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ABSTRACT
The smooth integration of counting and absolute deviation (SICA)
penalty has been demonstrated theoretically and practically to be
effective in non-convex penalization for variable selection. However,
solving the non-convex optimization problem associated with the
SICA penalty when the number of variables exceeds the sample size
remains to be enriched due to the singularity at the origin and the
non-convexity of the SICApenalty function. In this paper, wedevelop
an efficient and accurate alternating direction method of multipli-
ers with continuation algorithm for solving the SICA-penalized least
squares problem in high dimensions. We establish the convergence
property of the proposed algorithm under somemild regularity con-
ditions and study the corresponding Karush–Kuhn–Tucker optimal-
ity condition. A high-dimensional Bayesian information criterion is
developed to select the optimal tuning parameters. We conduct
extensive simulations studies to evaluate the efficiency and accuracy
of the proposed algorithm, while its practical usefulness is further
illustrated with a high-dimensional microarray study.
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1. Introduction

Learning sparse representations for high-dimensional data is a hot and important issue
[1,2]. Consider the linear regression model

y = Xβ + ε, (1)

where y = (y1, y2, . . . , yn)T ∈ R
n is a response vector,X = (xij) ∈ R

n×p is a designmatrix,
β = (β1,β2, . . . ,βp)

T ∈ R
p is a vector of underlying regression coefficients, and ε ∈ R

n

is a vector of random errors. We assume without loss of generality that y is centred and
the columns of X are centred and

√
n-normalized, that is,

∑n
i=1 yi = 0,

∑n
i=1 xij = 0 and

n−1
∑n

i=1 x2ij = 1. We assume that β is sparse in the sense that only a relatively small por-
tion of the components of β are non-zero. Let A = {j : βj �= 0} be the true model and
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suppose that T = |A| is the size of the true model, where |A| denotes the cardinality ofA.
T is also called the sparsity level of β . We focus on the high-dimensional case where p>n
and our goal is to reconstruct the unknown vector β .

Without any constraints on β there exist infinitely many least squares solutions for (1)
since it is a highly undetermined linear system when p>n. Some of the solutions usually
over-fit the data. Thus, the traditional least squares method is not applicable, and regular-
ized or penalizedmethods are needed. The penalized method, which optimizes a objective
function defined as the sum of certain empirical loss function and a regularizer (penalty
term) and can simultaneously accomplish parameter estimation and variable selection by
shrinking some regression coefficients to zero, has been widely used in the literature (cf.,
e.g. [3–6]). Under the sparsity assumption, one can estimate β by the L0 regularization [7],
which gives a nice interpretation of best subset selection and reads

min
β∈Rp

{
1
2n
‖y − Xβ‖2 + λ‖β‖0

}
, (2)

where ‖ · ‖ denotes the standard Euclidean norm, λ > 0 is a regularization or tuning
parameter controlling the sparsity level of the regularized solution, and ‖β‖0 denotes the
number of non-zero components in β , that is, ‖β‖0 =

∑p
j=1 I(βj �= 0). However, the com-

putation of (2) is generally NP hard due to the discontinuity of the function ‖β‖0, hence
it is challenging to design a stable and fast algorithm to solve it. In this paper, we consider
the following so-called SICA-penalized least squares (PLS) problem:

β̂ � β̂(λ, a) := argmin
β∈Rp

⎧⎨⎩Q(β) = 1
2n
‖y − Xβ‖2 +

p∑
j=1

pλ,a(βj)

⎫⎬⎭ , (3)

where

pλ,a(βj) = λ
(a+ 1)|βj|
|βj| + a

(4)

is the SICA penalty function proposed by Lv and Fan [7], λ > 0 is the sparsity tuning
parameter that controls the tradeoff between the loss function and the regularizer, offering
a very useful way of obtaining sparse solutions, and a>0 is the shape or concavity tun-
ing parameter making SICA a bridge between L0 (a→ 0+) and L1 (a→∞), where L0
and L1 admit pλ(βj) = λI(βj �= 0) and pλ(βj) = λ|βj|, respectively. β̂ , which is dependent
on λ and a, is denoted as an SICA–PLS (SPLS) estimator. Let Â = {j : β̂j �= 0} denote the
estimated model. Figure 1 depicts SICA penalties for a few a’s while fixing λ = 1.

The SICA regularization, which bridges L0 and L1 and thus is expected to retain
the advantages of both L0 and L1 by delivering better variable selection than L1 (L0 is
interpreted as best subset selection) while yielding a more stable model than L0 (L1 is con-
tinuous), has been successfully used in several literature. Under linear models, Lv and Fan
[8] propose the SICAmethod for model selection and sparse recovery. They establish con-
ditions under which the SPLS estimator enjoys a so-called weak oracle property, where
the dimensionality can grow exponentially with sample size, and apply the local linear
approximation (LLA) [9] and the sequentially and iteratively reweighted squares (SIRS)
algorithms for model selection and sparse recovery, respectively. Lin and Lv [10] use the
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Figure 1. Plot of SICA penalty functions for a few values of awith λ = 1: a= 0 (L0, thick solid), a= 0.01
(dotdash), a= 0.1 (dashed), a= 1 (dotted) and a = ∞ (L1, thin solid).

SICA-penalized likelihood approach combining the pseudoscoremethod for simultaneous
variable selection and estimation in the additive hazards model in a high-dimensional set-
ting. They establish the weak oracle property and oracle property undermild, interpretable
conditions and present a coordinate descent (CD) algorithm for efficient implementation
and rigorously investigate its convergence properties. Shi et al. [11] use the SICA-penalized
likelihood method for variable selection and parameter estimation in Cox regression in
situations where the number of parameters diverges with the sample size. Under appro-
priate sparsity conditions, they show the resulting estimator of the regression coefficients
possesses the oracle property. They carry out corresponding numerical analysis via the
smoothing quasi-Newton algorithmwith backtracking linear search strategy. Shi et al. [12]
propose a modified Bayesian information criterion tuning parameter selector for SICA-
penalized Cox regression models with a diverging number of covariates and prove its
model selection consistency under some regularity conditions.

