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Abstract For complete ultrahigh-dimensional data, sure independent screeningmeth-
ods can effectively reduce the dimensionality while retaining all the active variables
with high probability. However, limited screening methods have been developed for
ultrahigh-dimensional survival data subject to censoring.Wepropose a censored cumu-
lative residual independent screening method that is model-free and enjoys the sure
independent screening property. Active variables tend to be ranked above the inac-
tive ones in terms of their association with the survival times. Compared with several
existing methods, our model-free screening method works well with general survival
models, and it is invariant to the monotone transformation of the responses, as well
as requiring substantially weaker moment conditions. Numerical studies demonstrate
the usefulness of the censored cumulative residual independent screening method, and
the new approach is illustrated with a gene expression data set.
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1 Introduction

High-dimensional data often arise in real applications, where the number of variables
pn can be much larger than the sample size n. In the aspect of dimension reduction,
numerous regularization methods have been proposed to select the active variables,
such as the LASSO (Tibshirani 1996), smoothly clipped absolute deviation (Fan andLi
2001), adaptive LASSO (Zou 2006), the Dantzig selector (Candes and Tao 2007), and
the minimax concave penalty (Zhang 2010). These penalized procedures generally
work well for moderate to large pn , which may increase with n at a polynomial
rate. However, the performance of such regularization methods deteriorates and the
associated computation is demanding for ultrahigh dimension pn that increases at an
exponential rate of n (Fan et al. 2009).

To overcome the difficulties associated with ultrahigh dimensionality, Fan and Lv
(2008) proposed a sure independence screening (SIS) method to reduce the dimen-
sion in the context of linear regression models. Fan and Song (2010) extended SIS
to ultrahigh-dimensional generalized linear models, and Fan et al. (2011) studied SIS
for ultrahigh-dimensional additive models. Zhu et al. (2011) proposed a sure indepen-
dent ranking and screening procedure for ultrahigh-dimensional general multi-index
models, which avoids the specification of a particular model structure. Li et al. (2012)
proposed a model-free SIS procedure based on the distance correlation.

For censored ultrahigh-dimensional data, Fan et al. (2010) investigated SIS meth-
ods for the Cox proportional hazards model via ranking variables according to their
respective univariate partial log-likelihoods. Tibshirani (2009) suggested a soft thresh-
olding procedure for the univariate Cox score statistics. Zhao and Li (2012) proposed
a screening method based on the standardized marginal maximum partial likelihood
estimator under the Cox model, and they also provided theoretical justification for
the sure independent screening property. To relax the Cox model assumption, Gorst-
Rasmussen and Scheike (2013) proposed a screening procedure for a general class
of single-index hazard rate models. Based on Kendall’s τ through inverse probability
weighting of censoring, Song et al. (2014) proposed a censored rank independence
screening method, which is robust to outliers and works for a general class of survival
models. Wu and Yin (2015) developed a screening method which is constructed to
identify the covariates that contribute to the conditional quantile of the response.

In a model-free fashion, we propose a censored cumulative residual indepen-
dent screening (CCRIS) procedure for the ultrahigh-dimensional survival data. The
Kaplan–Meier estimator is employed to handle censoring through the inverse proba-
bility weighting scheme. It is known that the martingale-based cumulative residuals
play a central role in the diagnostics of survival models (Lin et al. 1993; Cook et al.
2007). Compared with the existing procedures, our approach enjoys several distinc-
tive advantages. First, our procedure does not rely upon any model assumption and
thus it works for various types of censored regression models. Second, our approach
is invariant under the monotone transformation of the response. Third, we do not
impose any moment conditions on the variables, while other screening procedures
often require the existence of the exponential moments. The proposed CCRIS proce-
dure does not involve any nonparametric approximation except for the Kaplan–Meier
estimator, which greatly facilitates the SIS implementation in real applications.
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The rest of the article is organized as follows. In Sect. 2, we propose the CCRIS
procedure for the ultrahigh-dimensional survival data. We establish the theoretical
properties of the proposed procedure in Sect. 3, and conduct simulation studies to
evaluate its finite sample performance in Sect. 4. A real data example of the mantle
cell lymphoma study is analyzed in Sect. 5, followed by some remarks in Sect. 6. All
technical proofs are presented in the Appendix.

2 Screening procedures

For ultrahigh-dimensional survival data, suppose that the observations {Xi ,�i ,Zi ≡
(Zi1, . . . , Zipn )

T : i = 1, . . . , n} are independent copies of (X,�,Z), where X =
min(T,C), � = I (T ≤ C), T and C respectively denote the failure and censoring
times, and Z = (Z1, . . . , Z pn )

T is the covariate vector. For ease of exposition, assume
that the censoring mechanism is completely random in the sense thatC is independent
of (T,Z).

In an ultrahigh-dimensional setting, consider the conditional survival function
S(t |Z) = P(T > t |Z),where the dimensionality pn , possibly depending on n, greatly
exceeds sample size n, and can be allowed to increase at the exponential rate of n. To
identify the active ones from pn covariates, we define the active covariate set as

A = {k : S(t |Z) depends on Zk, k = 1, . . . , pn} .

Our goal is to recover the active set A as precisely as possible based on the censored
observations.

Weobserve that if the kth covariate Zk does not contribute to the conditional survival
function, it leads to P(T > t |Zk) = P(T > t) for any t . Further calculation yields
that

E

[{
�I (X > t)

G(X)
− H(t)

}∣∣∣∣ Zk

]
= 0,

where G(t) = P(C > t) and H(t) = P(T > t) are the survival functions of the
censoring and failure times, respectively. Motivated by the definition of conditional
expectation, we define

dk(t, z) = E

[{
�I (X > t)

G(X)
− H(t)

}
I (Zk < z)

]
.

