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Abstract
Interval-censored data often arise naturally in medical, biological, and demographical
studies. As a matter of routine, the Cox proportional hazards regression is employed to
fit such censored data. The related work in the framework of additive hazards regres-
sion, which is always considered as a promising alternative, remains to be investigated.
We propose a sieve maximum likelihood method for estimating regression parameters
in the additive hazards regression with case II interval-censored data, which consists
of right-, left- and interval-censored observations. We establish the consistency and
the asymptotic normality of the proposed estimator and show that it attains the semi-
parametric efficiency bound. The finite-sample performance of the proposed method
is assessed via comprehensive simulation studies, which is further illustrated by a real
clinical example for patients with hemophilia.

Keywords Survival analysis · Interval-censored data · Additive hazards · Sieve
maximum likelihood estimator · Semiparametric efficiency bound · Empirical
process

1 Introduction

Interval-censoring is encountered in studies when the event of interest cannot be
observed and is only known to occur within a time interval. For example, the event
time to human immunodeficiency virus (HIV) positive status for transfusion-related
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acquired immune deficiency syndrome (AIDS) patients can never be known exactly,
while the only observed information is the change of status among some monitoring
times.

When only one monitoring time is applied and each subject experiences the event
either before or after the monitoring time, this type of data is referred to as current
status or case I interval-censored data (Huang 1996; Li and Zhang 1998). When each
subject is known to experience the event between a time interval, or before the first
point of the time interval, or after the last point of the time interval, the resulting data are
referred to as case II interval-censored data. The analysis of case II interval-censored
data are more challenging than that of right censored data due to the more complicated
data structure. The counting process and martingale theory which are commonly used
for the analysis of right-censored data do not directly apply to interval-censored data.

There have been a rich literature for the regression analysis of current status data and
case II interval-censored data (Sun 2006). Some authors developed efficient estimation
procedures under different models for current status data (Huang 1996; Martinussen
and Scheike 2002; Sun and Shen 2009; Wang et al. 2008; Xue et al. 2004). There
are several types of methods for analyzing the case II interval-censored data. One
is an imputation-based method where the interval-censored event times are imputed
and then some well-known semiparametric regression analysis for right-censored data
can be directly applied. The imputation-based method for the Cox model (Cox 1972)
was studied by some authors (Satten et al. 1998; Song and Ma 2008; Zhang et al.
2009). However, this method may produce a biased estimator for regression param-
eters and may not be efficient. Other types of methods include likelihood-based and
estimating equation-based approaches. For example, theCoxmodel for case II interval-
censored data was considered by Finkelstein (1986), Goggins and Finkelsten (2000),
Kim and Xue (2002), Seaman and Bird (2001), Zhao et al. (2005) among others. As
an alternative to the Cox model, the semiparametric accelerated failure time model
for interval-censored data was studied by Betensky et al. (2001), Gómez et al. (2003),
Li and Zhang (1998), Li and Pu (2003), Rabinowitz et al. (1995), among others.
van der Vaart (1998) developed an estimating equation approach for regression anal-
ysis of linear transformation models with interval-censored failure time data. Most
recently, Zhou et al. (2017) developed an efficient sieve maximum likelihood estima-
tion approach for bivariate interval-censored failure time data.

The aforementioned studies are based on case II interval-censored data with the
experience of event between the two monitoring times. In medical studies with peri-
odic follow-ups, the occurrence of the event such as a disease onset is known before
the first monitoring time, or between the two monitoring times, or after the second
monitoring time. The resulting data are referred also as case II interval-censored data
(Huang and Wellner 1997). The studies on this kind of case II interval-censored data
are limited. Among those available, Zhang et al. (2001) presented a nonparametric
test. Zeng et al. (2006) discussed the efficient estimation of the regression parame-
ters for an additive hazards model using the full likelihood approach. However, the
implementation of their approach can be quite complicated because of the need for
estimation of the baseline cumulative hazard function, which is time consuming espe-
cially when the monitoring variables are continuous. Wang et al. (2010) proposed a
relatively easy estimating equation-based approach under the additive hazards model.
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Their method does not need estimation of any nuisance baseline hazard functions.
However they assume that the monitoring times follow Cox-type models, which may
lead to biased estimators when modeled incorrectly. Another drawback is that the
approach is unable to offer an estimate of the baseline hazard function. Zhang et al.
(2010) proposed a spline-based sieve semiparametric likelihood estimation procedure
for the Cox model, in which the log baseline cumulative hazard function is esti-
mated by a monotone B-spline (Schumaker 1981). Their method does not need any
assumption about the distribution ofmonitoring times and the resulted sieve likelihood
estimator is asymptotically normal and achieves the semiparametric efficiency bound
defined in Bickel et al. (1993). In addition, the spline-based sieve estimator of the base-
line hazard function converges at the optimal nonparametric rate. They developed an
easy-to-implement method to consistently estimate the standard error of the estimated
regression parameter. Considering the merits of Zhang et al. (2010), we propose to fit
the additive hazard model to case II interval censored data by using the sieve maxi-
mum likelihood estimation. Compared with the Cox model (Cox 1972), the additive
risk model is particularly useful for estimating the difference in hazards. The merits
of our proposed method have several aspects. Firstly, by directly estimating the log
baseline hazard function based onB-spline approximations, we relax the constraints of
being non-negative of the baseline hazard function and the monotonicity of the base-
line cumulative hazard function. With this relaxation, the standard Newton–Raphson
algorithm can be employed directly, and thus our proposed inference procedure is
easy to implement compared with Zeng et al. (2006). Secondly, we do not impose any
assumption on the models of monitoring times, which is more reasonable in practice.
Lastly, we rigorously prove that the proposed estimator is asymptotically normal and
semiparametrical efficient.

