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Abstract Among recent measures for risk management, value at risk (VaR) has been criticized

because it is not coherent and expected shortfall (ES) has been criticized because it is not robust to

outliers. Recently, [Math. Oper. Res., 38, 393–417 (2013)] proposed a risk measure called median

shortfall (MS) which is distributional robust and easy to implement. In this paper, we propose a more

generalized risk measure called quantile shortfall (QS) which includes MS as a special case. QS measures

the conditional quantile loss of the tail risk and inherits the merits of MS. We construct an estimator of

the QS and establish the asymptotic normality behavior of the estimator. Our simulation shows that

the newly proposed measures compare favorably in robustness with other widely used measures such

as ES and VaR.
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1 Introduction

The extreme risk exists in various areas of financial investment, credit and insurance. For in-
vestors and risk managers, predicting the probability of the extreme risk loss is an important
task. A common risk quantification index named as Value at Risk (VaR), measures the maxi-
mum potential loss of a given portfolio over a prescribed holding period at a given confidence
level e. g. 1% or 5%. Assessing VaR amounts to estimating the tail quantiles of the conditional
distribution of financial returns. The parametric, semiparametric and nonparametric models
have been widely used to compute the VaR [9]. Although VaR has become one of the standard
measure of financial market risk, it has been criticized for not being sub-additive [4]. This means
that diversification does not necessarily reduce VaR therefore it is contrast to the framework of
modern portfolio theory. In addition, VaR ignores the statistical properties of significant loss
beyond the quantile point of interest [1–3].

To overcome the shortcomings of VaR, [2] proposed an alternative risk measure named
as Expected Shortfall (ES), which is defined as the conditional expected return given that it
exceeds the VaR. In general, ES has the coherence property except when the underlying loss
distributions have discontinuities. Since the concept of ES was put forward, it has become an
important tool in financial market risk prediction. However, the parametric and semiparametric
methods in the VaR theory provide only estimation for VaR and it is not clear how to calculate
the corresponding ES [10]. The most widely used nonparametric VaR method is historical
simulation, which estimates the VaR as the quantile of the empirical distribution of historical
returns from a moving window of the most recent periods. By this approach, the ES can be
estimated as the mean of the returns, in the moving window, that exceed the VaR estimate.
However, it is difficult to make choice of how many past periods should be included in the moving
window. Using too few observations will lead to large sampling error, while including too many
will result in estimates that are slow to react to changes in the true distribution. Based on the
fact that there exists a one-to-one mapping between expectiles and quantiles, [10] proposed to
estimate ES by using asymmetric least squares methods. [6] proposed the dynamic additive
quantile (DAQ) model for calculating conditional quantiles. However, since ES is defined as
the mean of the tail loss distribution, the ES estimators are not robust [12]. Therefore, [8]
proposed to use the median of shortfall (MS) to measure the risk. Taking into account that the
median estimation is more robust than the mean estimation and is less susceptible to outliers,
MS has a desirable property of distributional robustness with respect to model misspecification
in the sense that a small deviation of the model only results in a small change in the risk
measurement [7].

In practical studies, not only the conditional median but also other conditional quantities
is of interest. It motivates a more general risk measure, referred as Quantile Shortfall (QS),
which measures the conditional quantile loss of the tail risk, in this paper. Compared with
MS, instead of looking only at local properties of specified quantile, QS takes into account both
global model coherence and local approximation. We propose an estimation procedure of QS
and unravel its asymptotic property, which makes statistical inference for the QS feasible.

The paper is organized as follows. In Section 2, we introduce the definition of QS and
propose an estimate procedure for QS. The asymptotic properties of the proposed estimator is
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described. In Section 3, we conduct simulation studies to examine the finite sample performance
of the proposed estimator. Section 4 employs six stocks closing price to evaluate the advantages
of our proposed estimator. Some remarks are concluded in Section 5.

2 Notation and Method

Denote the loss return on the equity of a financial institution as X and that of the entire market
as Y . In practice, we are often interested in understanding the τ (0 < τ < 1) quantile of the
equity of the financial institution X conditioning on the event that the entire market equity
Y is beyond a given cutpoint b. To address this issue, we propose the quantile shortfall (QS),
which is defined as

ξτ (b) = inf{x : G(x; b) ≥ τ},
where G(x; b) = P (X ≤ x|Y > b) is the conditional distribution of X given Y is greater than
b. Obviously, the QS is more robust to some extreme observations than ES. Furthermore, QS
provides a complete description of the equity of the financial institution by varying the quantile
levels. In particular, if τ = 0.5, the median shortfall ξ0.5(b) can be considered as a comparable
counterpart of the ES. As usual, b is chosen to be the higher quantile level of Y .