Alternating direction method of multipliers (ADMM) [13], which is a very popular
algorithm that combines the benefits of dual decomposition and method of multipli-
ers, is capable of producing high quality solutions at reasonable computational cost for
non-smooth and non-convex optimization problems in sparse high-dimensional data
settings. ADMM and its many variants have recently been widely used to solve large-
scale problems in compressed sensing, signal and image processing, machine learning
and statistics [14–17]. In this paper, we develop an ADMM with continuation algorithm
for solving the non-convex SPLS problem (3). Our algorithm combines the strengths of
four parts: ADMM, the SICA thresholding operator, a continuation strategy and a high-
dimensional BIC (HBIC). Themain contributions of this paper are twofold. First, we extent
the ADMM for solving the non-smooth and non-convex regularized optimization prob-
lem with the SICA penalty and establish the theoretical convergence results. Second, we
couple ADMM with a continuation strategy on the regularization parameter, i.e. given a
decreasing sequence of parameter {λg}, we apply ADMM to solve the λg+1-problem with
the initial guess from the λg-problem. The idea of continuation is well established for iter-
ative algorithms with the purpose of ‘warm starting’ and globalizing the convergence, see
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similar approach as in [18,19]. We adopt an HBIC to select a suitable tuning parameter
during the continuation process.

The remainder of this paper is organized as follows. In Section 2, we develop the
SPLS–ADMM algorithm for high-dimensional linear regression and give its algorith-
mic implementation procedure. Then we establish the convergent property of the pro-
posed algorithm and investigate its Karush–Kuhn–Tucker (KKT) optimality condition. In
Section 3, simulation studies and an application are provided to illustrate the finite sam-
ple performance of the proposed algorithm. The computational complexity analysis, the
tuning parameter selection criterion and the continuation strategy are also presented in
Section 3. Finally, we conclude the paper with Section 4.

2. SPLS–ADMM algorithm

In this section, we construct the ADMM to solve the SPLS problem (3). We first show that
the resulting subproblem has a closed-form solution. Then we propose the SPLS-ADMM
algorithm. Finally, we show the convergence property and the KKT optimality condition
of the proposed algorithm.

2.1. Methodology

By introducing an auxiliary variable θ ∈ R
p, the SPLS problem (3) can be equivalently

transformed into

(β̂ , θ̂) := argmin
β ,θ

⎧⎨⎩Q(β , θ) = 1
2n
‖y − Xβ‖2 +

p∑
j=1

pλ,a(θj)

⎫⎬⎭ s.t. β = θ . (5)

The corresponding augmented Lagrangian function of problem (5) is

Lρ(β , θ , τ ) = 1
2n
‖y − Xβ‖2 +

p∑
j=1

pλ,a(θj)+ ρ

2
‖β − θ‖2 + 〈β − θ , τ 〉, (6)

where τ ∈ R
p is the Lagrangian multiplier, and ρ > 0 is the penalty parameter for the

violation of the linear constraint. Obviously, Lρ(β , θ , τ ) = Q(β , θ) = Q(β) when β = θ .
Each iteration of the ADMM involves alternatingminimization of Lρ with respect to β and
θ , followed by an update of τ . In particular, for a given (βk, θk, τ k), the iteration scheme
of the ADMM for problem (6) proceeds as follows:

βk+1 ∈ argmin
β∈Rp

Lρ(β , θk, τ k), (7)

θk+1 ∈ argmin
θ∈Rp

Lρ(βk+1, θ , τ k), (8)

τ k+1 = τ k + ρ(βk+1 − θk+1). (9)
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After some algebra, the β-subproblem (7) can be reformulated as

βk+1 = (n−1XTX+ ρIp)−1(n−1XTy + ρθk − τ k), (10)

where Ip is the p× p identity matrix. In practice, it may be expensive to solve the linear
system (10) directly, especially when p>n. It is noteworthy that

(n−1XTX+ ρIp)−1 = (Ip − XT(ρIn + n−1XXT)−1n−1X)ρ−1, (11)

where In is the n× n identity matrix and ρIn + n−1XXT is well-defined since p>n. As a
result, it is easy to carry out the Cholesky factorization [20] of ρIn + n−1XXT for solving
Equation (10).

Equivalently, the θ-subproblem (8) can be written as

θk+1 = argmin
θ∈Rp

⎧⎨⎩1
2
‖θ − zk‖2 +

p∑
j=1

pλ/ρ,a(θj)

⎫⎬⎭ , (12)

where zk = βk+1 + τ k/ρ. Consider the coordinate-wise minimization of (12), namely the
one-dimensional SPLS problem

θ̂ = argmin
θ∈R

{ 12 (θ − z)2 + pμ,a(θ)}, (13)

where μ = λ/ρ. Lin and Lv [10] provide an analytic form of the univariate SPLS estima-
tor (i.e. the element-wise SICA thresholding operator, TSICA) as the solution of (13). We
summarize TSICA in Algorithm 1 and denote TSICA as Tμ,a(·). Accordingly, the solution
of θ-subproblem (8) can be described as

θk+1 = Tμ,a(zk) = Tλ/ρ,a

(
βk+1 + τ k

ρ

)
. (14)

Based on TSICA in Algorithm 1, we propose SPLS–ADMM in Algorithm 2 for solving
the SPLS problem with fixed tuning parameters λ and a.