The rest of the paper is organized as follows. In Sect. 2, we introduce the model
and describe the spline-based sieve semiparametric maximum likelihood approach.
Furthermore, we obtain an estimator for the hazard function under the additive risk
model. Section 3 presents the asymptotic results of the estimator. We provide sim-
ulation results in Sect. 4. An application to hemophilia data is illustrated in Sect. 5.
Section 6 concludes some remarks. All technical proofs are given in the “Appendix”.

2 Sievemaximum likelihood estimation

The observations of case II interval censored data include two positive monitoring
times U and V where U and V are two random variables satisfying U ≤ V with
probability 1. The true event time T falls into one of the following three exclusive
categories: T is between U and V (interval-censored); T is larger than V (right-
censored); or T is less thanU (left-censored). Define two indicator variables as Δ1 =
I (T ≤ U ), Δ2 = I (U < T ≤ V ). The observed data for the i th subject can be
summarized as: Oi = (Δ1i ,Δ2i ,Ui , Vi ,Zi ), i = 1, 2, . . . , n.

Given the covariate Z, the hazard function of the event time T at time t is

λ(t |Z) = λ0(t) + θT0Z, (1)
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whereλ0(t) is an unspecified baseline hazard function, and θ0 is a d-vector of unknown
regression parameters. We define the baseline cumulative hazard function Λ0(t) =∫ t
0 λ0(s)ds.
Let e be the ending time of study, assume that conditional on Z, T is independent

of (U , V ) and the distribution of (U , V ) is noninformative of T . We further assume
that the distribution of (U , V ,Z) does not involve in (θ,Λ0). Then the logarithm of
the observed likelihood function in terms of parameters (θ ,Λ0) can be expressed as

�n(θ ,Λ0) =
n∑

i=1

�(θ ,Λ0;Oi ),

where

�(θ ,Λ0;Oi ) = Δ1i log{1 − exp(−Λ0(Ui ) − θT(UiZi ))}
+Δ2i log{exp(−Λ0(Ui ) − θT(UiZi )) − exp(−Λ0(Vi ) − θT(ViZi ))}
− (1 − Δ1i − Δ2i ){Λ0(Vi ) + θT(ViZi )}.

The maximum likelihood estimator for (θ ,Λ0) can be obtained by maximizing the
observed log-likelihood function �n(θ ,Λ0) over the parametric space Θ × Ω where

Θ = {θ : θ is in a compact set of Rd , ‖θ‖ ≤ M}

with M being a positive constant and

Ω = {Λ0(t) : Λ0(t) is a step-function with jumps only at the examination times}.

The calculation is not easy because it involves a large number of parameters, with
upper bound to d + 2n if there are no ties among {(Ui , Vi ), i = 1, · · · , n}. This high
dimensional optimization problem is particularly challenging when the sample size is
large.

To overcome the computational difficulty in fully nonparametric estimation prob-
lems, Geman and Hwang (1982) proposed to approximate the unknown function in
the log-likelihood by a linear span of some known basis functions and obtained a sieve
log-likelihood. Then the original optimization problem is transferred to maximizing
the sieve log-likelihood with respect to the unknown coefficients in the linear span.
This, in turn, reduces the dimensionality of the optimization problem significantly
as the number of basis functions required to reasonably approximate the unknown
function grows slowly as sample size increases.

In the following, we develop a spline-based sieve semiparametric maximum like-
lihood estimation approach in the context of the additive hazards model with case II
interval-censored data. First of all, to overcome the nonnegative constraint on λ0(·),
we define g(t) = log λ0(t). Then the log likelihood is written as

�n(θ, g) =
n∑

i=1

�(θ , g;Oi ),
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where

�(θ, g;Oi )

= Δ1i log
{
1 − exp

(
−

∫ Ui

0
exp{g(s)}ds − θT(UiZi )

)}

+Δ2i log
{
exp

(
−

∫ Ui

0
exp{g(s)}ds − θT(UiZi )

)

− exp
(

−
∫ Vi

0
exp{g(s)}ds − θT(ViZi )

)}

−
(
1 − Δ1i − Δ2i

){ ∫ Vi

0
exp{g(s)}ds + θT(ViZi )

}
.

Suppose that U and V take values in [a, b] where a and b are finite numbers.
Let a ≡ t0 < t1 < . . . < tKn < tKn+1 ≡ b be a partition of [a, b] with
Kn ≈ O(nν) and max0≤ j≤Kn |t j+1 − t j | = O(n−ν) for ν ∈ (0, 0.5). Denote the
set of partition points by TKn = {t1, . . . , tKn }, and Sn(TKn , Kn,m) be the space of
polynomial splines of order m defined in Schumaker (1981) (page 108, Definition
4.1). According to Schumaker (1981) (page 117, Corollary 4.10), there exists a local
basis {Bj : 1 ≤ j ≤ qn} with qn = Kn + m such that for g ∈ Sn(TKn , Kn,m),
we can write g(t) = βTB(t) = ∑qn

j=1 β j B j (t), where β = (β1, . . . , βqn )
T and

B(t) = (B1(t), . . . , Bqn (t))
T. Under some suitable smoothness assumptions, g0,

the true function of g, can be well approximated by g(t) = ∑qn
j=1 β j B j (t) in

Sn(TKn , Kn,m). The resulting sieve log-likelihood can be expressed as

�n(θ ,β) =
n∑

i=1

�(θ ,β;Oi )

with

�(θ ,β;Oi ) = Δ1i log
{
1 − exp

(
−

∫ Ui

0
exp

{ qn∑

j=1

β j B j (s)
}
ds − θT(UiZi )

)}

+Δ2i log
{
exp

(
−

∫ Ui

0
exp

{ qn∑

j=1

β j B j (s)
}
ds − θT(UiZi )

)

− exp
(

−
∫ Vi

0
exp

{ qn∑

j=1

β j B j (s)
}
ds − θT(ViZi )

)}

−
(
1 − Δ1i − Δ2i

){ ∫ Vi

0
exp

{ qn∑

j=1

β j B j (s)
}
ds + θT(ViZi )

}
.
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The sieve maximum likelihood estimator (̂θn, β̂n) can be derived by maximizing
�n(θ, g) over a sieve space Θ ×Gn , whereGn = {g(t) : g(t) = βTB(t) ∈ Sn, ‖β‖ ≤
B} and B is a positive constant. The sieve estimator for g0(t) is ĝ(t) = ∑qn

j=1 β̂ j B j (t).