For i = 1, . . . , n, (Xi, Yi) are assumed to be independent and identically distributed copies
of (X, Y ). We can estimate G(x; b) by its plug-in version

̂Gn(x;̂b) =
∑n

i=1 I(Xi ≤ x, Yi > ̂b)
∑n

i=1 I(Yi > ̂b)
, (2.1)

where ̂b, as the estimator of b, is the (1−p) quantile of observed sample Y1, . . . , Yn. Then, ξτ (b)
can be estimated by

̂ξτ (̂b) = inf{x : ̂Gn(x;̂b) ≥ τ}.
Remark 2.1 For any a = (a1, . . . , ad)T ∈ R

d and b = (b1, . . . , bd)T ∈ R
d, denote a ≤ b

if aj ≤ bj for j = 1, . . . , d. For d-dimensional variable Y , the QS can also be defined as
ξτ (b) = inf{x : G(x; b) ≥ τ}, where G(x; b) = P (X ≤ x|Y > b).

Theorem 2.2 For P (Y > b) > 0, ̂ξτ (̂b) is a consistent estimator of ξτ (b).

Theorem 2.3 Suppose that P (Y > b) > 0, then we have
√

n(̂ξτ (̂b) − ξτ (b)) d−→ N(0, σ2
b ),

where σ2
b = τ−τ2P (Y >b)

P (Y >b)f(ξτ (b) |Y >b)2 and f(x | Y > b) is the conditional density function of X given
Y > b.

Although the asymptotic properties of ̂ξτ (̂b) have been established, we do not apply these
theorems to construct the confidence interval of ξτ (b). Suggested by [11], in practice, the (1−α)
confidence interval can be constructed by following procedure. Let (X(1), Y(1)), . . . , (X(m), Y(m))
be the sub-sample of the observed sample (X1, Y1), . . . , (Xn, Yn) such that Y(i) > ̂b for i =
1, . . . , m. Denote the α1 and α2 quantile among X(1), . . . , X(m) by ξ∗α1

and ξ∗α2
respectively,

where α1 = τ − u1−α/2

√

τ(1−τ)
m , α2 = τ + u1−α/2

√

τ(1−τ)
m and u1−α/2 denote the 1 − α/2

quantile of the standard normal distribution. Then, the (1 − α) confidence interval of ξτ (b) is
given by [ξ∗α1

, ξ∗α2
].
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3 Simulation Studies

We conduct some simulation studies to evaluate the finite sample performance of the proposed
method.

Example 3.1 We first generate (X, Y ) from bivariate normal distribution N(μ, A) and con-
sidered the following cases of (μ, A).

(a) μ = ( 0
0 ), A = ( 2 0.4

0.4 2 ), where X and Y are positively correlated.

(b) μ = ( 0
0 ), A =

(

2 −0.4
−0.4 2

)

, where X and Y are negatively correlated.

(c) μ = ( 0
0 ), A = ( 2 0

0 2 ), where X and Y are uncorrelated.
We consider the sample size n = 400 or 500 and τ = 0.2, 0.5 or 0.7. b is set as the 0.95 quantile
of the distribution Y . In each scenario, we repeat 1000 simulations.

Table 1 summarizes the simulation results under each setup, including the bias, the stan-
dard error and the mean square error of the proposed estimator, the coverage probability and
the average interval length of 95% confidence intervals, also the simulation results of ES and
VaR. It can be seen that all the bias, standard error and mean square error of the proposed
estimator and the average interval length decrease when the sample size increases from 400 to
500. Furthermore, the coverage probabilities of 95% confidence intervals are around the ideal
level. Consequently, our method performs well under the finite sample settings.