2.2. Convergence analysis

Due to the non-convexity of the problem, it is not easy to prove that the SPLS–ADMM
converges to a global minimizer. Motivated by Wen et al. [21], the main result in this sub-
section establishes that, under some regularity conditions, any limit point of the iteration
sequence generated by the SPLS–ADMM is a KKT point of Lρ(β , θ , τ ), which is a triple
(β∗, θ∗, τ ∗) satisfying the following system:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

θ∗ = Tλ/ρ,a

(
β∗ + τ ∗

ρ

)
,

1
n
XT(Xβ∗ − y)+ τ ∗ = 0,

β∗ = θ∗.

(15)
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Algorithm 1 TSICA
Input: Tuning parameters μ > 0 and a > 0; constant z ∈ R.
1: Compute

c2 = 2a− |z|, c1 = a2 − 2a|z|, c0 = μa(a+ 1)− a2|z|,
Q = (c22 − 3c1)/9, R = (2c32 − 9c1c2 + 27c0)/54,

α = arccos(R/
√
Q3), t1 = −2

√
Q cos

(
α − 2π

3

)
− c2

3
,

t2 = −2
√
Q cos

(
α + 2π

3

)
− c2

3
.

2: if Q3 ≤ R2 then
3: θ̂ = 0;
4: else
5: if t1 > 0 && t2/2+ μ(a+ 1)/(a+ t2) < z then
6: θ̂ = sgn(z)t2;
7: else if t1 < 0 && t2 > 0 then
8: θ̂ = sgn(z)t2;
9: else
10: θ̂ = 0.
11: end if
12: end if
Output: θ̂ , the estimate of θ in Equation (13).

Algorithm 2 SPLS-ADMM
Input: Tuning parameters λ > 0 and a > 0; constant ρ > 0; set k = 0; initial values

β0 ∈ R
p, θ0 ∈ R

p and τ 0 ∈ R
p; maximum number of iterationsM.

1: while k < M do
2: Update βk+1 using Equations (10) and (11);
3: for j = 1, 2, . . . , p, do
4: Update θk+1j = Tλ/ρ,a(zkj ) using Algorithm 1, where zkj is the jth element of zk in

Equation (12);
5: end for
6: Update τ k+1 using Equation (9);
7: Check the stopping criterion.
8: end while

Output: (β̂ , θ̂), the estimate of (β , θ) in Equation (5).

Theorem 2.1 (Convergence property of SPLS–ADMM): Let {(βk, θk, τ k)} be a sequence
generated by SPLS–ADMM. Assume that limk→∞ ‖τ k+1 − τ k‖ = 0, and {θk} is bounded,
then there exists a subsequence of {(βk, θk, τ k)} such that it converges to a KKT point
satisfying Equation (15).
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Proof: Since

lim
k→∞
‖τ k+1 − τ k‖ = 0 (16)

and ρ > 0, we get from Equation (9) that

lim
k→∞
‖βk+1 − θk+1‖ = lim

k→∞
1
ρ
‖τ k+1 − τ k‖ = 0. (17)

Then {βk} is bounded byEquation (17) and the boundedness assumption on {θk}. It follows
from Equation (10) and the boundedness of {θk} and {βk} that {τ k} is also bounded. Since
{(βk, θk, τ k)} is bounded and the augmented Lagrangian function Lρ(β , θ , τ ) is continu-
ous, we can obtain that Lρ(βk, θk, τ k) is bounded. It is obvious that Lρ(β , θ , τ ) is strongly
convex with respect to the variable β , so it holds that for any β and�β ,

Lρ(β +�β , θ , τ )− Lρ(β , θ , τ ) ≥ 〈∇βLρ(β , θ , τ ),�β〉 + c‖�β‖2, (18)

where c>0 is a constant. Since βk+1 minimizes Equation (7), we further have

〈∇βLρ(βk+1, θk, τ k), (βk − βk+1)〉 ≥ 0. (19)

By letting�β = βk − βk+1 in Equation (18) and combining with (19), we can obtain that

Lρ(βk, θk, τ k)− Lρ(βk+1, θk, τ k) ≥ c‖βk+1 − βk‖2. (20)

Moreover, since θk+1 minimizes Equation (8), we have

Lρ(βk+1, θk+1, τ k) ≤ Lρ(βk+1, θk, τ k). (21)

Thus together with Equations (20) and (9), we get that

Lρ(βk, θk, τ k)− Lρ(βk+1, θk+1, τ k+1)+ 1
ρ
‖τ k+1 − τ k‖2 ≥ c‖βk+1 − βk‖2. (22)

Denote VL
k = Lρ(βk, θk, τ k), Vτ

k = (1/ρ)‖τ k+1 − τ k‖2 and Vβ

k = c‖βk+1 − βk‖2. Then
we rewrite Equation (22) as

VL
k − VL

k+1 + Vτ
k ≥ Vβ

k ≥ 0. (23)

Since VL
k is bounded, there exists a subsequence kj such that

lim
kj→∞

VL
kj = limk→∞V

L
k .

It follows from Equation (23), the non-negativity of Vβ

k and Vτ
k , and the assumption

limk→∞ Vτ
k = 0, that

0 ≤ limkj→∞V
β

kj ≤ limkj→∞(VL
kj − VL

kj+1 + Vτ
kj) ≤ limkj→∞(VL

kj + Vτ
kj)

− limkj→∞(VL
kj+1)

= lim
kj→∞

(VL
kj + Vτ

kj)− limkj→∞V
L
kj+1 ≤ 0, (24)
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which implies

limkj→∞V
β

kj = 0, (25)

that is,

limkj→∞‖βkj+1 − βkj‖ = 0. (26)

Together with Equation (17), we can also get that

limkj→∞‖θkj+1 − θkj‖ = 0. (27)