3 Asymptotic properties

To establish the asymptotic properties of sieve estimator (̂θn, ĝn), we first introduce
some notation and assumptions. Let ‖a‖ denote the Euclidean norm for a vector and
define the following metric in a functional space G which is a class of functions with
bounded pth derivative in [a, b] for p ≥ 1 and p is an integer,

‖g1 − g2‖2G = E

(∫ U

0
{g1(s) − g2(s)}2ds

)

+ E

(∫ V

0
{g1(s) − g2(s)}2ds

)

with any elements g1, g2 ∈ G, and (U , V ) be random monitoring times defined in
Sect. 2. Define the distance between any two elements in Θ × G, τ1 = (θ1, g1) and
τ2 = (θ2, g2) as:

d(τ1, τ2) = ‖τ1 − τ2‖τ = {‖θ1 − θ2‖2 + ‖g1 − g2‖2G}1/2.

Let

�(θ, g;O) = Δ1 log
{
1 − exp

(
−

∫ U

0
exp{g(s)}ds − θT(UZ)

)}

+Δ2 log
{
exp

(
−

∫ U

0
exp{g(s)}ds − θT(UZ)

)

− exp
(

−
∫ V

0
exp{g(s)}ds − θT(VZ)

)}

−(1 − Δ1 − Δ2)
{ ∫ V

0
exp{g(s)}ds + θT(VZ)

}
.

Consider a parametric smooth sub-model with parameter (θ, g(s)), where g(0) = g
and

h = ∂g(s)

∂s
|s=0. (2)

Let H be the class of functions h defined by (2). The score operator for g is

�̇2(θ , g;O)[h] = ∂

∂s
�(θ , g(s);O)|s=0.

For a d-dimensional θ , �̇1(θ, g;O) is the vector of partial derivatives of �(θ , g;O)

with respect to the components of θ . For each component of �̇1, a score operator for
g is defined as an equation above. So the score operator for g corresponding to �̇1 is
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�̇2(θ , g;O)[h] = {
�̇2(θ, g;O)[h1], . . . , �̇2(θ , g;O)[hd ]

}T
,

where h = (h1, . . . , hd)T with hk ∈ H, 1 ≤ k ≤ d.

According to Bickel et al. (1993) (Theorem 1), the efficient score vector for θ

is �̇1(θ , g;O) − �̇2(θ , g;O)[h0], where h0 is an element of Hd that minimizes
E‖�̇1(θ , g;O)−�̇2(θ , g;O)[h]‖2 andh0 is called the least favorable direction. Denote
the efficient score by �∗(θ , g;O) = �̇1(θ , g;O)− �̇2(θ , g;O)[h0]. Then the informa-
tion for θ is

I (θ) = E‖�∗(τ ;O)‖2 = E‖�̇1(θ , g;O) − �̇2(θ , g;O)[h0]‖2. (3)

By similar arguments as Huang and Wellner (1997), we can prove that the least
favorable direction h0 is the unique solution to the integral equation

m(t) −
∫

Q(t, x)m(x)dx = − r(t)

ϕ(t)
(4)

where m(t) = ∫ t
0 exp{g(s)}h(s)ds, the notations Q(t, x), r(t) and ϕ(t) are deferred

to the “Appendix”.
Some regular conditions are needed for the asymptotic results.

A1 (a) There exists a positive number c such that P(V −U ≥ c) = 1; (b) the union of
the supports ofU and V is contained in an interval [a, b], where 0 < a < b < ∞,
and 0 < Λ0(a) < Λ0(b) < ∞.

A2 (a) E(ZZT) is nonsingular; (b)Z is uniformly bounded, that is, there exists z0 > 0
such that P(‖Z‖ ≤ z0) = 1.

A3 The parametric space Θ is a compact subset of Rd .
A4 g0 = log λ0 belongs to G, a class of functions with bounded pth derivative in

[a, b] for p ≥ 1 and p is an integer.
A5 The conditional density f (u, v|z) of (U , V ) given z, has bounded partial deriva-

tives with respect to (u, v). The bounds of these partial derivatives do not depend
on (u, v, z).

A6 For some η ∈ (0, 1) and for all a ∈ R
d , aTvar(Z|U )a ≥ ηaTE(ZZT|U )a and

aTvar(Z|V )a ≥ ηaTE(ZZT|V )a a.s..
A7 (Smoothness of the model). Denote P f = ∫

f (O)dP(O), for some α > 1
satisfying α pν > 1

2 and (θ , g) in the neighborhood {(θ, g) : |θ − θ0| ≤ ηn, ‖g −
g0‖G ≤ Cn−pν},

(a1) |P �̇1(θ , g;O)−P �̇1(θ0, g0;O)−P �̈11(θ0, g0;O)[θ−θ0]−P �̈12(θ0, g0;O)

[g−g0]| = o(|θ −θ0|)+O(‖g−g0‖α), where �̈11(θ0, g0;O) = −�̇1(θ0, g0;O)

�̇T1 (θ0, g0;O), �̈12(θ0, g0;O)[h] = −�̇1(θ0, g0;O)�̇2(θ0, g0;O)[h];

(a2) |P �̇2(θ , g;O)[h0]− P �̇2(θ0, g0;O)[h0]− (P �̈21(θ0, g0;O)[h0])(θ −θ0)−
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P �̈22(θ0, g0;O)[h0, (g − g0)]| = o(|θ − θ0|) + O(‖g − g0‖α), where
�̈21(θ0, g0;O)

[h] = −�̇1(θ0, g0;O)�̇2(θ0, g0;O)[h], �̈22(θ0, g0;O)[h1, h2] = −�̇2(θ0, g0,O)

[h1]�̇2(θ0, g0,O)[h2].
A8 (Positive information). P(�̈12(θ0, g0;O)[h] − P �̈22(θ0, g0;O)[h0, h]) = 0, for

all h ∈ H.

