LS-Oracle, respectively.

The simulation results are presented in Table 2, from which we can draw the similar conclu-
sions as that in Example 5.1. As a result, when the parameter number increases, our method
still has good performance. Furthermore, the least squares method performs better than the
LAD method for the normal error, while it performs much worse than the LAD method for the
standard extreme value distribution and the standard Cauchy distribution. This confirms the
robust performance of the LAD method for censored data.

Example 5.3 This example considers the heteroscedastic errors. Predictors Xj , j = 1, . . . , d

are generated in the following two steps. We first generate X∗
j , j = 1, . . . , d from independent

N(0, 1), and the next step is to set Xj = Φ(X∗
j ) for j = 1, 2, . . . , d, where Φ(·) denotes the

cumulative distribution function of the standard normal distribution. The response is generated
according to the heteroscedastic location-scale model

T = β�X + 0.5X5ε.

The remaining settings are the same as that in Example 5.2.

The simulation results are presented in Table 3. From Table 3, it can be seen that the
penalized penalized weighted LAD estimator still performs well in the case of the heteoscedastic
error.

Error Method Corrfit Overfit NT NF MAPE

Normal Lasso 0.092 (0.289) 0.908 (0.289) 8.898 (1.293) 0.000 (0.000) 0.440

ALasso 0.912 (0.284) 0.078 (0.268) 10.918 (0.289) 0.010 (0.100) 0.437

SCAD 0.920 (0.272) 0.068 (0.252) 10.928 (0.281) 0.012 (0.109) 0.442

Oracle 1.000 (0.000) 0.000 (0.000) 11.000 (0.000) 0.000 (0.000) 0.442

Extreme Lasso 0.164 (0.371) 0.834 (0.372) 9.116 (1.379) 0.002 (0.045) 0.479

ALasso 0.726 (0.446) 0.216 (0.412) 10.748 (0.515) 0.058 (0.234) 0.479

SCAD 0.842 (0.365) 0.114 (0.318) 10.852 (0.467) 0.044 (0.205) 0.478

Oracle 1.000 (0.000) 0.000 (0.000) 11.000 (0.000) 0.000 (0.000) 0.482

Cauchy Lasso 0.134 (0.341) 0.778 (0.416) 9.234 (1.150) 0.088 (0.284) 0.984

ALasso 0.534 (0.499) 0.012 (0.109) 10.970 (0.182) 0.498 (0.582) 1.022

SCAD 0.502 (0.500) 0.008 (0.089) 10.974 (0.171) 0.498 (0.516) 1.020

Oracle 1.000 (0.000) 0.000 (0.000) 11.000 (0.000) 0.000 (0.000) 1.010

Table 3 Simulation results in Example 5.3

Example 5.4 In this example, we demonstrate the performance of the proposed estimator
when the number of predictors is large compared with the number of observations. The true
regression coefficients are βj = 2 for 1 ≤ j ≤ 5, and 0 otherwise. The sample size is chosen to
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be 100, and d = 100, 200. The censoring rate is 20%. We keep the other setups as the same as
Example 5.1.

From the simulation results summarized in Table 4, it can be seen that increasing the
dimension of the predictors has a significant effect on the ratio of correct models identified and
the number of predictors included in the final selected model. In general, the SCAD penalty
performs best, and the Lasso performs worst.