Then, by the boundedness of {βkj , θkj , τ kj}, there exists a convergence subsequence, still be
denoted by {kj}, such that {βkj , θkj , τ kj} converges to some point (β∗, θ∗, τ ∗). By the fact

lim
kj→∞

βkj = β∗, lim
kj→∞

θkj = θ∗ (28)

and Equation (17), we can obtain that

β∗ = θ∗. (29)

After some algebra, Equation (10) can be transformed into the following form:

XT(Xβk+1 − y)
n

= −ρβk+1 + ρθk − τ k. (30)

Taking the limit of both sides of Equation (30) on kj and together with Equations (16)
and (28), it follows that

1
n
XT(Xβ∗ − y)+ τ ∗ = 0. (31)

Using the condition (26) and taking the limit of the both sides of Equation (14) on kj,
we get

θ∗ = Tλ/ρ,a

(
β∗ + τ ∗

ρ

)
. (32)

Combining Equation (32) with Equations (29) and (31), we obtain that (β∗, θ∗, τ ∗) is a
KKT point of Q(β) satisfying Equation (15). �

Next, we study the optimality of the KKT point (β∗, θ∗, τ ∗) with ρ = 1.

Theorem2.2 (KKToptimality condition): Letβ∗ be a globalminimizer of SICA-penalized
least square (3), then there exist θ∗ and τ ∗ such that Equation (15) holds with ρ = 1.
Conversely, if (β∗, θ∗, τ ∗) satisfies Equation (15) with ρ = 1, then β∗ is a coordinate-wise
minimizer and a stationary point of (3).
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Proof: Suppose β∗ = (β∗1 , . . . ,β∗p )T is a minimizer of Q(β) in Equation (3). Then

β∗j ∈ argmin
t∈R

Q(β∗1 , . . . ,β
∗
j−1, t,β

∗
j+1, . . . ,β

∗
p )

⇒ β∗j ∈ argmin
t∈R

1
2n
‖Xβ∗ − y + (t − β∗j )Xj)‖22 + pλ,a(t)

⇒ β∗j ∈ argmin
t∈R

1
2
(t − β∗j )2 + 1

n
(t − β∗j )XT

j (Xβ∗ − y)+ pλ,a(t)

⇒ β∗j ∈ argmin
t∈R

1
2
(t − β∗j − XT

j (y − Xβ∗)/n)2 + pλ,a(t), (33)

where Xj is the jth column of X. Let

τ ∗ = XT(y − Xβ∗)/n. (34)

By the definition of the thresholding operator in Equation (13), we have

β∗j = Tλ,a(β
∗
j + τ ∗j ), j = 1, 2, . . . , p. (35)

Let θ∗ = β∗. From Equations (33) –(35), it follows that (β∗, θ∗, τ ∗) satisfies Equation (15)
with ρ = 1. Conversely, if (β∗, θ∗, τ ∗) satisfies Equation (15) with ρ = 1, then we have

β∗ = Tλ,a(β
∗ + XT(y − Xβ∗)/n), (36)

that is, Equations (34) –(35) hold, which implies β∗j ∈ argmint∈R Q(β∗1 , . . . ,β
∗
j−1, t,β

∗
j+1,

. . . ,β∗p ), that is, β∗ is a coordinate wise minimizer of Q(β). Furthermore, by Lemma 3.1
of [22], we get the coordinate-wise minimizer β∗ is a stationary point ofQ(β) in the sense
that

lim inf
t→0+

Q(β∗ + td)− Q(β∗)
t

≥ 0, ∀d ∈ R
p. (37)

�

Remark 2.1: By the above theorems we know that numerically, setting ρ = 1 in the aug-
mented Lagrangian Lρ(β , θ , τ ) is a good choice, since the SPLS–ADMM algorithm will
converge to a coordinate minimizer and stationary point of Q(β).

3. Numerical studies

In this section, we conduct numerical studies to assess the performance of SPLS–ADMM.
First, we introduce a CD algorithm for solving SPLS and use it as a comparison with our
method. Then, we discuss the tuning parameter selection issues. Finally, we investigate the
numerical performance of SPLS–ADMM on both simulated and real data sets. All codes
are written in Matlab and all experiments are performed in MATLAB R2010b on a quad-
core laptop with an Intel Core i5 CPU (2.60GHz) and 8GB RAM running Windows 8.1
(64 bit).
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Algorithm 3 SPLS–CD
Input: Tuning parameters λ > 0 and a > 0; set k = 0; initial guess β0 ∈ R

p; initial
residual value r0 = y − Xβ0; the maximum number of iterationsM.

1: while k < M do
2: for j = 1, 2, . . . , p, do
3: Calculate zkj = n−1XT

j r
k
−j = n−1XT

j r
k + βk

j , where Xj is the jth column of X,
rk−j = y − X−jβk

−j, ‘−j’ is introduced to refer to the portion that remains after
the jth column or element is removed and rk = y − Xβk is the current residual
value;

4: Update βk+1
j ← Tλ,a(zkj ) using Algorithm 1;

5: Update rk+1← rk − (βk+1
j − βk

j )Xj.
6: end for
7: Check the stopping criterion.
8: end while

Output: β̂ , the estimate of β in Equation (3).

3.1. Comparisonwith a CD algorithm

The CD algorithm and its variants are simple, intuitionistic and fast algorithms that are
widely used in non-convex regularized optimization problems (cf., e.g. [23–25]). Breheny
and Huang [23] propose a CD algorithm for fitting non-convex SCAD and MCP models.
We use their CD algorithm and combine it with TSICA inAlgorithm 1 for solving the SPLS
problem (3), which is named as SPLS–CD. We summarize SPLS–CD in Algorithm 1 and
use it as a comparison with SPLS–ADMM.