Conditions A1–A5 are the regular conditions for the consistency. Condition A6 can
be justified. Taking U as an example, define λ∗

1 = max{eigenvalue(E(ZZT|U ))} and
λ∗
d = min{eigenvalue(var(Z|U ))}. Under condition A2 that E(ZZT|U ) is a positive

definite matrix, if var(Z|U ) is a positive definite matrix, then it can be proved that

for any a ∈ Rd , aTvar(Z|U )a ≥ aTλ∗
da ≥ λ∗

d
λ∗
1
aTλ∗

1a ≥ λ∗
d

λ∗
1
aTE(ZZT|U )a. Therefore,

Condition A6 holds by taking η ≤ λ∗
d/λ

∗
1. These conditions have been assumed in

many papers on analysis of Case II interval-censored, e.g. Zhang et al. (2010). We can
justify for the rest similarly. As can be seen in Condition A7, the faster convergence
rate pν, the less smoothness of the model α required. Condition A8 is closely related
to the information matrix for a semiparametric model. It can be proved that

P(�̈12(θ0, g0;O)[h] − P �̈22(θ0, g0;O)[h0, h])
= −P{(�̇1(θ0, g0;O) − �̇2(θ0, g0;O)[h0])�̇2(θ0, g0;O)[h]}.

So for k = 1, . . . , d, if �̇2(θ0, g0;O)[h0k] is the projection of the kth element of
�̇1(θ0, g0;O) in the closure of the space generated by {�̇2(θ0, g0;O)[h], h ∈ H}, then
we have conditionA8.Huang (1996) presentsmore detailed explanations of conditions
A7 and A8. Furthermore,

I (θ0) = P(−�̈11(θ0, g0;O) + P �̈21(θ0, g0;O)[h0]) = E(�∗(θ0, g0;O))⊗2.

Under the above conditions, we can obtain the following theorems.

Theorem 1 (Rate of convergence) Let Kn = O(nν), where ν satisfies the restriction
{2(1 + p)}−1 < ν < {2p}−1. Under conditions A1–A6, we have

d (̂τn, τ0) = Op{n−min(pν,(1−ν)/2)}.

The proof of Theorem 1 can be obtained by verifying the conditions of Theorem 1
in Shen and Wong (1994). This Theorem implies that, if ν = (2p+ 1)−1, d (̂τn, τ0) =
Op(n−p/(1+2p)), which is the optimal convergence rate in the nonparametric setting.

Although the overall convergence rate is lower than n− 1
2 , the proposed estimator for

the regression θ0 is still asymptotically normal at the rate of n− 1
2 and attains the

semiparametrical efficiency.

Theorem 2 (Asymptotic normality and efficiency) Suppose conditions A1–A8 hold
and ν satisfies the restriction {2(1 + p)}−1 < ν < {2p}−1. Then

n1/2(̂θn − θ0) −→ N {0, I−1(θ0)}
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in distribution, where I (θ0) is defined in (3).

Based on the general semiparametric information theory which is described in
Bickel et al. (1993), I (θ0) is the information matrix evaluated at θ0. As have been
disscused in Zhang et al. (2010), it is not straightforward to estimate the information
matrix I (θ0), they proposed a least-squares approach to estimate I (θ0) based on (3).
Specifically, with a random sampleO1, . . . ,On and the consistent estimator (̂θn, ĝn),
we can obtain I (θ0) by the minimum value of

ρn(h) = 1

n

n∑

i=1

∥
∥�̇1(̂θn, ĝn;Oi ) − �̇2(̂θn, ĝn;Oi )[h]∥∥2

overH. The detailed descriptions are given in Huang et al. (2008). Theorem 2 can be
shown by checking the conditions presented in Appendix B of Zhang et al. (2010).

4 Simulation study

We conducted simulation studies to evaluate the behavior of the proposed sieve esti-
mator with finite sample size in this section. For comparison, we also consideredWang
et al. method (2010) under their settings, referred as WST (2010) in the following.
The middle-point imputation approach is also considered for comparison, referred as
MD. The failure times T were generated from

λ(t |Z) = λ0(t) + θ0Z(t).

The monitoring variablesU and V were modeled with the Cox-type hazard functions

λU (t |Z) = λ1(t)e
γ0Z(t), and

λV (t |Z) = I (t > U )λ2(t)e
γ0Z(t)

respectively. Here we took Z ∼ Bernoulli(0.5), the baseline hazard functions λ0(t) =
2 or t2/2 , λ1(t) = 4 and λ2(t) = 2. Set the true parameters θ0 = 0.5, 0, or − 0.5 and
γ0 = 0.5, 0, or − 0.5.