The empirical counterpart of dk(t, z) is given by

d̂k(t, z) = n−1
n∑

i=1

[{
�i I (Xi > t)

Ĝn(Xi )
− Ĥn(t)

}
I (Zik < z)

]
,

where Ĝn(t) and Ĥn(t) are the Kaplan–Meier estimators for G(t) and H(t), respec-
tively. We set 0/0 = 1 so that d̂k(t, z) is well-defined. If the conditional survival
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function of T given Zk does not depend on Zk , then d̂k(t, z) is expected to fluctuate
around zero over the two-dimensional space spanned by t and z. Furthermore, d̂k(t, z)
can also be viewed as a censored version of Hoeffding’s independence test between
T and Zk (Hoeffding 1948).

Basedon this rationale,wedefine themarginal screeningutility for the kth predictor,

∥∥d̂k∥∥2n = n−1
n∑
j=1

d̂k
(
X j , Z jk

)2
,

and those predictors with a large value of ‖d̂k‖2n are considered important. As a result,
we define the estimated active set as

Â =
{
k : ∥∥d̂k∥∥2n ≥ cn−α, k = 1, . . . , pn

}
,

where constants c and α are specified in the regularity condition.
An inherent issue with the marginal screening procedures is that predictors that

are jointly related but marginally unrelated with the response may be screened out.
An iterative procedure is developed to alleviate the negative effect arising from such
subtle issue as well as to enhance the performance of the proposed CCRIS method.
For ease of exposition, we denote X = (X1, . . . , Xn)

T, � = (�1, . . . ,�n)
T, and

Z = (Z1, . . . ,Zn)
T. Let ZT be the submatrix of Z, whose columns consist of the

index set T ⊂ {1, . . . , pn}. The iterative version of CCRIS (ICCRIS) proceeds as
follows.

1. We first apply the CCRIS procedure for the data (X,�, Z). The resulting selected
active set is denoted by Â1 whose size is assumed to be q1.

2. Define the residual of predictors matrix Z after screening in the active set Â1 as

Z
(1) =

{
In − ZÂ1

(
Z
T
Â1

ZÂ1

)−1
Z
T
Â1

}
ZÂc

1
,

where In denotes the n × n identity matrix. Applying the CCRIS procedure for
the data (X,�, Z

(1)) yields the selected active set Â2 with size of q2, which is the
subset of Âc

1.
3. Update the selected active set by Â1 ∪ Â2.
4. Repeat steps 2 and 3 N − 1 times until the number of totally selected active

predictors q1 + · · · + qN exceeds a prespecified number. Finally, the selected
active predictor set is Â1 ∪ . . . ∪ ÂN .

3 Theoretical properties

We show that the CCRIS procedure enjoys the sure independent screening and the
ranking consistency properties. We impose two regularity conditions throughout our
discussion.
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C1. There exist constants δ > 0 and τ > 0 such that

P(C ≥ τ) = P(C = τ) ≥ δ.

C2. It holds that
min
k∈A

‖dk‖2n ≥ 2cn−α

for some constants c > 0 and α ∈ [0, 1/2), where ‖dk‖2n = E{dk(X, Zk)
2}.

ConditionC1 is a common assumption in survival analysiswith τ being the end time
of the study. Condition C2 requires that the screening utilities carrying information for
the active predictors should not decay too fast. It is interesting to observe that we do
not impose anymoment conditions for predictors Zi ’s. Comparedwith the exponential
moment condition C1 in Li et al. (2012) and condition C3 in Zhu et al. (2011), ours
is weaker. In the next theorem, we present the sure independent screening property of
the CCRIS procedure for ultrahigh-dimensional survival data.

Theorem 1 Under condition C1, there exists a constant η > 0 such that

P

(
max

1≤k≤pn

∣∣∣∥∥d̂k∥∥2n − ‖dk‖2n
∣∣∣ ≥ cn−α

)
≤ O

{
pn exp

(
−ηn1−2α

)}
.

Under conditions C1 and C2, it holds that

P
(
A ⊆ Â

) ≥ 1 − O
{
an exp

(
−ηn1−2α

)}
,

where an = |A| is the cardinality of A.

Denote ZA = {Z j : j ∈ A} and ZAc = {Z j : j /∈ A}. The ranking consistency of
the CCRIS procedure is summarized as follows.

Theorem 2 Assume that (i) T and ZAc are conditionally independent given ZA and
(ii) ZA is independent of ZAc . Under condition C2, we have that

max
k /∈A

‖dk‖2n < min
k∈A

‖dk‖2n ,

and ‖dk‖2n = 0 if and only if k /∈ A. Furthermore, under conditions C1 and C2, there
exists a constant η > 0 such that

P

(
max
k /∈A

∥∥d̂k∥∥2n < min
k∈A

∥∥d̂k∥∥2n
)

≥ 1 − O
{
pn exp

(
−ηn1−2α

)}
.

This lays out the theoretical foundation that our CCRIS procedure tends to rank the
active predictors above the inactive ones with high probability.
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4 Simulation studies

We examine the finite sample performance of the proposed method and compare
it with existing methods via simulation studies. For brevity, we refer to the feature
aberration at survival times screening procedure of Gorst-Rasmussen and Scheike
(2013) as FAST-SIS, the principled sure independent screening procedure of Zhao
and Li (2012) as P-SIS, and the censored rank independence screening of Song et al.
(2014) as CRIS.

Example 1 We generated survival time Ti from the Cox proportional hazards model
with the conditional hazard function given by

λ(t |Zi ) = λ0(t) exp
(
ZT
i β0

)
,

where the baseline hazard function is set to be λ0(t) = (t − 0.5)2 and the ultrahigh-
dimensional covariateZi = (Zi1, . . . , Zipn ) follows amultivariate normal distribution
with mean 0 and correlation matrix � = (0.8|i− j |) for i, j = 1, . . . , pn . We set the
true parameters β0 = (0.35, 0.35, 0.35, 0.35, 0.35, 0, . . . , 0)T, i.e., only the first
five predictors are active. We took the censoring time C = C̃ ∧ τ , where C̃ was
generated from Unif(0, τ +2). The study duration τ was chosen to yield the desirable
censoring rate of 20%. We took the sample size n = 50, 100 and 200, coupled with
a large number of covariates pn = 2000. For each configuration, we repeated 500
simulations.