Error p Method Corrfit Overfit NT NF MAPE

Normal 100 Lasso 0.002 (0.045) 0.996 (0.063) 82.350 (6.379) 0.002 (0.045) 1.191

ALasso 0.098 (0.298) 0.900 (0.300) 89.260 (4.149) 0.002 (0.045) 1.198

SCAD 0.404 (0.491) 0.596 (0.491) 88.302 (7.574) 0.000 (0.000) 1.183

Oracle 1.000 (0.000) 0.000 (0.000) 95.000 (0.000) 0.000 (0.000) 1.156

200 Lasso 0.000 (0.000) 0.998 (0.045) 179.240 (6.598) 0.002 (0.045) 1.280

ALasso 0.064 (0.245) 0.934 (0.249) 188.202 (4.242) 0.002 (0.045) 1.258

SCAD 0.336 (0.473) 0.664 (0.473) 186.708 (8.549) 0.000 (0.000) 1.260

Oracle 1.000 (0.000) 0.000 (0.000) 195.000 (0.000) 0.000 (0.000) 1.219

Extreme 100 Lasso 0.002 (0.045) 0.996 (0.063) 83.468 (5.907) 0.002 (0.045) 1.546

ALasso 0.192 (0.394) 0.806 (0.396) 90.890 (3.756) 0.002 (0.045) 1.530

SCAD 0.496 (0.500) 0.504 (0.500) 91.298 (5.729) 0.000 (0.000) 1.500

Oracle 1.000 (0.000) 0.000 (0.000) 95.000 (0.000) 0.000 (0.000) 1.490

200 Lasso 0.00 (0.000) 0.986 (0.118) 181.254 (6.272) 0.014 (0.118) 1.602

ALasso 0.16 (0.367) 0.826 (0.379) 190.114 (3.959) 0.014 (0.118) 1.532

SCAD 0.39 (0.488) 0.610 (0.488) 190.162 (6.547) 0.000 (0.000) 1.510

Oracle 1.00 (0.000) 0.000 (0.000) 195.000 (0.000) 0.000 (0.000) 1.487

Cauchy 100 Lasso 0.036 (0.186) 0.808 (0.394) 87.884 (5.750) 0.436 (1.137) 3.673

ALasso 0.326 (0.469) 0.516 (0.500) 92.656 (3.501) 0.444 (1.148) 3.554

SCAD 0.242 (0.429) 0.646 (0.479) 91.890 (4.387) 0.376 (1.114) 3.643

Oracle 1.000 (0.000) 0.000 (0.000) 95.000 (0.000) 0.000 (0.000) 3.386

200 Lasso 0.010 (0.100) 0.724 (0.447) 186.126 (7.348) 0.708 (1.371) 5.788

ALasso 0.216 (0.412) 0.512 (0.500) 191.592 (4.751) 0.724 (1.378) 5.965

SCAD 0.134 (0.341) 0.656 (0.476) 189.806 (6.416) 0.628 (1.355) 4.930

Oracle 1.000 (0.000) 0.000 (0.000) 195.000 (0.000) 0.000 (0.000) 5.230

Table 4 Simulation results in Example 5.4

5.2 Real Data Analysis

5.2.1 ACTG Data

We analysis the AIDS Clinical Trials Group Study 320 Data (ACTG Data) to verify the per-
formance of the proposed method. The data come from a double-blind, placebo-controlled trial
comparing nucleoside monotherapy with combination therapy in HIV-infected patients with
CD4 cell counts from 200–500 per cubic millimeter provided by the AIDS Clinical Trials Group



APWLAD for AFT Model 823

Study 320 Study Team (Hammer et al. [6]). Randomization was stratified by CD4 cell counts at
the time of screening. The primary outcome measure was time to AIDS defining event or death.
There are 1151 observations available in this trial. The censoring rate is about 0.0834. We study
the dependence of the patients’ survival times on eleven covariates: continuous variables are cd4
(Baseline CD4 count cells/milliliter derived from multiple measurements), priorzdv (months of
prior ZDV), age (age at baseline in years); categorical variables are tx (treatment indicator, 1
= including IDV, 0 = without IDV), txgrp (treatment group indicator, 1 = ZDV + 3TC, 2
= ZDV + 3TC + IDV, 3 = d4T + 3TC, 4 = d4T + 3TC + IDV), strat2 (CD4 stratum at
screening, 0 if CD4 ≤ 50, 1 otherwise), sex (sex, 1 = male, 2 = female), raceth (race/ethnicity, 1
= White Non-Hispanic, 2 = Black Non-Hispanic, 3 = Hispanic (regardless of race), 4 = Asian,
Pacific Islander, 5 = American Indian, Alaskan Native, 6 = other/unknown), ivdrug (IV drug
use history, 1 = never, 2 = currently, 3 = previously), hemophil (Hemophiliac, 1 = Yes, 0 =
No), karnof (Karnofsky performance scale, 100 = normal; no complaint; no evidence of disease,
90 = normal activity possible; minor signs/symptoms of disease, 80 = Normal activity with
effort; some signs/symptoms of disease, 70 = cares for self; normal activity/active work not
possible).