The proposed sieve estimates were computed by using the cubic B-splines, where
the number of knots is chosen to be 2 and the knots are placed at the 25th and 75th
quantiles of the distinct observation times of the set {(Ui , Vi ), i = 1, . . . , n}. We used
the R software function “nloptr” to calculate the maximum likelihood estimates of β

and θ . All simulation results are based on 1000 repetitions with the sample size of
n = 100 and n = 200. Tables 1 and 2 represent the simulation results for the proposed
estimator as well as Wang et al. (2010). The MD method performs worse than the
others, therefore, we only present the results for “MD” in Table 1 for comparison. We
present the bias (Bias), the sample standard error (SSE), and the estimated standard
error (ESE) obtained by the least squares method based on the B-splines given in
Huang et al. (2008). Column “CP” in the tables stands for the coverage proportion
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of the 95% confidence intervals. As seen from Table 1, the proposed method and
Wang et al. (2010) are comparable. From both Tables 1 and 2, the standard deviation
of the estimates are slightly higher than the sample standard errors, which leads the
empirical coverage probabilities to exceed the nominal level in most cases. These can
be lessened a bit as the sample size increases. These indicate that the proposed estimate
is asymptotically unbiased and the proposed variance approximation is reasonable.
The method proposed by Wang et al. (2010) yielded nearly unbiased estimates and
the values of CP are far away from 95% in Table 2. In this case, the proposed method
outperforms the WST method.

Considering the special type of generating U and V , we employ a more general
way. The two examination times (U , V ) are generated as follows,

U ∼ Uniform(c1, c2), V ∼ Uniform(U + 0.01, c3).

We vary c1, c2 and c3 to generate two types of censoring rates. The proportions of
left-, interval- and right-censored are (0.25, 0.50, 0.25) and (0.25, 0.25, 0.50). Covari-
ate Z ∼ Uniform(0, 1). We set λ0(t) = t2/2 or et/10. The true regression parameter
θ0 = 0.5, 1 or 1.5 and consider n = 100 and 200. The simulation results are reported
in Tables 3 and 4.

It can be seen from Tables 3 and 4 that the proposed estimates are essentially
unbiased in all settings regardless of the proportions of left-, right-, interval-censoring
rate, expect for the case when n = 100 and λ0(t) = et/10 with right censoring
rate 0.5, while the bias is approaching to 0 as the sample size increase. Although the
overestimation of the standard deviation results in the coverage probabilities large than
95%, this phenomenon can be eliminated as sample size increases. TheWTS estimates
are nearly unbiased, but the CP values are much smaller than 95%. In addition, we
plot in Fig. 1 the averages of estimates of the true cumulative baseline hazard function
(red solid line) by proposed method (black dash line) and MD (blue dash line) method
respectively. It can be seen that the proposedmethod performs better thanMDmethod.
The estimation bias decreases as the sample size increases from n = 100 to n = 200
and then to n = 400.

5 Real data analysis

We applied the proposed method to a HIV data set. The HIV data arise from a 16-
center prospective studies to investigate the risk of HIV-1 infection among people with
hemophilia. These patients were at risk of HIV-1 infection because they received for
their treatments bloodproducts such as factorVIII and factor IXconcentratemade from
the plasma of thousands of donors. In the study, for patients’ HIV-1 infection times,
only interval-censored data are available, and the patients were placed into different
groups according to the average annual dose of the blood products they received.
Patients were categorized as high (> 50,000 U), medium (20,001–50,000 U), low (1–
20,000 U), and none (no factor use) at the time of abstraction. The numbers of patients
in the four groups are 74, 102, 132, and 236, respectively. For the data, the time unit is
year and observation 0 means January 1, 1978, the start of the epidemic and the time
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Table 3 Simulation results and comparison of the proposed sieve MLE with the estimating equation-based
estimator presented inWang et al. (2010) when λ0(t) = t2/2 or et/10, and the proportions of left-, interval-
and right-censored are (0.25, 0.50, 0.25)

λ0(t) θ Method n = 100 n = 200

Bias SSE ESE CP Bias SSE ESE CP

t2/2 0.5 Proposed − 0.031 0.214 0.276 0.968 − 0.015 0.160 0.154 0.951

WST − 0.043 0.394 0.123 0.464 0.019 0.295 0.089 0.464

1 Proposed 0.015 0.278 0.340 0.988 0.000 0.210 0.241 0.966

WST − 0.047 0.493 0.146 0.440 0.050 0.374 0.107 0.436

1.5 Proposed 0.079 0.355 0.454 0.988 − 0.010 0.274 0.295 0.948

WST − 0.016 0.599 0.170 0.420 0.068 0.451 0.123 0.420

et/10 0.5 Proposed − 0.040 0.216 0.347 0.972 − 0.011 0.167 0.188 0.975

WST − 0.023 0.340 0.104 0.444 0.011 0.239 0.075 0.450

1 Proposed − 0.067 0.281 0.342 0.968 − 0.008 0.216 0.217 0.933

WST 0.050 0.430 0.126 0.408 0.029 0.335 0.092 0.422

1.5 Proposed − 0.065 0.323 0.422 0.986 0.009 0.258 0.297 0.977

WST − 0.018 0.541 0.148 0.398 0.060 0.404 0.107 0.434

SSE sample standard error,ESE estimated standard error, andCP coverage proportion of the 95%confidence
intervals

Table 4 Simulation results and comparison of the proposed sieve MLE with the estimating equation-based
estimator presented inWang et al. (2010) when λ0(t) = t2/2 or et/10, and the proportions of left-, interval-
and right-censored are (0.25, 0.25, 0.50)