To assess the performance of the screening procedures, we employed three eval-
uation criteria (Li et al. 2012). First, we compare the minimum model size, denoted
by S, which includes all the active predictors. Obviously, S can be used to measure
the resulting model complexity for each screening procedure. The closer to the true
minimum model size, the better the screening procedure. We present the 5, 25, 50,
75 and 95% quantiles of S out of 500 replications. Second, for each individual active
predictor, we report its selection proportion, denoted by Pe, for a given model size
among the 500 replications. Third, we exhibit the proportion that all active predictors
are selected simultaneously for a given model size in the 500 replications, denoted by
Pa . An effective screening procedure is expected to yield S close to the true minimum
model size, and both Pe and Pa close to one. We chose the estimated model size to
be d = �n/ log n�, where �x� denotes the integer part of x .

The simulation results for S, Pe and Pa are summarized in Tables 1 and 2. In
general, the performances of the FAST-SIS and P-SIS procedures are comparable.
Both of them outperform the CCRIS and CRIS procedures as they take into account
the Cox proportional model structure while the latter two screening procedures does
not rely on the specific model structure. Nevertheless, the proposed CCRIS method
exhibits more satisfactory results than the CRIS method. All of the four methods
perform equally well when the sample size is increased to 200.

To gain more insight into the proposed CCRIS procedure, we further plot in Fig. 1
the scatter points of d̂k(t, z) for k = 1 and 10 against t and z based on one simulated
dataset from Example 1. For k = 1, the first covariate Z1 is an active one, and thus
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Table 1 Five quantiles of S (the minimum model size needed to include all active predictors) among 500
replications in Example 1 with the true model size p0 = 5

n Method 5% 25% 50% 75% 95%

50 CCRIS 7 21 72 248 1055

CRIS 6 18 72 253 967

FAST-SIS 5 5 6 10 65

P-SIS 5 5 5 8 41

100 CCRIS 5 5 8 20 109

CRIS 5 5 7 13 114

FAST-SIS 5 5 5 5 6

P-SIS 5 5 5 5 6

200 CCRIS 5 5 5 6 9

CRIS 5 5 5 5 7

FAST-SIS 5 5 5 5 5

P-SIS 5 5 5 5 5

CCRIS, the proposed censored cumulative residual independent screening procedure; CRIS, the censored
rank independence screening procedure of Song et al. (2014); FAST-SIS, the feature aberration at survival
times screening procedure of Gorst-Rasmussen and Scheike (2013); P-SIS, the principled sure independent
screening procedure of Zhao and Li (2012)

Table 2 Selection proportions Pe for each active predictor and Pa for all active predictors among 500
replications in Example 1

n Method Pe Pa

X1 X2 X3 X4 X5

50 CCRIS 0.408 0.572 0.628 0.548 0.340 0.148

CRIS 0.464 0.652 0.660 0.592 0.398 0.172

FAST-SIS 0.892 0.976 0.990 0.990 0.894 0.798

P-SIS 0.918 0.990 1.000 0.998 0.934 0.864

100 CCRIS 0.860 0.954 0.982 0.960 0.868 0.754

CRIS 0.896 0.970 0.978 0.962 0.884 0.816

FAST-SIS 0.998 1.000 1.000 1.000 0.998 0.996

P-SIS 0.998 1.000 1.000 1.000 1.000 0.998

200 CCRIS 0.996 0.998 0.998 1.000 0.992 0.990

CRIS 0.996 1.000 1.000 1.000 0.998 0.994

FAST-SIS 1.000 1.000 1.000 1.000 1.000 1.000

P-SIS 1.000 1.000 1.000 1.000 1.000 1.000

CCRIS, the proposed censored cumulative residual independent screening procedure; CRIS, the censored
rank independence screening procedure of Song et al. (2014); FAST-SIS, the feature aberration at survival
times screening procedure of Gorst-Rasmussen and Scheike (2013); P-SIS, the principled sure independent
screening procedure of Zhao and Li (2012)

the scatter points of d̂1(t, z) substantially deviate from the zero surface. For k = 10,
the tenth covariate Z10 is not an active predictor, and thus those of d̂10(t, z) for the
inactive covariate undulate around the zero surface.
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Fig. 1 The scatter points of d̂k (t, z) based on one simulated dataset with the sample size n = 100 in
Example 1

Example 2 To examine the performance of the proposed screening procedure for cen-
sored nonlinear survival models with interactions, we generated the log survival times
from the model

log T = (2 + sin Z1)
2 + 0.5(1 + Z5)

−3 + 3(Z2
10 + Z10) + 0.5Z1Z10 + ε,

where the error ε was generated from the standard normal distribution. The remain-
ing setups were kept the same as those in Example 1. The corresponding results are
summarized in Tables 3 and 4, from which we can see that the CCRIS method is
able to capture the nonlinear covariate effects with interactions and delivers favorable
screening results. Specifically, the CCRIS method outperforms the other three screen-
ing procedures, especially the model-dependent FAST-SIS and P-SIS procedures, in
terms of the minimum model size required to cover all the active covariates and the
proportion that all active predictors are selected for a given model size.