3.2. Computational complexity

We look at the number of floating point operations line by line in Algorithm 1
(SPLS–ADMM). Clearly it takes O(p) flops to finish thresholding steps in lines 3–5. In
line 6, the addition and subtraction of p-vectors require O(p) flops. The most time con-
suming step of Algorithm 1 is line 2, where we need to solve a p× p linear equation taking
O(p3) flops. However, the cost can be reduced toO(np) flops since the Cholekey factoriza-
tion of ρIn + n−1XXT in Equation (11) can be precomputed and stored. Then the inverse
of ρIn + n−1XXT takes O(n2) flops by backward substitution (cf., e.g. [26]). Noticing that
p>n, it follows that the overall cost per iteration of Algorithm 1 is O(np). On the other
hand, it can be easily verified that Algorithm 1 ( SPLS–CD) also costs O(np) flops in each
iteration. Thus, these two algorithms have the same time complexity.

3.3. Tuning parameter selection

Tuning parameter selection is an important issue in PLS procedures. To choose a proper
tuning parameter, one may employ the Bayesian information criterion (BIC) procedure in
different dimensional scenarios (i.e. fixed p<n, n > p = pn→∞ or p = pn � n), which
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is a data-driven method and widely used in statistics due to its model selection consis-
tency. See [27–29] and references therein. To obtain an SPLS solution path, we implement
SPLS–ADMM or SPLS–CD for a range of values of (λ, a). For each a, we adopt an HBIC
proposed by Wang et al. [29] to select the optimal tuning parameter λ̂, which is defined as

λ̂ = argmin
λ∈	

{
HBIC(λ) = log(‖y − Xβ̂(λ)‖2/n)+ Cn log(p)

n
|M(λ)|

}
, (38)

where	 is a subset of (0,+∞),M(λ) = {j : β̂j(λ) �= 0} and |M(λ)| denotes the cardinality
ofM(λ), and Cn = log(log n).

Proposition 3.1: There exists a λmax such that β̂ = 0 whenever λ ≥ λmax in SPLS proce-
dure (3), where

λmax = (‖XTy/n‖∞ + a/2)2

2(a+ 1)
. (39)

Proof: For any penalty function ρ(·), we first define

g(t) =

⎧⎪⎨⎪⎩
t
2
+ ρ(t)

t
, t �= 0,

lim inf
t→0+

g(t), t = 0.
t∗ = argmin

t≥0
g(t), T∗ = inf

t>0
g(t) = lim

t→t∗
g(t), (40)

where 0/0 = 0. For the SICA penalty, it easily follows that

t∗ =
√
2λ(a+ 1)− a, T∗ =

√
2λ(a+ 1)− a

2
. (41)

Next we introduce the thresholding operator Sρ defined in univariate setting by

Sρ(z) = argmin
β∈R

[(z − β)2/2+ ρ(β)], (42)

which can be set-valued. Lemma 3.2 in [30] tells us if β∗ ∈ Sρ(z), then T∗ > |z| implies
β∗ = 0. After some algebra, the dual variable of SPLS (3) is given by d∗ = XT(y −
Xβ∗)/n = {d∗j : j = 1, 2, . . . , p}. Then according to Lemma 3.3 in [30], an element β∗ ∈
R
p is a coordinate-wise minimizer to problem (3) if and only if β∗j ∈ Sρ(β∗j + d∗j ), j =

1, 2, . . . , p. One can easily check that β∗ = 0 satisfies the above inclusion provided T∗ >

‖XTy/n‖∞. Thus, we complete the proof for Proposition 3.1 by (41). �

3.4. Continuation strategy

We couple SPLS–ADMM and SPLS–CD with the continuation strategy for efficient com-
putational implementation. To be precise, one needs a starting value λ0 for the parameter λ

and a decreasing factor μ ∈ (0, 1) to obtain a decreasing sequence {λg}, where λg = λ0μ
g ,

and then run Algorithm 1 or Algorithm 1 to solve the λg+1-problem initialized with the
solution of λg-problem. In practice, we use λ0 = λmax in Equation (39) and set λmin =
1e− 10λmax, and then divide the interval [λmin, λmax] into G (the number of grid points)
equally distributed subintervals in the logarithmic scale. Numerically, μ is determined by
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Algorithm 4 Continuation for SPLS–ADMM and SPLS–CD

Input: λ0 = λmax ≥ (‖XTy/n‖∞+a/2)2
2(a+1) ; β(λ0) = 0, θ(λ0) = 0; μ ∈ (0, 1).

1: for g = 1, 2, 3, · · ·G do
2: Set λg = λ0μ

g and (β0, θ0) = (β(λg−1), θ(λg−1)).
3: Find (β(λg), θ(λg)) and β(λg) by Algorithm 2 and Algorithm 3, respectively.
4: Compute the HBIC values.
5: end for

Output: Select λ̂ by Equation (38).

G. Clearly, a large G value implies a large decreasing factor μ. Implementing Algorithm 1
or Algorithm 1 for each value of a and the sequence λmax = λ0 > λ1 > · · · > λG = λmin
to be considered gives the entire SPLS solution path. Then we select the optimal λ from
the candidate set 	 = {λ1, λ2, . . . , λG} using HBIC (38). Summarizing the idea leads to
Algorithm 1. We refer the reader to [18,19,30] for more detailed discussions.

Now we study the influence of the parameters G andM in the SPLS–ADMMwith con-
tinuation algorithm on the exact support recovery probability (Probability), that is, the
percentage of the estimated model Â agrees with the true model A, and the CPU time
(Time, in seconds), respectively. To this end, we fix a=0.01 and consider the designmatrix
X to be a 200× 400 random Gaussian matrix, whose rows are drawn independently from
N(0,
) with 
 = (r|j−k|), 1 ≤ j, k ≤ p, where r=0.1. The noise vector ε ∼ N(0, σ 2In)
with the noise level σ = 0.01. The underling regression coefficient vector β ∈ R

p is gener-
ated following [31], which will be specified in the next section (see Equations (44)–(45)).
Then the observation vector y = Xβ + ε. For different parameter tuples (G,M), we com-
bine them with 10 different sparsity levels with T=2:2:20, that is, T ∈ {2, 4, , . . . , 20}. All
the results are computed based on 100 independent realizations of the problem setup. The
numerical results are summarized in Figure 2, which consider the following two settings:
(a) G=100, and varyingM ∈ {1, 2, 3}; (b)M=1, and varying G ∈ {40, 60, 80, 100}.