λ0(t) θ Method n = 100 n = 200

Bias SSE ESE CP Bias SSE ESE CP

t2/2 0.5 Proposed − 0.026 0.194 0.276 0.975 − 0.015 0.136 0.207 0.961

WST 0.017 0.299 0.088 0.466 0.021 0.211 0.064 0.442

1 Proposed 0.042 0.253 0.340 0.973 − 0.025 0.184 0.271 0.960

WST 0.042 0.426 0.125 0.426 0.035 0.300 0.091 0.434

1.5 Proposed − 0.063 0.303 0.504 0.976 − 0.035 0.228 0.319 0.955

WST 0.057 0.575 0.171 0.438 0.051 0.408 0.124 0.458

et/10 0.5 Proposed − 0.061 0.236 0.389 0.976 − 0.015 0.172 0.232 0.950

WST 0.019 0.313 0.092 0.448 0.021 0.224 0.067 0.434

1 Proposed − 0.107 0.335 0.530 0.987 − 0.047 0.243 0.254 0.962

WST 0.040 0.473 0.141 0.450 0.039 0.339 0.102 0.460

1.5 Proposed − 0.158 0.390 0.516 0.988 − 0.070 0.239 0.298 0.966

WST 0.060 0.638 0.192 0.452 0.063 0.464 0.139 0.444

SSE sample standard error,ESE estimated standard error, andCP coverage proportion of the 95%confidence
intervals
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Fig. 1 Estimates of the cumulative of baseline hazard function, the left side is λ0(t) = t2/2 and the right
side is λ0(t) = et/10
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Fig. 2 a The estimate of baseline hazard function for hemophilia data using the proposed cubic B-spline
sieve MLE. b The two estimates of cumulative baseline hazard function for hemophilia data using the
proposed cubic B-spline sieve MLE (black dashed curve) and MD method (red solid curve)
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at which all patients are considered to be nonnegative. Of these, 63 patients were left-
censored, 204 patients were interval-censored, and the remaining 277 patients were
right-censored. Among patients with left-censored event times, the average length
of time from entry to the left censoring time was 6.47 years. Among patients with
interval-censored event times, the average length from entry to the left monitoring
time was 3.44 years and the average length from entry to the right monitoring time
was 5.57 years; and among patients with right-censored event times, the average length
from entry to the right censoring time was 12.49 years.

We treat different level of doses as dummy variables, introducing high, medium,
low variables. For example, the variable high is 1, if the patients falls in the high dose
and 0 otherwise, other variables analogy to high. We fit the semiparametric additive
hazard model

λ(t) = λ0(t) + θT0 Z ,

to analyze the difference of the hazard for the time until the appearance of HIV-1
infection between two groups. Here θ0 = (θ01, θ02, θ03) represents the effect of high,
medium and low level of dose respectively. Applying the proposed method, the cubic
B-splines sieve semiparametric maximum likelihood estimate of θ0 is (0.240, 0.148,
0.026) with the estimated standard error of (0.048, 0.027, 0.008) respectively. Further
the p values for testing θ0 = 0 are all much smaller than 0.001. It can be found that
patients in the high group have 0.240 higher risks, mediums have 0.148 higher risks
and lows have 0.026 higher risks of being infected by HIV-1 than those receiving
no factor VIII concentrate. The corresponding estimated coefficients by middle-point
imputation approach are (0.015, 0.049, 0.068).

Figure 2a shows the estimate of baseline hazard function λ0(t) using the proposed
sieve MLE method. Patients first suffer from drastically increasing risk and then the
hazard gradually decreased with time, which agrees with the results in Kroner et al.
(1994). In Fig. 2b, we plot the cumulative baseline hazard function using the proposed
cubic B-spline sieve MLE (black dashed curve) and the MDmethod (red solid curve).
The two curves indicate that the MD method presents a lower risk estimate than our
proposed method.

6 Conclusions

This article considered a spline-based sieve semiparametric maximum likelihood
approach for an additive hazards model with case II interval censored data. Employ-
ing the B-splines to approximate the log baseline hazard function directly, we reduced
the dimensionality of the estimation problem and removed the constraint of being
non-negative of the baseline hazard function and the monotonicity of the baseline
cumulative hazard function. Hence, the R function “nloptr” can implement the opti-
mization problem for the semiparametric likelihood inference procedure and eased
the burden of computation. We showed the consistency of the proposed estimator
and derived the rate of convergence. Furthermore, the sieve estimator for the regres-
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sion θ0 was asymptotically normal and attained the semiparametric efficiency bound.
However, the asymptotic distribution of λ0(t) is still under investigation.
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is partly supported by the National Natural Science Foundation of China (Nos. 11571263, 11671311,
11771366) and the Research Grant Council of Hong Kong (15301218, 15303319).

Appendix: Proofs of Theorems

First we derive the integral equation for the least favorable direction. Denote

ξ1(U , V , g) =
exp

(
− ∫ U

0 exp{g(s)}ds − θT(UZ)
)

1 − exp
(

− ∫ U
0 exp{g(s)}ds − θT(UZ)

)

ξ2(U , V , g) =
exp

(
− ∫ U

0 exp{g(s)}ds − θT(UZ)
)

exp
(

− ∫ U
0 exp{g(s)}ds − θT(UZ)

)
− exp

(
− ∫ V

0 exp{g(s)}ds − θT(VZ)
)

ξ3(U , V , g) =
exp

(
− ∫ V

0 exp{g(s)}ds − θT(VZ)
)

exp
(

− ∫ U
0 exp{g(s)}ds − θT(UZ)

)
− exp

(
− ∫ V

0 exp{g(s)}ds − θT(VZ)
)

ϕ1(U , V ) =Ez{ξ1(U , V , g) f (U , V |Z)}, ϕ2(U , V ) = Ez{ξ2(U , V , g) f (U , V |Z)}
ϕ3(U , V ) =Ez{ξ3(U , V , g) f (U , V |Z)}, ϕ4(U , V ) = Ez{ f (U , V |Z)}
ψ1(U , V ) =Ez{Zξ1(U , V , g) f (U , V |Z)}, ψ2(U , V ) = Ez{Zξ2(U , V , g) f (U , V |Z)}
ψ2(U , V ) =Ez{Zξ3(U , V , g) f (U , V |Z)}, ψ4(U , V ) = Ez{Z f (U , V |Z)},

where Ez means taking expectation with respect Z. Follow the similar steps of Huang
et al. (2008), define function,

ϕ(t) =
∫ b

t+c
ϕ1(t, x)dx +

∫ b

t+c
ϕ2(t, x)dx +

∫ t−c

a
ϕ3(x, t)dx +

∫ t−c

a
ϕ4(x, t)dx

ψ(t) =
∫ b

t+c
ψ1(t, x)dx +

∫ b

t+c
ψ1(t, x)dx +

∫ t−c

a
ψ3(x, t)dx +

∫ t−c

a
ψ4(x, t)dx

r(t) = − ψ(t)t +
∫ t−c

a
xψ2(x, t)dx +

∫ b

t+c
xψ3(t, x)dx

Q(t, x) ={ϕ2(x, t)Ia≤x≤t−c + ϕ3(t, x)It+c≤x≤b}/ϕ(t).