We further evaluate the performance of the proposed screening method when some
predictors are categorical variables. To be specific, predictor Z1 was generated from the
Bernoulli distribution with success probability 0.5, or the discrete uniform distribution
over {−2,−1.5, . . . , 2, 2.5}, which is a categorical variable taking each value with an
equal probability of 0.1. The remaining (pn−1) covariates (Z2, . . . , Z pn ) still follows
a multivariate normal distribution with mean 0 and correlation matrix � = (0.8|i− j |)
for i, j = 1, . . . , (pn − 1). Simulation results are summarized in Table 5, from which
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Table 3 Five quantiles of S (the minimum model size needed to include all active predictors) among 500
replications in Example 2 with the true model size p0 = 3

n Method 5% 25% 50% 75% 95%

50 CCRIS 21 106 327 821 1521

CRIS 125 583 1157 1695 1944

FAST-SIS 110 596 1130 1577 1933

P-SIS 120 550 1140 1581 1933

100 CCRIS 6 18 71 253 1129

CRIS 61 402 1019 1602 1929

FAST-SIS 83 493 1017 1528 1920

P-SIS 64 467 972 1514 1928

200 CCRIS 4 7 12 35 287

CRIS 40 283 797 1412 1930

FAST-SIS 62 349 848 1380 1866

P-SIS 54 321 780 1369 1859

CCRIS, the proposed censored cumulative residual independent screening procedure; CRIS, the censored
rank independence screening procedure of Song et al. (2014); FAST-SIS, the feature aberration at survival
times screening procedure of Gorst-Rasmussen and Scheike (2013); P-SIS, the principled sure independent
screening procedure of Zhao and Li (2012)

Table 4 Selection proportions
Pe for each active predictor and
Pa for all active predictors
among 500 replications in
Example 2

n Method Pe Pa

X1 X5 X10

50 CCRIS 0.370 0.104 0.366 0.026

CRIS 0.156 0.022 0.180 0.000

FAST-SIS 0.142 0.004 0.250 0.000

P-SIS 0.166 0.010 0.174 0.000

100 CCRIS 0.796 0.358 0.796 0.284

CRIS 0.412 0.038 0.452 0.022

FAST-SIS 0.372 0.016 0.602 0.014

P-SIS 0.372 0.022 0.444 0.018

200 CCRIS 0.984 0.770 0.980 0.760

CRIS 0.770 0.052 0.740 0.046

FAST-SIS 0.776 0.032 0.912 0.030

P-SIS 0.754 0.034 0.842 0.026

CCRIS, the proposed censored
cumulative residual independent
screening procedure; CRIS, the
censored rank independence
screening procedure of Song
et al. (2014); FAST-SIS, the
feature aberration at survival
times screening procedure of
Gorst-Rasmussen and Scheike
(2013); P-SIS, the principled
sure independent screening
procedure of Zhao and Li (2012)

we can see that theCCRISmethod is able to capture the discrete predictor and performs
overwhelmingly superior to the other three screening procedures.

We also consider the covariate-dependent censoring scheme where the completely
random censoring mechanism does not hold. In particular, the censoring times C
were generated from a uniform distribution if Z1 > 1, otherwise from an exponential
distribution. With sample size n = 100, Table 6 shows that the proposed method
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Table 5 The median of the minimum model size S, S50%, and the selection proportions Pe and Pa in
Example 2 with Z1 being a discrete predictor

Z1 n Method S50% Pe Pa

X1 X5 X10

Bernoulli 100 CCRIS 210 0.648 0.160 0.848 0.102

CRIS 1098 0.654 0.010 0.478 0.002

FAST-SIS 1139 0.318 0.020 0.560 0.002

P-SIS 1125 0.320 0.022 0.414 0.002

200 CCRIS 54 0.930 0.446 0.982 0.434

CRIS 953 0.948 0.022 0.784 0.012

FAST-SIS 1023 0.664 0.006 0.916 0.002

P-SIS 984 0.670 0.030 0.818 0.012

Categorical 100 CCRIS 265 0.750 0.152 0.706 0.112

CRIS 1302 0.112 0.026 0.344 0.000

FAST-SIS 1039 0.492 0.012 0.502 0.004

P-SIS 1016 0.522 0.024 0.350 0.006

200 CCRIS 64 0.950 0.438 0.962 0.414

CRIS 1227 0.266 0.026 0.650 0.002

FAST-SIS 1061 0.892 0.012 0.824 0.008

P-SIS 1009 0.916 0.014 0.710 0.004

CCRIS, the proposed censored cumulative residual independent screening procedure; CRIS, the censored
rank independence screening procedure of Song et al. (2014); FAST-SIS, the feature aberration at survival
times screening procedure of Gorst-Rasmussen and Scheike (2013); P-SIS, the principled sure independent
screening procedure of Zhao and Li (2012)

Table 6 Five quantiles of the minimum model size S, and selection proportions Pe and Pa in Example 2
with sample size n = 100 under the covariate-dependent censoring scheme

Method 5% 25% 50% 75% 95%

CCRIS 7 26 92 398 1254

CRIS 57 379 981 1581 1950

FAST-SIS 119 569 997 1527 1906

P-SIS 93 553 971 1519 1896

Pe Pa

X1 X5 X10

CCRIS 0.740 0.288 0.710 0.226

CRIS 0.442 0.018 0.428 0.014

FAST-SIS 0.368 0.010 0.556 0.008

P-SIS 0.382 0.020 0.424 0.012

CCRIS, the proposed censored cumulative residual independent screening procedure; CRIS, the censored
rank independence screening procedure of Song et al. (2014); FAST-SIS, the feature aberration at survival
times screening procedure of Gorst-Rasmussen and Scheike (2013); P-SIS, the principled sure independent
screening procedure of Zhao and Li (2012)