It is observed from Figure 2 that the influence of the parameter M is very mild on the
exact support recovery probability. By increasing M, at the expense of more computing
time, one can hardly improve the reconstruction accuracy. We can also find in Figure 2
that Larger G values make the algorithm have better exact support recovery probability,
but the enhancement decreases as G increases. Unsurprisingly, a relatively small value of
G, for example, G=40, can degrade the accuracy of support recovery, due to insufficient
resolution of the solution path. Thus, it is reasonable to choose (G,M) = (100, 1) for the
SPLS–ADMM with continuation algorithm through synthetical consideration in terms of
efficiency and accuracy. For the sake of fairness, we also couple SPLS–CD with the contin-
uation strategy with the same choice of (G,M) for SPLS–ADMM. In practice, in order to
acquire sufficient resolution of the solution path, one can set G larger than 100, especially
in the case of unknown (r, σ ,T) in certain given data set. For instance, we use G=200 for
the real data set in Section 3.6.

For λg with g ∈ {1, 2, . . . ,G}, we denote thatmλg is the number of iterations at the grid
point λg (clearly 1 ≤ mλg ≤ M). By Equation (38), we have λ̂ = λ̂g , where

ĝ = argmin
g∈{1,2,...,G}

{HBIC(λg)}.
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Figure 2. Influence ofM on the exact support recovery probability (top left panel), influence ofM on the
CPU time (top right panel), influence of G on the exact support recovery probability (bottom left panel)
and influence of G on the CPU time (bottom right panel).

According to the continuation strategy, i.e. solving the λg+1-problem initialized with the
solution of λg-problem, the total number of iterations can be denoted as

Mĝ =
ĝ∑

g=1
mλg . (43)

3.5. Simulation

3.5.1. Implementation setting
We generate synthetic data from Equation (1). The rows of the n× pmatrixX are sampled
as i.i.d. copies fromN(0,
)with
 = (r|j−k|), 1 ≤ j, k ≤ p, where r is the correlation coef-
ficient of X. We chose three levels of correlation r=0.3,0.5 and 0.7, which correspond to
the weak, moderate and strong correlation. The noise vector ε is generated independently
fromN(0, σ 2In), where σ is the noise level. We consider two levels of noise: σ = 1 (higher
level) and σ = 0.1 (lower level). The underlying regression coefficient vector β is a random
sparse vector chosen as T-sparse with a dynamic range (DR) defined by

DR := max{|βj| : βj �= 0}
min{|βj| : βj �= 0} = 10. (44)
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Table 1. Simulation results for model selection with a= 0.01, n= 200 and T = 5 based on 100 replica-
tions.

p r σ Method Time Iter RE AE MS CM

400 0.3 0.1 SPLS–ADMM 0.9864 50.65 0.0015 0.0144 5.39 65%
SPLS–CD 1.2777 50.91 0.0016 0.0150 5.60 60%

1 SPLS–ADMM 0.8541 32.47 0.0160 0.1569 5.44 65%
SPLS–CD 1.1059 32.99 0.0173 0.1654 5.64 57%

0.5 0.1 SPLS–ADMM 0.9961 50.87 0.0014 0.0137 5.37 71%
SPLS–CD 1.2899 51.13 0.0015 0.0141 5.53 64%

1 SPLS–ADMM 0.8602 32.55 0.0178 0.1740 5.60 55%
SPLS–CD 1.1073 33.34 0.0199 0.1821 5.92 49%

0.7 0.1 SPLS–ADMM 1.0025 50.66 0.0015 0.0138 5.26 76%
SPLS–CD 1.2983 51.15 0.0015 0.0145 5.37 70%

1 SPLS–ADMM 0.8666 32.62 0.0155 0.1462 5.27 75%
SPLS–CD 1.1102 33.24 0.0169 0.1561 5.47 68%

800 0.3 0.1 SPLS–ADMM 1.9017 49.63 0.0016 0.0149 5.32 72%
SPLS–CD 2.5398 50.70 0.0018 0.0156 5.62 65%

1 SPLS–ADMM 1.6265 31.42 0.0193 0.1815 5.48 61%
SPLS–CD 2.2422 32.71 0.0213 0.1961 5.93 45%

0.5 0.1 SPLS–ADMM 1.8969 49.87 0.0016 0.0149 5.31 73%
SPLS–CD 2.5352 50.54 0.0018 0.0161 5.70 62%

1 SPLS–ADMM 1.6197 31.73 0.0181 0.1711 5.45 60%
SPLS–CD 2.2274 32.72 0.0195 0.1761 5.77 54%

0.7 0.1 SPLS–ADMM 1.9070 49.73 0.0015 0.0143 5.23 79%
SPLS–CD 2.5382 50.73 0.0017 0.0156 5.59 62%

1 SPLS–ADMM 1.6179 31.86 0.0189 0.1795 5.33 73%
SPLS–CD 2.2002 32.80 0.0201 0.1854 5.87 50%

Following Becker et al. [31], each non-zero entry of β is generated as follows:

βj = η1j10η2j , (45)

where η1j = ±1 with probability 1
2 , η2j is uniformly distributed in [0, 1] and j ∈

A = {j : βj �= 0}. We set (n, p) = (200, 400) and (200, 800) and fix the sparsity level
T=5. The default initial values chosen for SPLS–ADMM and SPLS–CD are β0 =
θ0 = τ 0 = 0 ∈ R

p and β0 = 0 ∈ R
p, respectively. For SPLS–ADMM, we specify ρ =

1 according to Theorem 2.2. The convergence criterion is ‖βk+1 − βk‖ ≤ δ with δ =
10−4. We use the same stopping criterion for SPLS–CD. The number of simulations
is N=100.