Then we can attain (4).
Next we present the proof for Theorem 1 and 2. Throughout the following proofs,

for notation simplicity, we denote Pn f = 1
n

∑n
i=1 f (Oi ), M(τ ) = P�(τ ;O) =

P�(θ , g;O) and Mn(τ ) = Pn�(τ ;O) = Pn�(θ , g;O), let C represent a generic
constant that may vary from place to place.
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Proof of Theorem 1 To show the consistency and derive the convergence rate, we just
need to verify the following conditions C1–C3 in Theorem1 of Shen andWong (1994),
which are presented as follows:

C1 inf{d(τ,τ0)≥ε,τ∈Θ×Gn} M(τ0) − M(τ ) ≥ C inf{d(τ,τ0)≥ε,τ∈Θ×Gn} d2(τ, τ0) where
τ0 = (θ0, g0), and C1 holds with α = 1.

C2 sup{d(τ,τ0)≤ε,τ∈Θ×Gn} var(�(τ0;O)−�(τ ;O)) ≤ sup{d(τ,τ0)≤ε,τ∈Θ×Gn} d
2(τ, τ0),

and C2 holds with β = 1.
C3 Let Fn = {�(τ ; ·) : τ ∈ Θ × Gn}, H(ε,Fn) ≤ Cn2γ0 log(1/ε), where H(ε,Fn)

is the L∞-metric entropy of the spaceFn and C3 holds with 2γ0 = ν and γ = 0+.
Condition C1 with α = 1 can be verified by similar contexts as in Zhang et al.

(2010). Condition C2 can be easily obtained through a Taylor expansion combined
with conditions A1–A5. By inequality log(x) ≤ x − 1, we have the following results,
for τ ∈ Θ × Gn ,

E{�(τ0) − �(τ)}2

= E
(
Δ1 log

1 − exp{−φ0(Z,U )}
1 − exp{−φ(Z,U )} + Δ2 log

exp{−φ0(Z,U )} − exp{−φ0(Z, V )}
exp{−φ(Z,U )} − exp{−φ(Z, V )}

−(1 − Δ1 − Δ2){φ0(Z, V ) − φ(Z, V )}
)2

≤ CE
(
Δ1

exp{−φ(Z,U )} − exp{−φ0(Z,U )}
1 − exp{−φ(Z,U )}

+Δ2
exp{−φ0(Z,U )} − exp{−φ0(Z, V )} − (exp{−φ(Z,U )} − exp{−φ(Z, V )})

exp{−φ(Z,U )} − exp{−φ(Z, V )}
(1 − Δ1 − Δ2){φ0(Z, V ) − φ(Z, V )}

)2

≤ CE

[(

Δ1
exp{−φ(Z,U )} − exp{−φ0(Z,U )}

1 − exp{−φ(Z,U )}
)2

+
(

Δ2
exp{−φ0(Z,U )} − exp{−φ0(Z, V )} − (exp{−φ(Z,U )} − exp{−φ(Z, V )})

exp{−φ(Z,U )} − exp{−φ(Z, V )}
)2

+ [(1 − Δ1 − Δ2){φ0(Z, V ) − φ(Z, V )}]2
]

≤ CE
[
(exp{−φ(Z,U )} − exp{−φ0(Z,U )})2

+(exp{−φ0(Z,U )} − exp{−φ0(Z, V )} − (exp{−φ(Z,U )} − exp{−φ(Z, V )}))2
+({φ0(Z, V ) − φ(Z, V )})2]

≤ CE
[
(exp{−φ(Z,U )} − exp{−φ0(Z,U )})2

+(exp{−φ0(Z, V )} − exp{−φ(Z, V )})2 + ({φ0(Z, V ) − φ(Z, V )})2]

≤ CE

[

‖θ0 − θ‖2 +
{∫ U

0
[exp{g0(s)} − exp{g(s)}]ds

}2

+
{∫ V

0
[exp{g0(s)} − exp{g(s)}]ds

}2 ]

≤ CE
[
‖θ0 − θ‖2 +

∫ U

0
[exp{g0(s)} − exp{g(s)}]2ds
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+
∫ V

0
[exp{g0(s)} − exp{g(s)}]2ds

]

≤ CE
[
‖θ0 − θ‖2 +

∫ U

0
[exp{g�(s)}]2{g0(s) − g(s)}2ds

+
∫ V

0
[exp{g�(s)}]2{g0(s) − g(s)}2ds

]

≤ Cd2(τ0, τ ),

where the second and the fourth inequality follow from the inequality (a + b)2 ≤
C(a2+b2), the sixth inequality is obtained by Cauchy–Schwartz inequality and g�(s)
is a value between g0(s) and g(s). With condition C1 which we have already shown,
we can verify condition C2 with β = 1.