123



Censored cumulative residual independent screening… 283

Table 7 Five quantiles of the
minimum model size S and
selection proportion Pa for all
active predictors among 500
replications in Example 3

p0 Method 5% 25% 50% 75% 95% Pa

1 CCRIS 1 1 1 11 177 0.822

CRIS 1 2 15 166 1286 0.538

FAST-SIS 1 1 2 20 240 0.752

P-SIS 1 1 3 20 272 0.756

5 CCRIS 5 5 7 24 278 0.734

CRIS 5 7 28 233 1614 0.452

FAST-SIS 5 6 18 76 494 0.556

P-SIS 5 7 21 100 556 0.504

10 CCRIS 11 28 90 291 1232 0.216

CRIS 16 76 310 938 1933 0.086

FAST-SIS 13 55 185 546 1627 0.114

P-SIS 14 59 191 562 1636 0.106

15 CCRIS 32 159 424 942 1717 0.014

CRIS 77 365 1009 1722 1972 0.012

FAST-SIS 51 246 618 1335 1883 0.012

P-SIS 48 260 651 1342 1884 0.016

CCRIS, the proposed censored
cumulative residual independent
screening procedure; CRIS, the
censored rank independence
screening procedure of Song
et al. (2014); FAST-SIS, the
feature aberration at survival
times screening procedure of
Gorst-Rasmussen and Scheike
(2013); P-SIS, the principled
sure independent screening
procedure of Zhao and Li (2012)

delivers satisfactory results even when the completely random censoring assumption
does not hold.

Example 3 To assess the performance of the model size selection rule �n/ log n�, we
generated the survival times from the nonlinear model,

log T =
p0∑
i=1

{
(1 + Zi )

−1 + 1.5Zi

}
+ ε,

and considered the true model size p0 = 1, 5, 10, and 15, respectively, where the error
ε was generated from the standard normal distribution. The remaining setupswere kept
the same as those in Example 1. Simulation results under sample size n = 100 are
summarized in Table 7. It shows that if the true model size p0 is increased while
keeping the model size selection rule [n/ log n] fixed, the performances of these four
methods would deteriorate. Nevertheless, the proposed CCRIS method outperforms
the others.

Example 4 To assess the performance of ICCRIS procedure, we generated the survival
times T from the following transformation model adapted from Song et al. (2014),

H(T ) = −βTZ + ε,

where β = (5, 5, 5,−15ρ1/2, 0, . . . , 0)T, H(t) = log{0.5(e2t −1)} and ε follows the
standard normal distribution.Wegenerated the ultrahigh-dimensional covariateZ from
amultivariate normal distributionwithmean 0 and correlationmatrix� = (σi j )pn×pn ,
where σi i = 1 for i = 1, . . . , pn , σi4 = σ4i = ρ1/2 for i = 4, and σi j = ρ for
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Table 8 The selection
proportions Pe for each active
predictors and Pa for all active
predictors among 500
replications in Example 4

ρ Method Pe Pa

X1 X2 X3 X4

0 ICCRIS 0.926 0.930 0.912 0.020 0.848

CCRIS 0.936 0.936 0.930 0.030 0.858

0.2 ICCRIS 0.960 0.960 0.960 0.704 0.610

CCRIS 0.890 0.882 0.864 0.000 0.000

0.4 ICCRIS 0.966 0.960 0.948 0.774 0.680

CCRIS 0.804 0.808 0.802 0.000 0.000

0.6 ICCRIS 0.956 0.958 0.944 0.852 0.734

CCRIS 0.738 0.702 0.712 0.000 0.000

0.8 ICCRIS 0.970 0.960 0.956 0.902 0.814

CCRIS 0.608 0.592 0.590 0.000 0.000ICCRIS denotes the iterative
version of CCRIS

i = j, i = 4, j = 4. We vary the value of ρ to be 0, 0.2, 0.4, 0.6 and 0.8, with
a larger ρ yielding a higher collinearity. Based on such well-designed correlation
matrix, we observe that, when ρ = 0, the active predictor Z4 is jointly related but
marginally unrelated with the transformed survival time H(T ). On the other hand, Z4
is an inactive predictor when ρ = 0. For the ICCRIS procedure, we choose N = 2 and
set q1 = �d/2� and q2 = d−q1. Simulation results of the proposed CCRIS procedure
and its iterative counterpart with sample size n = 200 and censoring rate 15% are
summarized in Table 8. We can see that the ICCRIS and CCRIS procedures perform
equally well when Z4 is an indeed inactive predictor for ρ = 0. Whereas the ICCRIS
procedure exhibits superior performances over the CCRIS procedure for ρ varying
from 0.2 to 0.8, showing that the ICCRIS procedure can retain those predictors which
are jointly but not marginally importation.

5 A real example

Asan illustration,we applied the proposedCCRISmethod to themantle cell lymphoma
(MCL) data, which was studied by Rosenwald et al. (2003). The gene expression data
set contains expressionvalues of 8810 cDNAelements,which is available fromwebsite
of http://llmpp.nih.gov/MCL/. The primary goal of this study was to identify genes
that have great influence on patients’ survival risk. Among 101 untreated patients with
no history of previous lymphoma, 92 were classified as having MCL based on the
morphologic and immunophenotypic criteria. During the follow-up, 64 patients died
of MCL and the other 28 patients were censored, which led to a censoring rate of
30.4%. The mean survival time was 2.8 years (ranging from 0.02 to 14.05 years).
We took the survival times as the response and excluded the genes with missing
values. We applied the CCRIS, CRIS, P-SIS and FAST-SIS approaches to screen
the important ones among the 6312 genes, respectively. We set the model size to be
�92/ log(92)� = 20 and summarized the first 20 screened gene unique identifications
(UNIQIDs) in Table 9. It shows that the gene UNIQIDs 31420 (i.e., Aurora kinase
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Table 9 The screened
UNIQIDs of genes for the
mantle cell lymphoma study