Case Statistics
n = 400 n = 500

Bias SE MSE CP LCI Bias SE MSE CP LCI

(a)

QS(τ = 0.2) 0.082 0.415 0.179 0.949 1.856 0.052 0.368 0.138 0.951 1.632

QS(τ = 0.5) −0.017 0.380 0.144 0.948 1.504 −0.004 0.334 0.112 0.957 1.358

QS(τ = 0.7) −0.060 0.382 0.150 0.945 1.620 −0.043 0.348 0.123 0.954 1.437

ES −0.008 0.310 0.096 − − −0.011 0.274 0.075 − −
VaR −0.003 0.106 0.011 − − −0.003 0.097 0.009 − −

(b)

QS(τ = 0.2) 0.074 0.412 0.175 0.949 1.874 0.058 0.391 0.156 0.939 1.646

QS(τ = 0.5) −0.020 0.369 0.137 0.949 1.502 −0.024 0.355 0.127 0.944 1.350

QS(τ = 0.7) −0.071 0.389 0.157 0.946 1.606 −0.041 0.368 0.137 0.948 1.460

ES −0.019 0.305 0.094 − − −0.008 0.287 0.082 − −
VaR −0.005 0.107 0.012 − − −0.003 0.097 0.009 − −

(c)

QS(τ = 0.2) 0.096 0.428 0.193 0.960 1.958 0.079 0.389 0.158 0.953 1.650

QS(τ = 0.5) 0.019 0.382 0.146 0.946 1.518 −0.001 0.347 0.120 0.946 1.368

QS(τ = 0.7) −0.040 0.401 0.162 0.936 1.634 −0.047 0.364 0.134 0.952 1.464

ES 0.009 0.314 0.098 − − −0.002 0.282 0.080 − −
VaR −0.003 0.110 0.012 − − 0.000 0.101 0.010 − −

Bias, SE and MSE: the bias, standard error and mean square error of the proposed estimator; CP: the

coverage probability of 95% confidence intervals; LCI: the average interval length of 95% confidence intervals

Table 1 Simulation results of Example 1
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Example 3.2 We further generate (X, Y ) from non-normal distribution and considered the
joint density function of (X, Y ) taking the following forms.

(a) f(x, y) = 4e−(2x+2y)I(x > 0, y > 0), where X and Y are independent.
(b) f(x, y) = (x + y)I(0 ≤ x ≤ 1, 0 ≤ y ≤ 1), where X and Y are nonindependent.

The simulation results are summarized in Table 2, from which we can draw the similar conclu-
sions.

Case τ
n = 400 n = 500

Bias SE MSE CP LCI Bias SE MSE CP LCI

(a)

QS(τ = 0.2) 0.021 0.058 0.004 0.962 0.216 0.020 0.053 0.003 0.946 0.195

QS(τ = 0.5) 0.012 0.111 0.013 0.940 0.436 0.009 0.102 0.011 0.942 0.396

QS(τ = 0.7) −0.011 0.164 0.027 0.941 0.706 0.001 0.147 0.022 0.950 0.644

ES −0.005 0.110 0.012 − − 0.002 0.099 0.010 − −
VaR −0.176 0.076 0.037 − − −0.178 0.072 0.037 − −

(b)

QS(τ = 0.2) 0.009 0.053 0.003 0.957 0.202 0.006 0.047 0.002 0.945 0.184

QS(τ = 0.5) −0.001 0.053 0.003 0.953 0.204 −0.001 0.047 0.002 0.948 0.182

QS(τ = 0.7) −0.002 0.041 0.002 0.958 0.167 −0.004 0.038 0.001 0.951 0.149

ES 0.001 0.031 0.001 − − 0.000 0.029 0.001 − −
VaR 0.178 0.015 0.032 − − 0.178 0.013 0.032 − −

Bias, SE and MSE: the bias, standard error and mean square error of the proposed estimator; CP: the

coverage probability of 95% confidence intervals; LCI: the average interval length of 95% confidence intervals

Table 2 Simulation results of Example 2

4 Real Data Analysis

In this section, we use MS and ES as risk measures to analyze data include six stocks daily
closing prices of 000625.SZ, 300002.SZ, 601898.SH, 002146.SZ, 002554.SZ, 600030.SH, from
January 4, 2014 to December 31, 2015. The total number of observations is 489 and the
amount of the initial investment is supposed to be 1, 000 million yuan.

We first plot the daily closing price movements of our chosen stock in Figure 1. It can be
seen that the stock closing price has the nature of the peak which is better for us to compare
the robustness of ES and MS.

Further the VaR estimate is calculated based on the daily return rate of each stock.
There are three common models for calculating VaR, namely Historical Simulation, Variance-
Covariance Method and Monte Carlo Simulation. We apply the Variance-Covariance Method
which is mainly used by the Riskmetrics System to get the VaR estimate. The confidence level
is chosen as 95%. Then we calculate ES value, which is the mean of the daily return rate
beyond VaR at 95% level, and, simultaneously, MS which is the median of the daily return rate
beyond VaR at 95% level. We are also inspired to compute the τ -th quantile of the daily return
rate beyond VaR which is defined as the τ -th quantile shortfall (QSτ ). The trend of each stock
return rate and the comparation between ES value and MS value are drawn in Figures 2–7.
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Figure 1 The x-coordinate corresponds to the 489 days from January 4, 2014 to December 31, 2015.