Next we verify the condition C3. Let L1 = {�(τ ;O) : τ ∈ Θ × Gn}. We can
easily construct a set of brackets {[�Ls,i (O), �Us,i (O)] : s = 1, 2, . . . , [C(1/ε)d ]; i =
1, 2, . . . , [C(1/ε)Cqn ]} for any �(τ ;O) ∈ L1, Specifically,

�Lsi (O) = Δ1 log
{
1 − exp

(
−

∫ U

0
exp{gi (t)L}dt − ((UZT)θ s −UCε)

)}

+Δ2 log
{
exp

(
−

∫ U

0
exp{gi (t)U }dt − ((UZT)θ s +UCε)

)

− exp
(

−
∫ V

0
exp{gi (t)L}dt − ((VZT)θ s − VCε)

)}

−
(
1 − Δ1 − Δ2

){ ∫ V

0
exp{gi (t)U }dt + ((VZT)θ s + VCε)

}

and

�Usi (O) = Δ1 log
{
1 − exp

(
−

∫ U

0
exp{gi (t)U }dt − ((UZT)θ s +UCε)

)}

+Δ2 log
{
exp

(
−

∫ U

0
exp{gi (t)L}dt − ((UZT)θ s −UCε)

)

− exp
(

−
∫ V

0
exp{gi (t)U }dt − ((VZT)θ s + VCε)

)}

−
(
1 − Δ1 − Δ2

){ ∫ V

0
exp{gi (t)L}dt + ((VZT)θ s − VCε)

}
.

where {[gLi , gUi ] : i = 1, . . . , [(1/ε)]Cqn } is the brackets set for any g ∈ Sn .
Then, using a Taylor expansion along with conditions A1–A3, we can conclude that
the ε-bracketing number for L1 with L1(P)-norm is bounded by C(1/ε)Cqn+d and
H(ε, L1) ≤ Cn−ν log(1/ε). Hence, condition C3 in Theorem 1 of Shen and Wong
(1994) holds with 2γ0 = ν and r = 0+.

With condition A4, for g0 ∈ G, employing Corollary 6.21 in Schumaker (1981),
there exists a function g0n ∈ Sn of orderm ≥ p+2 such that ‖g0n−g0‖∞ = O(n−pν),
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where ‖·‖∞ is the sup-norm, which alsomeans ‖g0n−g0‖G = O(n−pν). Now denote
τ0,n = (θ0, g0,n). Then we have

Mn (̂τn) − Mn(τ0) = Mn (̂τn) − Mn(τ0,n) + Mn(τ0,n) − Mn(τ0)

≥ Pn�(τ0,n;O) − Pn�(τ0;O)

= (Pn − P){�(τ0,n;O) − �(τ0;O)} + M (̂τ0,n) − M(τ0).

Similar as (Zhang et al. 2010), we can conclude that

Mn (̂τn) − Mn(τ0) ≥ op(n
−1/2) − o(1) = −op(1),

and then τ̂n satisfies inequality (1.1) in Shen and Wong (1994).
Next, we derive the convergence rate. We have obtained that condition C3 in The-

orem 1 of Shen and Wong (1994) holds with constants 2γ0 = ν and r = 0+ in
their notation. Furthermore, the constant τ in Theorem 1 of Shen and Wong (1994) is
(1 − ν)/2 − (log log n)/(2 log n). On the other hand, we can pick a ν̄ slightly greater
than ν such that (1−ν̄)/2 ≤ (1−ν)/2−(log log n)/(2 log n) for large n.We still denote
ν̄ by ν and then τ = (1− ν)/2. The Kullback-Leibler distance between τ0 = (θ0, g0)
and τ0,n = (θ0, g0n) is given by

K (τ0, τ0,n)

= P(l(τ0; X) − l(τ0n; X))

= E
([

1 − exp{−φ0n(Z,U )}
]
m

[ 1 − exp{−φ0(Z,U )}
1 − exp{−φ0n(Z,U )}

]

+
[
exp{−φ0n(Z,U )} − exp{−φ0n(Z, V )}

]

×m
[ exp{−φ0(Z,U )} − exp{−φ0(Z, V )}
exp{−φ0n(Z,U )} − exp{−φ0n(Z, V )}

]

+ exp
{

− φ0n(Z, V )
}
m

[ exp{−φ0(Z, V )}
exp{−φ0n(Z, V )}

])

≤ CE([exp{−φ0(Z,U )} − exp{−φ0n(Z,U )}]2
+[exp{−φ0(Z, V )} − exp{−φ0n(Z, V )}]2
+[φ0(Z, V ) − φ0n(Z, V )]2)

≤ C‖g0 − g0n‖22 ≤ C‖g0 − g0n‖2∞ = O(n−2pν),

where m(x) = x log x − x + 1 ≤ x(x − 1) − x + 1 ≤ (x − 1)2. Then, we can obtain

K
1
2 (τ0, τ0n) = O(n−pν). Following Theorem 1 of Shen and Wong (1994), we have

d (̂τn, τ0) = Op{n−min(pν,(1−ν)/2)}, which completes the proof of Theorem 1. �
Proof of Theorem 2 By Zhang et al. (2010), it is sufficient to derive the asymptotic
normality for θ̂n by verifying the following conditions.

B1 Pn �̇1(̂τn;O) = op(n−1/2) and Pn �̇2(̂τn;O)[h0] = op(n−1/2).
B2 (Pn − P){�∗(̂τn;O) − �∗(τ0;O)} = op(n−1/2).
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B3 P{�∗(̂τn;O) − �∗(τ0;O)} = −I (θ0)(̂θn − θ0) + Op(‖̂θn − θ0‖) + op(n−1/2).

Conditions B1 and B2 can be verified by similar arguments as Zhang et al. (2010). As
for condition B3, using (a1) minus (a2) of conditions A7 and A8, we have

P{�∗(̂θn, ĝn;O) − �∗(θ0, g0;O)}
= −I (θ0)(̂θn − θ0) + op(‖̂θn − θ0‖) + O(‖ĝn − g0‖α).

By Theorem 1 and the fact α pν > 1
2 , we have, O(‖ĝn − g0‖α) = op(n−1/2). So B3

holds. Then Theorem 2 can be established follow the general procedure which has
stated in Zhang et al. (2010). �
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