CCRIS CRIS P-SIS FAST-SIS

27116 30334 30157 30157

30917 28872 34771 27095

15936 17326 27095 34771

17174 28990 27019 34790

17198 17370 27762 32699

24404 34790 30282 29330

16312 34771 16587 28346

17176 31420 28872 24713

31420 27049 28346 16587

19325 25234 34790 27762

17917 16528 24723 15936

34790 32699 25234 30282

30142 30157 34687 25234

16020 30282 32699 24723

24758 27095 24734 27049

24656 32187 24656 27019

30334 33549 16528 28872

17326 24710 17343 29209

28148 24404 27049 31420

23887 17176 31420 17343

CCRIS, the proposed censored
cumulative residual independent
screening procedure; CRIS, the
censored rank independence
screening procedure of Song
et al. (2014); FAST-SIS, the
feature aberration at survival
times screening procedure of
Gorst-Rasmussen and Scheike
(2013); P-SIS, the principled
sure independent screening
procedure of Zhao and Li (2012)

B) and 34790 (i.e., Thymidine kinase 1, soluble) were selected by all the considered
four screening methods, indicating that these genes could be strongly associated with
patients’ survival times. Moreover, six of the top 20 genes selected by the mode-free
screening method CRIS were also selected by the proposed CCRIS method, which
indicates that the results of the two model-free screening methods largely coincide
with each other. As a result, we conclude that the proposed method offers a reliable
selection result for the MCL data.

6 Conclusion

We propose the censored cumulative residual independent screening procedure for
variable selection with the ultrahigh-dimensional survival data. Its sure independent
screening properties are established when the number of covariates diverges at an
exponential rate of the sample size. Numerical studies demonstrate that the perfor-
mances of the proposed method are competitive with the existing model-dependent
procedures such as the FAST-SIS and P-SIS procedures. However, for the compli-
cated nonlinear models which could be more feasible to capture the characteristic of
the ultrahigh-dimensional survival data, the proposed model-free screening procedure
delivers its distinctive advantages over the existing ones. An iterative procedure is also
developed to enhance the performance of the proposed CCRIS method in the situation
where covariates are jointly but not marginally important.
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Appendix: Theoretic Proofs

Proof of Theorem 1 Let

d̃k(t, z) = n−1
n∑

i=1

[{
�i I (Xi > t)

G(Xi )
− H(t)

}
I (Zik < z)

]

and define

∥∥d̃k∥∥2n = n−1
n∑
j=1

d̃k
(
X j , Z jk

)2
.

Straightforward calculations entail that

∥∥d̃k∥∥2n = (n − 1)(n − 2)

n2

(
1

n − 2
D̃k1 + D̃k2

)
, (A.1)

where

D̃k1 = 2

n(n − 1)

∑
i< j

1

2

[{
�i I (Xi > X j )

G(Xi )
− H(X j )

}2
I (Zik < Z jk)

+
{

� j I (X j > Xi )

G(X j )
− H(Xi )

}2
I
(
Z jk < Zik

)]

≡ 2

n(n − 1)

∑
i< j

h1
(
Oik;O jk;G, H

)
,

D̃k2 = 6

n(n − 1)(n − 2)

∑
i< j<l

1

3

[{
�i I (Xi > X j )

G(Xi )
− H(X j )

}{
�l I (Xl > X j )

G(Xl )
− H(X j )

}

×I (Zik < Z jk)I (Zlk < Z jk) +
{

�i I (Xi > Xl )

G(Xi )
− H(Xl )

}{
� j I (X j > Xl )

G(X j )
− H(Xl )

}

×I (Zik < Zlk)I (Z jk < Zlk) +
{

� j I (X j > Xi )

G(X j )
− H(Xi )

}{
�l I (Xl > Xi )

G(Xl )
− H(Xi )

}

×I (Z jk < Zik)I (Zlk < Zik)

]

≡ 6

n(n − 1)(n − 2)

∑
i< j<l

h2
(
Oik;O jk;Olk;G, H

)
,
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Oik = (Xi ,�i , Zik), and the definitions of kernels h1(Oik;O jk;G, H) and
h2(Oik;O jk;Olk;G, H) in the U -statistics are clear from the context. Likewise, we
have

∥∥d̂k∥∥2n = (n − 1)(n − 2)

n2

(
1

n − 2
D̂k1 + D̂k2

)
, (A.2)

where D̂ks, s = 1, 2, are obtained by replacing G and H in D̃ks with Ĝn and Ĥn

respectively.
First, we derive the exponential tail probability bound of P

(∣∣‖d̂k‖2n − ‖d̃k‖2n
∣∣ ≥

υn−α
)
for any positive constants υ and α ∈ [0, 1/2). Consider P(|D̂k1 − D̃k1| ≥

υn−α/2) and note that

∣∣D̂k1 − D̃k1
∣∣ ≤ 2

n(n − 1)

∑
i< j

∣∣h1 (Oik;O jk; Ĝn, Ĥn
)− h1

(
Oik;O jk;G, H

)∣∣

≤ 1

n(n − 1)

∑
i< j

⎡
⎣
∣∣∣∣∣
{

�i I (Xi > X j )

Ĝn(Xi )
− Ĥn(X j )

}2
−
{

�i I (Xi > X j )

G(Xi )
− H(X j )

}2∣∣∣∣∣

+
∣∣∣∣∣∣
{

� j I (X j > Xi )

Ĝn(X j )
− Ĥn(Xi )

}2

−
{

� j I (X j > Xi )

G(X j )
− H(Xi )

}2∣∣∣∣∣∣
⎤
⎦ .

By condition C1 and the boundness of the indicator function, there exists a constant
c1 such that

∣∣∣∣∣
{

�i I (Xi > X j )

Ĝn(Xi )
− Ĥn(X j )

}2
−
{

�i I (Xi > X j )

G(Xi )
− H(X j )

}2∣∣∣∣∣
≤ c1

{∣∣Ĝn(Xi ) − G(Xi )
∣∣+ ∣∣Ĥn(X j ) − H(X j )

∣∣} .