3.5.2. Efficiency and accuracy
To further illustrate the efficiency and accuracy of the proposed SPLS–ADMM with con-
tinuation algorithm on model selection issues, based on N replications, we compare it
with SPLS–CD in terms of the average CPU time (Time, in seconds), the average num-
ber of iterations (Iter) N−1

∑N
s=1M

(s)
ĝ (Mĝ is given in Equation (43)), the average �2

relative error (RE) N−1
∑N

s=1(‖β̂
(s) − β‖2/‖β‖2), the average �∞ absolute error (AE)

N−1
∑N

s=1 ‖β̂
(s) − β‖∞, the estimated average model size (MS) N−1

∑N
s=1|Â(s)| and the

proportion of correct models (CM) N−1
∑N

s=1 I{Â(s) = A} (in percentage terms). Simu-
lation results with a=0.01 for model selection with different parameter tuples (p, r, σ) are
summarized in Table 1.
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For each (p, r, σ) combination, we see from Table 1 that SPLS–ADMM has better speed
performance than SPLS–CD by Time and Iter. According to RE and AE, it is clear that
SPLS–ADMMis numericallymore accurate than SPLS–CD. It can also be seen fromTable 1
that with respect toMS and CM, although two solvers tend to overestimate the truemodel,
SPLS–ADMM seems to select a smaller model and the correct model more frequently than
SPLS–CD. For fixed values of r and σ , the timing of SPLS–ADMMincreases linearly with p.
Unsurprisingly, larger σ will degrade the accuracy of SPLS–ADMM.With p and r fixed, the
CPU time of SPLS–ADMM slightly decreases as σ increases. Given p and σ , the CPU time
of SPLS–ADMM is robust with respect to r. Similar phenomena also hold for SPLS–CD.
Overall, as shown in Table 1, SPLS–ADMM does a better job than SPLS–CD in terms of
both efficiency and accuracy.

We fix the concavity parameter a=0.01 for SICA following [32], roughly in accord with
the recommendation SELO [32] with τ = 0.01 suggested therein, since both the SICA and
SELO penalties closely resemble the L0 penalty, and converge to the L0 penalty as the con-
cavity parameter goes to 0. However, by reason that a ∈ (0,∞), it is important to study the
sensitivity of the proposed algorithm with respect to the variation of a. In next subsection,
we conduct the sensitivity analysis for a and other model parameters.

3.5.3. Influence ofmodel parameters
We now consider the effects of each of the model parameters (a, n, p, r, σ ,T) on the perfor-
mance of SPLS–ADMMand SPLS–CDmore closely in terms of the exact support recovery
probability (Probability) and the CPU time (Time, in seconds), and corresponding numer-
ical results averaged over 100 independent runs are given in Figures 3 and 4, respectively.
The parameters for solvers are set as follows.

Influence of the concavity parameter a. The top left panels of Figures 3 and 4 show the
results on Probability and Time, respectively. Data are generated from the model with (a ∈
{0.1, 0.2, 0.5, 1, 2}, n = 200, p = 400, r = 0.1, σ = 0.1,T = 5).

Influence of the sample size n. The top right panels of Figures 3 and 4 show the results on
Probability and Time, respectively. Data are generated from the model with (a = 0.01, n ∈
{100, 120, 140, 160, 180, 200}, p = 400, r = 0.1, σ = 0.1,T = 5).

Influence of the dimension p.Themiddle left panels of Figures 3 and 4 show the results on
Probability and Time, respectively. Data are generated from themodel with (a = 0.01, n =
200, p ∈ {400, 600, 800, 1000}, r = 0.1, σ = 0.1,T = 5).

Influence of the correlation level r. The middle right panels of Figures 3 and 4 show the
results on Probability and Time, respectively. Data are generated from themodel with (a =
0.01, n = 200, p = 400, r ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, σ = 0.1,T = 5).

Influence of the noise levelσ . The bottom left panels of Figures 3 and 4 show the results on
Probability and Time, respectively. Data are generated from themodel with (a = 0.01, n =
200, p = 400, r = 0.1, σ ∈ {0.2, 0.4, 0.8, 1.2, 1.6},T = 5).

Influence of the sparsity level T. The bottom right panels of Figures 3 and 4 show the
results on Probability and Time, respectively. Data are generated from themodel with (a =
0.01, n = 200, p = 400, r = 0.1, σ = 0.1,T ∈ {5, 10, 15, 20, 25}).

In summary, numerical results shown in Figures 3 and 4 demonstrate that two
solvers seem to have similar variation tendency with considered model parameters,
while SPLS–ADMM is generally more accurate and more efficient than
SPLS–CD.
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3.6. Application

We analyse a rat eye expression data called eyedata which is publicly available in R package
flare [33] to illustrate the application of the SPLS–ADMM with continuation algorithm
in high-dimensional settings. This data is a gene expression data from the microarray
experiments of mammalian eye tissue samples of [34] and is detailedly described and
applied by many papers (cf., e.g. [35,36]) that want to find the gene probes that are most

Figure 3. Numerical results of the influence of the concavity parameter a (top left panel), the sample
size n (top right panel), the dimension p (middle left panel), the correlation level r (middle right panel),
the noise level σ (bottom left panel) and the sparsity level T (bottom right panel) on the exact support
recovery probability of two solvers.
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related to TRIM32 in sparse high-dimensional regression models. The response variable
y is a numeric vector of length 120 giving expression level of gene TRIM32 which causes
Bardet–Biedl syndrome. The design matrix X is a 120× 200 matrix which represents the
data of 120 rats with 200 gene probes.