To estimate the standard errors, we apply the nonparametric 0.632 bootstrap method in
which we sampled 0.632n from n observations without replacement. The bootstrap method is
then repeated 100 times. Based on the bootstrapped samples, the corresponding bootstrapped
estimator can be obtained following the same procedure as for the original sample and using
the same tuning parameter λ. After proper scale adjustment, the sample standard deviation of
the bootstrapped estimates provides an estimate for the standard error of β̂.

Variables selected via the WLAD-SCAD approach and their corresponding estimates are
shown in Table 4. The estimated standard errors are given in parentheses. For comparison,
we also provide the Lasso and adaptive Lasso estimates. From the results in Table 5 where
“ − (−) ” indicates the method is not applicable, we can see that, although it removes the
variable hemophil, the SCAD method is in line with the adaptive Lasso method. However, the
Lasso only excludes three variables: strat2, sex and ivdrug.

Covariate Lasso ALasso SCAD

tx −4.933 (0.012) −5.234 (0.011) −5.234 (0.013)

txgrp 4.704 (0.010) 4.917 (0.009) 4.926 (0.012)

strat2 – (–) – (–) – (–)

sex – (–) – (–) – (–)

raceth 0.095 (0.004) – (–) – (–)

ivdrug – (–) – (–) – (–)

hemophil 0.213 (0.018) – (–) 0.382 (0.023)

karnof 0.031 (0.003) – (–) – (–)

cd4 0.191 (0.004) 0.219 (0.004) 0.254 (0.005)

priorzdv 0.003 (0.004) – (–) – (–)

age 0.122 (0.002) 0.090 (0.002) 0.077 (0.003)

Table 5 Estimation for the ACTG Data
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5.2.2 Mantle Cell Lymphoma Data

Rosenwald et al. [16] studied the mantle cell lymphoma (MCL) data. The primary goal
of this study is to identify genes that have good predictive power of patients’ survival risk.
Among 101 untreated patients with no history of previous lymphoma, 92 were classified as
having MCL based on established morphologic and immunophenotypic criteria. During the
followup, 64 patients died of MCL, and the other 28 patients were censored. The median
survival time was 2.8 years (range 0.02 to 14.05 years). Lymphochip DNA microarrays were
used to quantify mRNA expression in the lymphoma samples from the 92 patients. This data
set is available at http://llmpp.nih.gov/MCL/, and contains expression values of 8810 cDNA
elements. We exclude the genes containing missing values, then 6312 genes are used in analysis.
We standardize these gene expressions to have zero mean and unit variance.

We fit this data by the AFT model, and use the proposed WLAD-SCAD approach for gene
selection. We also give the selection results of the Lasso and adaptive Lasso as comparison. The
tuning parameter is selected using the method introduced in Section 4. The estimated standard
errors (in parentheses) are obtained using the method introduced in Section 5.2.1. From Table 6
where “ − (−) ” has the same meaning as above, we can see that the Lasso selects 16 genes, the
adaptive Lasso identifies 9 genes, and the SCAD chooses only 5 genes which are all included by
the Lasso and adaptive Lasso.

UNIQID Lasso ALasso SCAD

16312 −0.253 (0.049) – (–) – (–)

16443 −0.414 (0.031) −0.862 (0.041) – (–)

16711 −0.045 (0.025) – (–) – (–)

16724 0.310 (0.031) 0.946 (0.058) – (–)

17911 −0.155 (0.028) – (–) – (–)

17924 −0.650 (0.051) −1.204 (0.061) −0.857 (0.066)

25226 −0.137 (0.033) – (–) – (–)

27315 0.195 (0.035) 0.405 (0.051) – (–)

27824 1.105 (0.062) 0.694 (0.054) 1.226 (0.068)

28148 −0.319 (0.034) −0.601 (0.045) – (–)

29780 0.440 (0.034) 0.949 (0.063) 0.255 (0.061)

30917 −0.772 (0.049) −1.474 (0.088) −1.626 (0.097)