Denoting c2 = min{G(τ ), H(τ )}, we immediately have

∣∣D̂k1 − D̃k1
∣∣ ≤ c1

n

n∑
i=1

[∣∣∣Ĝn(Xi ) − G(Xi )
∣∣∣+ ∣∣∣Ĥn(Xi ) − H(Xi )

∣∣∣]

≤ c1
c2n

n∑
i=1

[∣∣∣H(Xi )
{
Ĝn(Xi ) − G(Xi )

}∣∣∣+
∣∣∣G(Xi )

{
Ĥn(Xi ) − H(Xi )

}∣∣∣]

≤ c3 sup
0≤t≤τ

∣∣∣H(t)
{
Ĝn(t) − G(t)

}∣∣∣+ c3 sup
0≤t≤τ

∣∣∣G(t)
{
Ĥn(t) − H(t)

}∣∣∣,
(A.3)

where c3 = c1/c2.
Using the similar argument, along with some tedious calculation, we also have

∣∣∣D̂k2 − D̃k2

∣∣∣ ≤ c4 sup
0≤t≤τ

∣∣∣H(t)
{
Ĝn(t) − G(t)

}∣∣∣+ c4 sup
0≤t≤τ

∣∣∣G(t)
{
Ĥn(t) − H(t)

}∣∣∣,
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where c4 is a constant. It follows from (A.3) and Theorem 1 of Bitouzé et al. (1999)
that

P
(∣∣∣D̂k1 − D̃k1

∣∣∣ ≥ 2υn−α
)

≤ P

(
c3 sup

0≤t≤τ

∣∣H(t)
{
Ĝn(t) − G(t)

}∣∣ ≥ υn−α

)

+P

(
c3 sup

0≤t≤τ

∣∣G(t)
{
Ĥn(t) − H(t)

}∣∣ ≥ υn−α

)

≤ 5 exp
(
−2c−2

3 υ2n1−2α + μ1c
−1
3 υn1/2−α

)
, (A.4)

where μ1 is a constant. Similarly, we also have

P
(∣∣D̂k2 − D̃k2

∣∣ ≥ 2υn−α
) ≤ 5 exp

(
−2c−2

4 υ2n1−2α + μ2c
−1
4 υn1/2−α

)
, (A.5)

where μ2 is a constant. Combining (A.1), (A.2), (A.4) and (A.5), we have

P
(∣∣∣∥∥d̂k∥∥2n − ∥∥d̃k∥∥2n

∣∣∣ ≥ 4υn−α
)

= P

{∣∣∣∣n − 1

n2
(
D̂k1 − D̃k1

)+ (n − 1)(n − 2)

n2
(
D̂k2 − D̃k2

)∣∣∣∣ ≥ 4υn−α

}

≤ P
{∣∣D̂k1 − D̃k1

∣∣ ≥ 2υn1−α
}

+ P
{∣∣D̂k2 − D̃k2

∣∣ ≥ 2υn−α
}

≤ 5 exp
(
−2c−2

3 υ2n3−2α + μ1c
−1
3 υn3/2−α

)

+5 exp
(
−2c−2

4 υ2n1−2α + μ2c
−1
4 υn1/2−α

)
. (A.6)

Second, we derive the exponential tail probability bound of P
(∣∣‖d̃k‖2n − ‖dk‖2n

∣∣ ≥
υn−α

)
for any positive constants υ and 0 ≤ α < 1/2.

Note that ‖dk‖2n = E{h2(Oik;O jk;Olk;G; H)} = E(D̃k2). Employing the
Markov inequality, we obtain that, for any ε > 0 and ξ > 0,

P
(
D̃k2 − ‖dk‖2n ≥ ε

)
≤ exp(−ξε) exp

(
−ξ ‖dk‖2n

)
E
{
exp(ξ D̃k2)

}
.

Serfling (1980, Section 5.1.6) showed that any U -statistic can be represented as an
average of averages of i.i.d. random variables. We can rewrite

D̃k2 = (n!)−1n!D2 (O1k; · · · ;Onk;G, H) ,

where n! denotes the summation over all possible permutations of (1, . . . , n), and
each D2(O1k; · · · ;Onk;G, H) is an average of m ≡ [n/3] i.i.d. random vari-
ables. Denoteψ(ξ) = E[exp{ξh2(Oik;O jk;Olk;G, H)}]. Jensen’s inequality yields
that
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E
{
exp

(
ξ D̃k2

)} = E
[
exp

{
ξ(n!)−1n!D2 (O1k; · · · ;Onk;G, H)

}]

≤ (n!)−1n!E
[
exp {ξD2 (O1k; · · · ;Onk;G, H)}]

= ψm(ξ/m).

As a result,

P
(
D̃k2 − ‖dk‖2n ≥ ε

)
≤ exp(−ξε) exp

(
−ξ ‖dk‖2n

)
ψm(ξ/m)

= exp(−ξε)
{
E
(
exp

[
m−1ξ

{
h2
(
Oik;O jk;Olk;G, H

)− ‖dk‖2n
}])}m

.

Under condition C1, there exists a positive constant c5 such that P(|h2| < c5) = 1. It
follows from Lemma 1 in Li et al. (2012) that

E
{
exp

[
m−1ξ

{
h2
(
Oik;O jk;Olk;G, H

)− ‖dk‖2n
}]}

≤ exp
{
c25ξ

2/(2m2)
}

,

which immediately entails that

P
(
D̃k2 − ‖dk‖2n ≥ ε

)
≤ exp

(
−ε2m

2c25

)
,

by choosing ξ = εm/c25. It further follows from the symmetry of the U -statistic that

P
(∣∣∣D̃k2 − ‖dk‖2n

∣∣∣ ≥ ε
)

≤ 2 exp

(
−ε2m

2c25

)
.