Since the exact solution for the eyedata set is unknown, we consider three gold stan-
dards (i.e. benchmarks) for comparison purposes: flare[33] (the SQRT LASSO with λ =√
log(p)/n), glmnet [37] (10-fold cv.glmnet with the lambda.1se rule and set.seed=0)

Figure 4. Numerical results of the influence of the concavity parameter a (top left panel), the sample
size n (top right panel), the dimension p (middle left panel), the correlation level r (middle right panel),
the noise level σ (bottom left panel) and the sparsity level T (bottom right panel) on the CPU time of two
solvers.
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Figure 5. The CPU time of SPLS-ADMMand SPLS-CD for the eyedata setwith (G,M, ρ) = (200, 1, 1) and
a= 0.02:0.02:0.2.

Table 2. Analysis of the eyedata set.

No. Term Probe flare glmnet ncvreg SPLS–ADMM SPLS–CD

Intercept 7.6975 7.7133 6.3610 7.3062 8.2531
1 β11 6222 0.0130 0.0140 0 0.0181 0
2 β42 12085 0.0151 0.0140 0 0 0
3 β54 14949 0.0147 0.0160 0 0.0223 0
4 β55 15224 0 0 0 0 0.1919
5 β62 15863 −0.0381 −0.0387 0 −0.0230 0
6 β87 21092 −0.0933 −0.0932 −0.0642 −0.1847 −0.2430
7 β90 21550 −0.0189 −0.0183 0 0 0
8 β99 22029 0 0 0 0.0316 0
9 β102 22140 0 −0.0027 0 0 0
10 β127 23804 −0.0074 −0.0078 0 0 0
11 β134 24245 0.0169 0.0161 0 0 0
12 β136 24353 −0.0260 −0.0275 0 −0.0666 0
13 β140 24565 0.0144 0.0184 0 0 0
14 β146 24892 0.0072 0.0079 0 0 0
15 β153 25141 0.1472 0.1452 0.2702 0.2106 0
16 β155 25367 0.0093 0.0092 0 0 0
17 β162 25909 0 0 0 0.0280 0
18 β172 27179 0 0 0 0.0403 0
19 β180 28680 0.0684 0.0687 0.1836 0.0298 0
20 β185 28967 −0.0829 −0.0845 −0.2655 −0.0908 0
21 β187 29041 −0.0369 −0.0384 0 0 0
22 β188 29045 −0.0068 −0.0073 0 0 0
23 β200 30141 −0.0451 −0.0467 −0.0239 −0.0566 0

Time – – – 0.4520 0.5609
PMSE 0.0048 0.0048 0.0051 0.0049 0.0075

Notes: Estimated coefficients of different methods are provided. The zero entries correspond to variables omitted.

and ncvreg [23] (10-fold cv.ncvreg with seed=0). Coupled with the continuation strat-
egy, we apply the SPLS–ADMM and SPLS–CD algorithms to the eyedata set. For both
approaches, tuning parameters are selected using HBIC (38). By similar arguments in sim-
ulations, we fix (ρ,M) = (1, 1). Since we do not know the true levels of (r, σ ,T) in the
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eyedata set, as discussed in Section 3.4, we may need a larger G. Then we specify G=200
for the analysis of real data. To decide a, we consider the parameter settings with vary-
ing a=0.02:0.02:0.2 given (G,M, ρ) = (200, 1, 1). Displayed in Figure 5 is corresponding
CPU time plot produced by SPLS–ADMMand SPLS–CD. It is observed from Figure 5 that
SPLS–ADMM is faster than SPLS–CD for every a considered, while SPLS–CD has the best
timing performance at a=0.04. Thus, we fix a=0.04 for this eyedata set and then compare
the solution accuracy of two solvers. Gene probe information, corresponding non-zero
estimates, the CPU time and the predictive mean squared errors (PMSE) calculated by
n−1

∑n
i=1(ŷi − yi)2 are provided in Table 2. We can see from Table 2 that SPLS–ADMM is

faster than SPLS–CD in terms of Time, while the PMSE by SPLS–ADMM is smaller than
the counterpart by SPLS–CD,which demonstrates that SPLS–ADMMperforms better than
SPLS–CD in terms of both efficiency and accuracy. Notably, the accuracy of SPLS–ADMM,
in terms of PMSE, is quite comparable with the three benchmarks considered.

4. Concluding remarks

We have developed an ADMMwith continuation algorithm for solving high-dimensional
non-convex SICA–PLS problems. We rigorously investigate the convergence property and
the KKT optimality condition of the proposed algorithm. When coupled with the contin-
uation strategy and an HBIC tuning parameter selector, our proposed procedure is very
efficient and accurate.

We focus on our method in the context of linear regressionmodels. This method can be
applied in a similar way to othermodels, such as the generalized linear andCoxmodels, via
a quadratic approximation to the loss function based on two term Taylor series expansions
of the log likelihoods (see [23,38]). Furthermore, we would like to consider the extensions
of our method to the high-dimensional structured sparsity SPLS model [39] in future. As
pointed in Boyd et al. [13], ADMM can be implemented as a distributed algorithm of prac-
tical use [40]. Thus, it would be interesting to extend the results for distributed computing,
which is beyond the scope of this paper and will be an interesting topic for future research.

Our main theoretical results hold under some conditions in Theorem 2.1, where we
assumed {θk} is bounded therein, which is important to obtain the convergence result of
using ADMMon non-convex problems. It is open whether Theorem 2.1 still holds without
the requirement on boundedness of {θk}, which we also leave for future research.
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