31318 −0.043 (0.025) – (–) – (–)

33781 0.175 (0.030) – (–) – (–)

33877 −0.036 (0.031) – (–) – (–)

34844 −0.837 (0.042) −0.599 (0.045) −1.450 (0.060)

Table 6 Estimation for the MCL data

6 Remark

We propose the APWLAD estimator for parameter estimation and variable selection in the
AFT model. Under some mild conditions, the consistency and oracle properties of the AP-
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WLAD estimator are established. Extensive numeric studies demonstrate that the APWLAD
estimate performs well with fixed, diverging, and large number of covariates, respectively. As
a conclusion, the APWLAD estimator is a plausible method in practice to conduct variable
selection for the AFT model.
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Appendix

Proof of Theorem 3.1 Assume that the number of nonzero components in β0 is d0. Without
loss of generality, we rewrite β0 = (β�

10, β
�
20)

� and β�
20 is a (d − d0)-dimensional 0-vector. We

intend to show that for any given ε > 0, there exists a large constant C∗ such that

Pr
{

inf
‖u‖=C∗

Qn(β0 + n−1/2u) > Qn(β0)
}
≥ 1 − ε, (A.1)

where u = (u1, . . . , ud)� is a d-dimensional vector. Then we can claim that with probability at
least 1 − ε, there exists a local minimum in the ball {β0 + n−1/2u: ‖u‖ ≤ C∗}, that is, there
exists a local minimizer such that ‖β̂ − β0‖ = OP (n−1/2). Because the objective function is a
strictly convex function, the local minimizer is a global minimizer.

To show (A.1), let Dn(u) = Qn(β0 + n−1/2u) − Qn(β0). Simple calculations yield that

nDn(u) = n

n∑

i=1

wi{|Y(i) − (β0 + n−1/2u)�X(i)| − |Y(i) − β�
0 X(i)|}

+ n

d∑

j=1

p′λn
(|β0

j |){|β0j + n−1/2uj | − |β0j |}

≥ n
n∑

i=1

wi{|Y(i) − β�
0 X(i) − n−1/2u�X(i)| − |Y(i) − β�

0 X(i)|}

+ n

d0∑

j=1

p′λn
(|β0

j |){|β0j + n−1/2uj | − |β0j |}

= I1n + I2n + I3n,

where

I1n = n

n∑

i=1

wi{|Y(i) − β�
0 X(i) − n−1/2u�X(i)| − |Y(i) − β�

0 X(i)|}

+ n1/2
n∑

i=1

wisgn(Y(i) − β�
0 X(i))X�

(i)u,

I2n = −n1/2
n∑

i=1

wisgn(Y(i) − β�
0 X(i))X�

(i)u,
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I3n = n

d0∑

j=1

p′λn
(|β0

j |){|β0j + n−1/2uj | − |β0j |}.

It follows from (6.5) in Huang et al. [9] that, under Conditions (C1)–(C5), for any fixed
u ∈ R

d,

I1n
P→ 1

2
u�Au,

as n → ∞. Using Theorem 3.1 in Stute [17], we have that I2n converges in distribution
to −u�W, where W is a d-dimensional normal random vector with mean 0 and covariance
matrix Σ. In the other words, I2n = u�OP (1). For term I3n,

|I3n| ≤ n1/2
d0∑

j=1

p′λn
(|β0

j |)|uj | ≤ (d0n)1/2 max{p′λn
(|β0

j |): 1 ≤ j ≤ d0}‖u‖.

Note that p′λn
(|β0

j |) = p′λn
(|β0

j |)I(|β0
j | ≤ aλn). By Condition λn → 0, we have, for j = 1, . . . , d0,

|β0
j | − aλn

P→ |β0
j | > 0. Thus for every η > 0,

Pr{√np′λn
(|β0

j |) > η} ≤ Pr(|β0
j | ≤ aλn) → 0,

which implies that
√

np′λn
(|β0

j |) = oP (1). Hence, by choosing a sufficiently large C∗, I1n

dominates I2n and I3n. Thus we complete the proof of Theorem 3.1 under Condition (C4). �
Proof of Lemma 3.2 Taking the first derivative of Qn(β) at any differentiable point with
respect to βj for j = d0 + 1, . . . , d, we can obtain that

n1/2 ∂Qn(β)
∂βj

= −n1/2
n∑

i=1

wisgn(Y(i) − β�X(i))X(i)j + n1/2p′λn
(|β0

j |)sgn(βj).