Using the similar argument, we also have

P
(∣∣D̃k1 − E(D̃k1)

∣∣ ≥ ε
) ≤ 2 exp

(
−ε2m∗

2c26

)
,

where c6 is a positive constant such that P(|h1| < c6) = 1 andm∗ = [n/2]. Obviously,
under condition C1, there exist constants c7 and c8 such that 0 ≤ ‖dk‖2n = E(D̃k2) ≤
E |D̃k2| ≤ c7 and 0 ≤ E(D̃k1) ≤ E |D̃k1| ≤ c8 for any 1 ≤ k ≤ pn . Taking ε = υn−α

and n large enough such that (3n − 2)n−2E(D̃k2) < υn−α and (n − 1)n−2E(D̃k1) <

υn−α , we have

P
(∣∣∣∥∥d̃k∥∥2n − ‖dk‖2n

∣∣∣ ≥ 4υn−α
)

= P

{∣∣∣∣ (n − 1)(n − 2)

n2

(
D̃k2 − ‖dk‖2n

)
− 3n − 2

n2
E(D̃k2)

+n − 1

n2
{
D̃k1 − E

(
D̃k1

)}+ n − 1

n2
E(D̃k1)

∣∣∣∣ ≥ 4υn−α

}
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≤ P
(∣∣D̃k1 − E(D̃k1)

∣∣ ≥ υn1−α
)

+ P
(∣∣∣D̃k2 − ‖dk‖2n

∣∣∣ ≥ υn−α
)

≤ 2 exp

(
−υ2n2−2αm∗

2c26

)
+ 2 exp

(
−υ2n−2αm

2c25

)

≤ 2 exp
(
−c9υ

2n3−2α
)

+ 2 exp
(
−c10υ

2n1−2α
)

, (A.7)

by noting that m∗ ≥ m ≥ n/4, where c9 = 1/(8c26) and c10 = 1/(8c25). It follows
from (A.6) and (A.7) that

P
(∣∣∣∥∥d̂k∥∥2n − ‖dk‖2n

∣∣∣ ≥ 8υn−α
)

≤ P
(∣∣∣∥∥d̂k∥∥2n − ∥∥d̃k∥∥2n

∣∣∣ ≥ 4υn−α
)

+ P
(∣∣∣∥∥d̃k∥∥2n − ∥∥dk∥∥2n

∣∣∣ ≥ 4υn−α
)

≤ 5 exp
(
−2c−2

3 υ2n3−2α + μ1c
−1
3 υn3/2−α

)

+5 exp
(
−2c−2

4 υ2n1−2α + μ2c
−1
4 υn1/2−α

)

+2 exp
(
−c9υ

2n3−2α
)

+ 2 exp
(
−c10υ

2n1−2α
)

≤ O
{
exp

(
−ηn1−2α

)}
, (A.8)

where η = min{2c−2
4 υ2, c10υ2}. Immediately, we have

P

(
max

1≤k≤pn

∣∣∣∥∥d̂k∥∥2n − ‖dk‖2n
∣∣∣ ≥ 8υn−α

)
≤ O

{
pn exp

(
−ηn1−2α

)}
, (A.9)

which proves the first part of Theorem 1 by taking c = 8υ.
If A � Â, then there must exist some k ∈ A such that ‖d̂k‖2n < cn−α . It fol-

lows from condition C2 that |‖d̂k‖2n − ‖dk‖2n| > cn−α for some k ∈ A, which
implies that {A � Â} ⊆ {|‖d̂k‖2n − ‖dk‖2n| > cn−α for some k ∈ A}. As a result,
{maxk∈A |‖d̂k‖2n − ‖dk‖2n| ≤ cn−α} ⊆ {A ⊆ Â}. Using (A.8), we have

P
(
A ⊆ Â

) ≥ P
(
max
k∈A

∣∣∥∥d̂k∥∥2n − ∥∥dk∥∥2n
∣∣ ≤ cn−α

)

≥ 1 − O
{
an exp

(− ηn1−2α)},
where an = |A|. Thus, the proof of Theorem 1 is completed. ��
Proof of Theorem 2 Under assumption (i), we rewrite

dk(t, z) = E

[{
�I (X > t)

G(X)
− P(T > t)

}
I (Zk < z)

]

= E

{
E

[{
�I (X > t)

G(X)
− P(T > t)

}
I (Zk < z)

∣∣∣∣Z
]}
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= E

{
I (Zk < z)E

[{
�I (X > t)

G(X)
− P(T > t)

}∣∣∣∣Z
]}

= E

{
I (Zk < z)

[
E

{
�I (X > t)

G(X)

∣∣∣∣ZA

}
− P(T > t)

]}
.

If k /∈ A, then assumption (ii) implies that

dk(t, z) = E {I (Zk < z)} E
[
E

{
�I (X > t)

G(X)

∣∣∣∣ZA

}
− P(T > t)

]
= 0,

for any t and z. As a result, ‖dk‖2n = E{dk(X, Zk)
2} = 0. It follows from condition C2

that maxk /∈A ‖dk‖2n < mink∈A ‖dk‖2n . On the other hand, ‖dk‖2n = 0 directly implies
that k /∈ A under condition C2. Thus, the first part of Theorem 2 is proved.

Under condition C2 and assumptions (i) and (ii), coupled with (A.9), we have

P

(
min
k∈A

∥∥d̂k∥∥2n ≤ max
k /∈A

∥∥d̂k∥∥2n
)

= P

(
max
k /∈A

∥∥d̂k∥∥2n − max
k /∈A

‖dk‖2n − min
k∈A

∥∥d̂k∥∥2n + min
k∈A

‖dk‖2n ≥ min
k∈A

‖dk‖2n
)

≤ P

(
max
k /∈A

∣∣∣∥∥d̂k∥∥2n − ‖dk‖2n
∣∣∣ ≥ cn−α

)
+ P

(
max
k∈A

∣∣∣∥∥d̂k∥∥2n − ‖dk‖2n
∣∣∣ ≥ cn−α

)

≤ 2P

(
max

1≤k≤pn

∣∣∣∥∥d̂k∥∥2n − ‖dk‖2n
∣∣∣ ≥ cn−α

)

≤ O
{
pn exp

(
−ηn1−2α

)}
,

which completes the proof of Theorem 2. ��
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