The y-coordinate indicates the closing price of each stock along with time variation. We can see that

the stock price has many peaks and is unstable
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Figure 2 The yield curve of 000625.SZ is haphazard, and the differences between the ES value and

MS values result from the presence of some yield extreme values
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Figure 3 That the MS value is greater than the ES value is obvious because of the presence of the

minimum rate of return, and the average level is reduced
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Figure 4 The yield curve of 601898.SH is also haphazard, and the differences between the ES value

and MS values result from the presence of some extreme values
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Figure 7 The yield curve of 600030.SH is also haphazard, and the differences between the ES value

and MS values result from the presence of some extreme values

We can see that the volatility of the stock return rate has the characteristics of time-varying
and some peaks. The average will be too high or too low because of the outlier observations,
while the median leads to less sensitivity to extreme outlier observations. The estimators of the
real data are listed in Table 3.
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Stock VaR estimate ES estimate MS estimate

000625.SZ 0.051 0.079 0.078

300002.SZ 0.079 0.095 0.099

601898.SH 0.058 0.085 0.087

002146.SZ 0.072 0.091 0.098

002554.SZ 0.055 0.077 0.079

600030.SH 0.056 0.081 0.078

Table 3 The estimators of the real data

Having known the calculated values of each QSτ with τ varying from 0.1 to 0.9, now we
concentrate on the confidence intervals corresponding to each QSτ when τ = 0.2, τ = 0.5 and
τ = 0.7. The confidence level is α = 0.95. Figure 8 shows the results.
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Figure 8 The confidence intervals corresponding to each QSτ when τ = 0.2, τ = 0.5 and τ = 0.7 of

each stock
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5 Concluding Remarks

In this paper, we propose a more generalized risk measure Quantile Shortfall (QS) which is an
extension of MS proposed by [7]. Compared with the MS, QS can capture the global properties
of conditional risk loss while MS only focuses on the central trend. We further propose an easy
implement estimator of QS and study the asymptotic properties of proposed QS estimators.
Simulation studies and real data analysis show the robustness of our proposed method.
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Appendix

Proof of Theorem 2.2 To prove the consistency of ̂ξτ (b), we just need to show that ̂Gn(x;̂b)
converges to G(x; b) in probability for all x. It follows from [11, Lemma 21.7] that |̂b−b| = op(1).
On the other hand, by Glivenko–Cantelli theorem, we have

sup
−∞<t<∞

∣

∣

∣

∣

1
n

n
∑

i=1

I(Yi > t) − P (Y > t)
∣

∣

∣

∣

= op(1).

As a consequence,
∣

∣

∣

∣

∣

1
n

n
∑

i=1

I(Yi > ̂b) − P (Y > b)

∣

∣

∣

∣

∣

= op(1). (5.1)

Utilizing the analogous arguments, we can also conclude that

sup
−∞<x<∞

∣

∣

∣

∣

1
n

n
∑

i=1

I(Xi ≤ x, Yi > ̂b) − P (X ≤ x, Y > b)
∣

∣

∣

∣

= op(1).

Following Slutsky theorem, we have

sup
−∞<x<∞

| ̂G(x;̂b) − G(x; b)| = op(1),

which proves Theorem 2.2.
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Proof of Theorem 2.3 Following [11, Lemma 19.24] and combining the fact |̂b − b| = op(1)
shown in the proof of Theorem 2.2, we have

√
n

(

1
n

n
∑

i=1

I(Xi ≤ x, Yi > ̂b) − P (X ≤ x, Y > b)
)

d−→ N(0, σ2),

where

σ2 = P (X ≤ x, Y > b) − {P (X ≤ x, Y > b)}2.

By (5.1) and Slutsky theorem, we conclude that

√
n( ̂Gn(x;̂b) − G(x; b)) d−→ N

(

0,
σ2

{P (Y > b)}2

)

.

Utilizing Vervaat’s Method in quantile regression [5], we have
√

n(̂ξτ (̂b) − ξτ (b)) d−→ N(0, σ2
b ).

Hence, we complete the proof of Theorem 2.3.