For any β̃ = (β̃�
1 , β̃�

2 )� satisfying that
√

n(β̃1−β10) = OP (1) and ‖β̃2−β20‖ ≤ εn = Mn−1/2,
where M is a constant, we firstly aim to show that

−n1/2
n∑

i=1

wisgn(Y(i) − β̃�X(i))X(i) = OP (1). (A.2)

Denote

V(Δ) = n1/2
n∑

i=1

wisgn(Y(i) − β�
0 X(i) − n−1/2X�

(i)Δ)X(i)

for any Δ ∈ R
d.

Note that we have obtained that V(0) converges weakly to the mean zero Gaussian random
vector W . On the other hand, under Conditions (C1) and (C4), it follows from Lemma A.2 in
Koenker and Zhao [14] that

sup
‖Δ‖≤M

‖V(Δ) − V(0) + fε(0|X)cov(W )Δ‖ = oP (1).

Taking Δ = n1/2(β̃ − β0) immediately yields that

n1/2
n∑

i=1

wisgn(Y(i) − β̃�X(i))X(i) − n1/2
n∑

i=1

wisgn(Y(i) − β�
0 X(i))X(i)

+ fε(0|x)cov(W )n1/2(β̃ − β0)
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= oP (1),

which implies (A.2).
Note that p′λn

(t)/λn → 1 as t → 0. For j = d0 + 1, . . . , d, we have
√

n|β0
j | = OP (1). So

p′λn
(|β0

j |)/λn
P→ 1. Furthermore,

√
np′λn

(|β0
j |) =

√
nλn

p′λn
(|β0

j |)
λn

→ ∞.

Therefore, for j = d0 + 1, . . . , d,

n1/2 ∂Qn(β)
∂βj

∣∣∣∣
β=β̃

= OP (1) + n1/2p′λn
(|β0

j |)sgn(βj)

⎧
⎨

⎩
> 0, for 0 < β̃j < εn,

< 0, for εn < β̃j < 0.

This has the proof done. �
Proof of Theorem 3.3 For any v ∈ R

d0 , define sn(v) = Qn(β10 + n−1/2v,0) − Qn(β10,0).
Then

nsn(v) = n
n∑

i=1

wi{|Y(i) − β�
10X1(i) − n−1/2v�X1(i)| − |Y(i) − β�

10X1(i)|}

+ n

d0∑

j=1

p′λn
(|β0

j |){|β0j + n−1/2vj | − |β0j |}

= I4n + I5n + I6n,

where

I4n = n

n∑

i=1

wi{|Y(i) − β�
10X1(i) − n−1/2v�X1(i)| − |Y(i) − β�

10X1(i)|}

+ n1/2
n∑

i=1

wisgn(Y(i) − β�
10X1(i))v�X1(i),

I5n = −n1/2
n∑

i=1

wisgn(Y(i) − β�
10X1(i))v�X1(i),

I6n = n

d0∑

j=1

p′λn
(|β0

j |){|β0j + n−1/2vj | − |β0j |}.

Using the similar arguments used in proof of consistency, under Conditions (C1)–(C5),
we have that I4n

P→ 1
2v

�A11v, where A11 = 2E[X1X
�
1 fε(0|X)], and that I5n converges in

distribution to −v�W1, where W1 is a d0-dimensional normal random vector with mean 0
and covariance matrix Σ11. Additionally, I6n ≤ √

nmax{p′λn
(|β0

j |): 1 ≤ j ≤ d0}
∑d0

j=1 |vj |,
which converges to zero provided that λn → 0 as n → ∞. Hence, we can conclude that nsn(v)
converges in distribution to −v�W1 + 1

2v
�A11v using the Slutsky theorem. Therefore, by

Corollary 2 of Knight [12], it follows that
√

n(β̂1 − β10)
D→ A−1

11 W1. Thus, we complete the
proof. �


