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a b s t r a c t

With the recent explosion of ultrahigh-dimensional data, extensive work has been car-
ried out for screening methods which can effectively reduce the dimensionality. How-
ever, censored survival data which often arise in clinical trials and genetic studies have
been left greatly unexplored for ultrahigh-dimensional scenarios. A novel feature screen-
ing procedure is proposed for ultrahigh-dimensional survival data. Also established are the
ranking consistency and the sure independent screening properties. Compared with the
existing methods, the proposed screening procedure is invariant to the monotone trans-
formation, known or unknown, of the response. Moreover, it can be readily applied to
ultrahigh-dimensional complete data when the censoring rate is zero. Simulation studies
demonstrate that the proposed procedure exhibits favorably in comparisons with the ex-
isting ones. As an illustration, the proposedmethod is applied to themantle cell lymphoma
study.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

With the rapid advance of technology, ultrahigh-dimensional data could be collected at a relatively low cost and have
appeared in various fields such as genomics, imaging and economics. Because the dimensionality pn increases very rapidly
with sample size n, existing penalized variable selectionmethods, such as the least absolute shrinkage and selection operator
(LASSO, Tibshirani, 1996), the smoothly clipped absolute deviation (SCAD, Fan and Li, 2001), the adaptive LASSO (Zou, 2006),
the Dantzig selector (Candes and Tao, 2007) and the minimax concave penalty (MCP, Zhang, 2010) may not perform well
(Fan et al., 2009).

To overcomeultrahigh dimensionality, Fan and Lv (2008) proposed a sure independence screening (SIS)method to reduce
the dimension in the context of linear regression models, so that penalized variable selection methods are applicable. Such
screening procedures have been extensively studied in various ultrahigh-dimensional contexts, such as generalized linear
models (Fan and Song, 2010) and additive models (Fan et al., 2011). Furthermore, in order to avoid the specification of
a particular model structure, Zhu et al. (2011) proposed a sure independent ranking and screening (SIRS) procedure for
ultrahigh-dimensional data in the framework of the general multi-index models. Li et al. (2012b) proposed a model-free SIS
procedure based on the distance correlation. Using the Kendall τ , Li et al. (2012a) proposed a robust screening procedure in
the framework of the transformation models.

For censored ultrahigh-dimensional data, Fan et al. (2010) investigated the SIS method for the Cox proportional hazards
model via ranking variables according to their respective univariate partial log-likelihoods. Zhao and Li (2012) proposed a
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screening method based on the standardized marginal maximum partial likelihood estimators of the Cox model, and they
also provided theoretical justification for the sure independent screening property. To relax the Cox model assumption,
Gorst-Rasmussen and Scheike (2013) proposed a screening procedure for a general class of single-index hazard ratemodels.
Based on Kendall’s τ and via the inverse-probability-of-censoring weighting, Song et al. (2014) proposed a censored rank
independence screening method which is shown to be robust against the potential outliers and to work for a general class
of survival models. Wu and Yin (2015) developed a screening method which is designed to identify the covariates that
contribute to the conditional quantile of the response. Recently, Zhou and Zhu (in press) proposed a censored version of the
SIRS method by incorporating the weight of the inverse probability of censoring.

In a model-free fashion, we propose a novel correlation rank sure independent screening procedure (CR-SIS), which
can naturally handle ultrahigh-dimensional survival data without any nonparametric approximation except for the
Kaplan–Meier estimator. Compared with the existing procedures, our approach enjoys several distinctive advantages. Our
procedure does not rely on anymodel assumption andworks generally for nonlinear survival regressionmodels. On the other
hand, our approach is invariant under the monotone transformation of the response. These advantages greatly facilitate the
implementation of the proposed method in real applications.

The rest of the article is organized as follows. In Section 2, we propose the CR-SIS procedure for both ultrahigh-
dimensional complete and censored data. In Section 3, we establish the theoretical properties of the proposed procedure. Its
finite-sample performances are evaluated in Section 4 via extensive simulation studies. In Section 5, we apply the proposed
method to a recent study on mantle cell lymphoma. Section 6 concludes some remarks. All technical proofs are presented
in the Appendix.

2. Screening procedures

Consider the conditional distribution function,

F(y|Z) = P(Y ≤ y|Z),

where Y denote the response variable and Z = (Z1, . . . , Zpn)
T the covariate vector. In an ultrahigh-dimensional setting, the

dimensionality pn, possibly depending on and greatly exceeding the sample size n, might increase with n at an exponential
rate. To identify which covariates among the pn ones contribute to the conditional distribution function of Y given Z, we
define the active covariate set as

A = {k : F(y|Z) depends on Zk, k = 1, . . . , pn}.

Without loss of generality, we assume throughout this article that E(Zk) = 0 for k = 1, . . . , pn. Let G(y) = P(Y ≤ y)
denotes the unconditional distribution function of Y . Define R(Y ) = E{ZG(Y )}, let Rk(Y ) be the kth element of R(Y ), then
Rk(Y ) = E{ZkG(Y )} = cov{Zk,G(Y )}, where Zk denotes the kth element of Z. Define

rk = [Rk(Y )]2,

where k = 1, . . . , pn, then rk serves as the population version of our proposedmarginal utilitymeasure for the kth covariate.
Intuitively, the unconditional distribution function of Y , G(y), compositing with Y , is expected to contain the whole

information of Y . Consequently, rk, which measures the correlation between G(Y ) and Zk, could reflect the relationship
between Y and Zk. If Y and Zk are independent, G(Y ) and Zk should be independent; hence rk = 0. On the other hand, it is
reasonable to expect rk > 0 if Y and Zk are dependent. Under the framework of semiparametric regression, Zhu and Zhu
(2009) proposed a distribution-weighted least squares estimator which can be deduced from the variant of cov{Zk,G(Y )}.
Our proposed marginal utility rk shares the spirit of their method. The SIRS method proposed by Zhu et al. (2011) adopted
the dichotomous I(Y < y) variable, while we use G(y), which is continuous and thus expected to contain the whole
information of Y . The correlation betweenG(Y ) and Zk could be consequently appropriate to reflect the relationship between
Y and Zk. Furthermore, our method can naturally handle ultrahigh-dimensional survival data without any nonparametric
approximation except for the routine Kaplan–Meier estimator. These remarkable propertiesmotivate us to use rk for feature
screening in ultrahigh-dimensional data. We can see in the sequel that the proposed method indeed enjoys the ranking
consistency property and also performs well in different scenarios.

Given a random sample {Yi, Zi ≡ (Zi1, . . . , Zipn)
T
}, i = 1, . . . , n, from the population {Y , Z = (Z1, . . . , Zpn)

T
}. It is

desirable to derive an estimator of rk based on the n independent and identical observations. For ease of presentation, we
assume that the sample predictors are all centralized, that is, n−1n

i=1 Zik = 0 for k = 1, . . . , pn, where Zik is the kth element
of Zi. Obviously, we can use the empirical distribution function, which is given by

Gn(y) =
1
n

n
i=1

I(Yi ≤ y),

to estimate G(y). Therefore, we propose an estimator for rk, which takes the form of

rk =

1
n

n
i=1

ZikGn(Yi)
2

.
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Intuitively, we can see that, if Zk and Y are independent, thenrk is expected to fluctuate around zero. On the contrary, those
predictors with a large value ofrk are considered important. As a result, we define the estimated active set asA = {k :rk ≥ cn−α, k = 1, . . . , pn},

where constants c and α are specified in the regularity conditions of Section 3.
We extend the screening procedure to ultrahigh-dimensional survival data while taking the censoring into account.

Suppose that we observe the data {(Xi, ∆i, Zi) : i = 1, . . . , n}, independent copies from (X, ∆, Z), where X = min(Y , C),
∆ = I(Y ≤ C), with C denoting the censoring variable. For ease of exposition, we assume that the censoring mechanism is
completely random, i.e., the censoring variable C is independent of response variable Y and covariate Z.

In the scenario of censored response, the estimator for the cumulative distribution function of Y , G(y), can be deduced
from the Kaplan–Meier estimator, which is given by

Gn(y) = 1 −

n
i=1

1 −
1

n
j=1

I(Xj ≥ Xi)


∆iI(Xi≤y)

.

Accordingly, the estimator for rk is obtained as follows,

rk =

1
n

n
i=1

ZikGn(Xi)
2

.

We propose to rank therk from the largest to smallest and select the top ones as the active predictors via defining
estimated active set,A = {k :rk ≥ cn−α, k = 1, . . . , pn}.

3. Theoretical properties

We show that the CR-SIS procedure possesses sure independent screening and ranking consistency properties for the
censored response case. For the complete response case, these properties can be considered as a trivial extension.We impose
the following regularity conditions throughout our discussion.

C1. There exist constants δ > 0 and τ > 0 such that

P(C ≥ τ) = P(C = τ) ≥ δ.

C2. There exists a positive constant ξ such that

max
1≤k≤pn

E(Z2
k ) < ξ.

C3. It holds that

min
k∈A

rk ≥ 2cn−α

for some constants c > 0 and α ∈ [0, 1/2).

Condition C1 is a common assumption in survival analysis with τ being the end time of the study. It means that at least
some subjects do not fail at the end time τ and by definition they are considered to be right-censored at τ . Condition C2
is regarding to the second-order moments of predictors and it holds for a large variety of distributions. Condition C3
requires that the marginal utilities carrying information for the active predictors should not decay too fast. We state the
sure independent screening property of the CR-SIS procedure for ultrahigh-dimensional survival data.

Theorem 1. Under conditions C1 and C2, there exists a constant η > 0 such that

P


max
1≤k≤pn

rk − rk
 ≥ cn−α


≤ O


pn exp


−η
 n1−2α

log log n

1/2
.

Under conditions C1, C2 and C3 , it holds that

P

A ⊆ A ≥ 1 − O


an exp


−η
 n1−2α

log log n

1/2
,

where an = |A| is the cardinality of A.

Denote ZA = {Zj : j ∈ A} and ZAc = {Zj : j ∉ A}. The ranking consistency of the CR-SIS procedure is summarized as
follows.
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Theorem 2. Assume that (i) Y and ZAc are conditionally independent given ZA and (ii) ZA is independent of ZAc . Under
condition C3, we have that

max
k∉A

rk < min
k∈A

rk,

and rk = 0 if and only if k ∉ A. Furthermore, under conditions C1, C2 and C3, there exists a constant η > 0 such that

P

max
k∉A

rk < min
k∈A

rk ≥ 1 − O

pn exp


−η
 n1−2α

log log n

1/2
.

This lays out the theoretical foundation that our CR-SIS procedure tends to rank the active predictors above the inactive
ones with high probability.

4. Simulation studies

We examine the finite-sample performance of the proposed method and make comparisons with existing methods via
simulation studies. For brevity, we refer to the sure independence screening method proposed by Fan and Lv (2008) as
SIS, the sure independent ranking and screening procedure of Zhu et al. (2011) as SIRS, the distance correlation screening
procedure of Li et al. (2012b) as DC-SIS, the feature aberration at survival times screening procedure of Gorst-Rasmussen and
Scheike (2013) as FAST-SIS, the principled sure independent screening procedure of Zhao and Li (2012) as P-SIS, the censored
rank independence screening of Song et al. (2014) as CRIS, and the censored sure independent ranking and screening of Zhou
and Zhu (in press) as CSIRS.

Example 1. We first considered the performance of the CR-SIS procedure for complete data and compared it with the SIS,
SIRS and DC-SIS methods. The simulation setups are the same as Example 1 of Zhu et al. (2011). It is a classical linear model
with varying squared multiple correlation coefficient R2 and error distribution:

Y = cβTZ + σϵ,

whereβ = (1, 0.8, 0.6, 0.4, 0.2, 0, . . . , 0)T, i.e., only the first five predictors are active. The ultrahigh-dimensional covariate
Zi = (Zi1, . . . , Zipn) follows a multivariate normal distribution with mean 0 and correlation matrix 6 = (0.8|i−j|) for
i, j = 1, . . . , pn. We set σ = 6.83 and considered two error ϵ distributions, a standard normal N(0, 1) and a t-distribution
with one degree of freedom that has a heavy tail. We varied the constant c in front of βTZ to control the signal-to-noise ratio.
We chose c = 0.5, 1 and 2, with the corresponding R2

= 20%, 50% and 80%. Set sample size n = 200, coupled with the
number of covariates pn = 2000. For each configuration, we repeated 500 simulations.

To assess the performance of the screening procedures, we employed three evaluation criteria (Li et al., 2012b). First,
we compare the minimum model size, denoted by S, which includes all the active predictors. Obviously, S can be used
to measure the resulting model complexity for each screening procedure. The closer to the true minimum model size, the
better the screening procedure. We present the 5%, 25%, 50%, 75% and 95% quantiles of S out of 500 replications. Second,
for each individual active predictor, we report its selection proportion, denoted by Pe, for a given model size among the
500 replications. Third, we exhibit the proportion that all active predictors are selected for a given model size in the 500
replications, denoted by Pa. An effective screening procedure is expected to yield S close to the true minimum model size,
and both Pe and Pa close to one. We chose the estimated model size to be d = ⌈n/ log n⌉, where ⌈x⌉ denotes the integer
part of x.

The simulation results for S,Pe andPa are summarized in Tables 1 and 2.We can see that the proposed CR-SIS procedure
is comparable to the SIS method for the normal error. However, it is consistently superior for the heavy-tailed error
distribution even Condition C2 is violated. Compared with the SIRS method, the performances of the CR-SIS procedure are
equally good in all the considered scenarios; both of them deliver more satisfactory results than the DC-SIS procedure.

Example 2. We further considered the performance of the CR-SIS procedure for ultrahigh-dimensional censored data and
compared it with the existing approaches, including the CRIS, FAST-SIS and P-SIS procedures. We generated survival times
Ti, associated with covariate Zi, from the Cox proportional hazards regression model

λ(t|Zi) = λ0(t) exp(ZT
i β0),

where the baseline hazard function was set to be λ0(t) = (t − 0.5)2 and the ultrahigh-dimensional covariate Zi =

(Zi1, . . . , Zipn) was generated in the same way as that in Example 1. We set the true parameter β0 = (0.35, 0.35, 0.35,
0.35, 0.35, 0, . . . , 0)T, i.e., only the first five predictors are active. We took the censoring time C = C ∧ τ , whereC was
generated from Unif (0, τ + 2), and τ was the study duration time, chosen to yield a censoring rate of 20%. We took the
sample size n = 50, 100 and 200, coupled with pn = 2000. For each configuration, we repeated 500 simulations.
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Table 1
Five quantiles of the minimum model size S among 500 replications in Example 1 with the
true model size p0 = 5.

ϵ c Method 5% 25% 50% 75% 95%

N(0, 1) 0.5 CR-SIS 5 5 5 7 28
SIS 5 5 5 6 16
DC-SIS 5 5 5 7 35
SIRS 5 5 5 7 36

1 CR-SIS 5 5 5 5 5
SIS 5 5 5 5 5
DC-SIS 5 5 5 5 5
SIRS 5 5 5 5 5

2 CR-SIS 5 5 5 5 5
SIS 5 5 5 5 5
DC-SIS 5 5 5 5 5
SIRS 5 5 5 5 5

t(1) 0.5 CR-SIS 6 18 81 260 1127
SIS 224 741 1233 1668 1925
DC-SIS 36 245 621 1051 1650
SIRS 5 11 50 179 884

1 CR-SIS 5 5 5 7 44
SIS 80 443 960 1485 1881
DC-SIS 5 7 34 190 746
SIRS 5 5 5 6 26

2 CR-SIS 5 5 5 5 5
SIS 7 107 549 1119 1802
DC-SIS 5 5 5 6 187
SIRS 5 5 5 5 5

Table 2
Selection proportionsPe for each active predictor andPa for all active predictors among
500 replications in Example 1.

ϵ c Method Pe Pa

X1 X2 X3 X4 X5

N(0, 1) 0.5 CR-SIS 1.000 1.000 0.998 0.998 0.964 0.960
SIS 1.000 1.000 1.000 0.998 0.984 0.982
DC-SIS 1.000 1.000 1.000 1.000 0.954 0.954
SIRS 0.998 1.000 0.998 0.998 0.954 0.950

1 CR-SIS 1.000 1.000 1.000 1.000 1.000 1.000
SIS 1.000 1.000 1.000 1.000 1.000 1.000
DC-SIS 1.000 1.000 1.000 1.000 1.000 1.000
SIRS 1.000 1.000 1.000 1.000 1.000 1.000

2 CR-SIS 1.000 1.000 1.000 1.000 1.000 1.000
SIS 1.000 1.000 1.000 1.000 1.000 1.000
DC-SIS 1.000 1.000 1.000 1.000 1.000 1.000
SIRS 1.000 1.000 1.000 1.000 1.000 1.000

t(1) 0.5 CR-SIS 0.772 0.836 0.800 0.648 0.470 0.372
SIS 0.052 0.056 0.050 0.046 0.040 0.002
DC-SIS 0.278 0.360 0.288 0.222 0.138 0.052
SIRS 0.848 0.884 0.858 0.708 0.530 0.446

1 CR-SIS 0.994 0.998 0.996 0.980 0.944 0.940
SIS 0.138 0.158 0.126 0.116 0.070 0.024
DC-SIS 0.826 0.854 0.826 0.742 0.538 0.514
SIRS 1.000 1.000 0.998 0.990 0.960 0.960

2 CR-SIS 1.000 1.000 1.000 1.000 1.000 1.000
SIS 0.356 0.392 0.362 0.286 0.242 0.160
DC-SIS 0.946 0.956 0.954 0.938 0.906 0.896
SIRS 1.000 1.000 1.000 1.000 1.000 1.000

We presented the simulation results for S, Pe and Pa in Tables 3 and 4. In general, the performances of the FAST-SIS
and P-SIS procedures are comparable. Both of them outperform the CR-SIS and CRIS procedures when the sample size is
50. This is mainly due to that the FAST-SIS and P-SIS procedures are carried out via effectively utilizing the preassumed Cox
proportional hazards regression model structure, although it is always unjustifiable in practice. On the contrary, the model-
free CR-SIS and CRIS procedures obviously do not fully use the information of the model structure. Nevertheless, when the
sample size n is increased to 100, four screening methods perform equally well.
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Table 3
Five quantiles of the minimum model size S among 500 replications in
Example 2 with the true model size p0 = 5.

n Method 5% 25% 50% 75% 95%

50 CR-SIS 5 6 10 35 283
CRIS 5 19 76 238 1022
FAST-SIS 5 5 6 10 62
P-SIS 5 5 6 8 39

100 CR-SIS 5 5 5 6 11
CRIS 5 5 6 13 105
FAST-SIS 5 5 5 5 6
P-SIS 5 5 5 5 6

200 CR-SIS 5 5 5 5 6
CRIS 5 5 5 5 7
FAST-SIS 5 5 5 5 6
P-SIS 5 5 5 5 5

Table 4
Selection proportions Pe for each active predictor and Pa for all active
predictors among 500 replications in Example 2.

n Method Pe Pa

X1 X2 X3 X4 X5

50 CR-SIS 0.730 0.876 0.914 0.876 0.736 0.544
CRIS 0.410 0.638 0.668 0.578 0.408 0.162
FAST-SIS 0.876 0.968 0.990 0.984 0.916 0.800
P-SIS 0.908 0.988 0.998 0.998 0.938 0.854

100 CR-SIS 0.988 0.998 1.000 1.000 0.984 0.972
CRIS 0.888 0.974 0.980 0.962 0.886 0.810
FAST-SIS 0.998 1.000 1.000 1.000 1.000 0.998
P-SIS 0.998 1.000 1.000 1.000 1.000 0.998

200 CR-SIS 1.000 1.000 1.000 1.000 1.000 1.000
CRIS 1.000 1.000 1.000 1.000 0.998 0.998
FAST-SIS 1.000 1.000 1.000 1.000 1.000 1.000
P-SIS 1.000 1.000 1.000 1.000 1.000 1.000

Table 5
Five quantiles of the minimum model size S among 500 replications in
Example 3 with the true model size p0 = 5.

n Method 5% 25% 50% 75% 95%

50 CR-SIS 11 79 270 825 1867
CRIS 55 494 1309 1794 1972
FAST-SIS 120 703 1405 1776 1972
P-SIS 114 705 1395 1788 1973

100 CR-SIS 5 10 43 187 975
CRIS 21 223 801 1617 1966
FAST-SIS 81 442 989 1703 1960
P-SIS 83 448 1016 1712 1959

200 CR-SIS 5 5 6 9 57
CRIS 6 48 286 941 1872
FAST-SIS 17 152 496 1163 1880
P-SIS 19 153 502 1165 1875

Example 3. To examine the performance of the screening procedures for the generally nonlinear survival models, we
independently generated the survival times Ti from the model

log Ti = Z2
i1 + (2 + sin Zi2)2 + (1 + Zi3)−3

+ (Z2
i4 + Zi4 − 1)−1

+ Zi5 + ϵi,

where the error ϵi was generated from the standard normal distribution. The remaining setups were kept the same as those
in Example 2. The corresponding results are summarized in Tables 5 and 6, from which we can see the CR-SIS method is
able to capture the nonlinear covariate effects and thus produces acceptable screening results. Obviously, the CR-SISmethod
outperforms the other three screening procedures, especially overwhelmingly superior to the model-dependent FAST-SIS
and P-SIS procedures, in terms of either theminimummodel size required to cover all the active covariates or the proportion
that all active predictors are selected for a given model size.
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Table 6
Selection proportions Pe for each active predictor and Pa for all active
predictors among 500 replications in Example 3.

n Method Pe Pa

X1 X2 X3 X4 X5

50 CR-SIS 0.272 0.462 0.264 0.268 0.196 0.062
CRIS 0.102 0.214 0.038 0.072 0.058 0.006
FAST-SIS 0.074 0.100 0.026 0.036 0.036 0.010
P-SIS 0.064 0.112 0.024 0.036 0.050 0.008

100 CR-SIS 0.662 0.842 0.642 0.678 0.608 0.368
CRIS 0.284 0.460 0.098 0.212 0.226 0.052
FAST-SIS 0.168 0.204 0.042 0.096 0.104 0.014
P-SIS 0.152 0.202 0.050 0.106 0.116 0.014

200 CR-SIS 0.972 0.994 0.974 0.978 0.964 0.922
CRIS 0.626 0.820 0.250 0.516 0.526 0.214
FAST-SIS 0.484 0.568 0.132 0.318 0.378 0.102
P-SIS 0.440 0.548 0.150 0.334 0.376 0.104

Table 7
Selection proportions Pe for each active predictor and the inactive predictor Z6 , and Pa for all
active predictors among 500 replications in Example 3.

ZA ⊥ ZAc Method Pe Pa

X1 X2 X3 X4 X5 X6

No CR-SIS 0.662 0.842 0.642 0.678 0.608 0.354 0.368
CRIS 0.284 0.460 0.098 0.212 0.226 0.130 0.052
FAST-SIS 0.168 0.204 0.042 0.096 0.104 0.080 0.014
P-SIS 0.152 0.202 0.050 0.106 0.116 0.090 0.014

Yes CR-SIS 0.676 0.876 0.656 0.684 0.612 0.008 0.396
CRIS 0.290 0.474 0.098 0.224 0.182 0.006 0.042
FAST-SIS 0.160 0.208 0.050 0.100 0.112 0.014 0.016
P-SIS 0.136 0.226 0.058 0.104 0.124 0.012 0.016

Till now the covariance matrix for generating the high-dimensional covariate Z is assumed to follow the Toeplitz
structure, which implies that in Theorem 2 the assumption of ZA being independent of ZAc does not hold. Nevertheless,
the proposed method delivers favorable results over the existing ones in variant scenarios. Furthermore, we consider
another mechanism of generating the covariates to guarantee the independence assumption holds. In particular, the first
five covariates (Zi1, . . . , Zi5) still follow amultivariate normal distributionwithmean 0 and correlationmatrix6 = (0.8|i−j|)
for i, j = 1, . . . , 5 while the remaining (pn − 5) covariates independently follow a standard norm distribution.
Table 7 reports the selection proportions Pe for Z1, . . . , Z6 and Pa for all active predictors under sample size n = 100.
It can be seen that the proposed method exhibits reasonable results and outperforms the existing methods whether the
independence assumption holds or not.

Example 4. We further compare the performances of the proposed CR-SIS method and the CSIRS method. This example is
adapted from Zhou and Zhu (in press). In particular, the survival times Ti were generated from the model

log(Ti) = c0(ZT
i β) + ϵi,

where the error ϵi was generated independently from the type-I extreme value distribution EV(0,1), i.e., the cumulative
distribution function of ϵi has the form of Fϵi(u) = exp{− exp(−u)}. We set β = (1, 0.8, 0.6, 0.4, 0.2, 0, . . . , 0)T, i.e., only
the first five predictors are active. The constant c0 is used to control the signal-to-noise ratio. We set c0 = 1 and c0 = 0.25
to represent the high and the low signal-to-noise ratio, respectively. The remaining setups were kept the same as those in
Example 2. The corresponding results are summarized in Tables 8 and 9, from which we can see that the performances of
the CR-SIS and CSIRS procedures are comparable in all the considered scenarios; both of them deliver favorable results.

5. A real example

As an illustration,we applied the proposed screeningmethod to themantle cell lymphoma (MCL) data,whichwas studied
by Rosenwald et al. (2003). The gene expression data set contains expression values of 8810 cDNA elements, which can be
downloaded from http://llmpp.nih.gov/MCL/. The primary goal of this study was to identify genes that have great influence
on patients’ survival risk. Among 101 untreated patients with no history of previous lymphoma, 92were classified as having
MCL based on themorphologic and immunophenotypic criteria. During the follow-up, 64 patients died ofMCL and the other
28 patients were censored, which led to a censoring rate of 30.4%. The mean survival time was 2.8 years (ranging from 0.02

http://llmpp.nih.gov/MCL/
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Table 8
Five quantiles of theminimummodel size S among 500 replications
in Example 4 with the true model size p0 = 5.

c0 n Method 5% 25% 50% 75% 95%

0.25 50 CR-SIS 6 37 143 406 1385
CSIRS 8 38 125 384 1298

100 CR-SIS 5 6 16 68 407
CSIRS 5 6 13 55 488

200 CR-SIS 5 5 5 6 23
CSIRS 5 5 5 6 21

1 50 CR-SIS 5 5 5 6 18
CSIRS 5 5 5 6 24

100 CR-SIS 5 5 5 5 5
CSIRS 5 5 5 5 5

200 CR-SIS 5 5 5 5 5
CSIRS 5 5 5 5 5

Table 9
Selection proportions Pe for each active predictor and Pa for all active predictors
among 500 replications in Example 4.

c0 n Method Pe Pa

X1 X2 X3 X4 X5

0.25 50 CR-SIS 0.508 0.558 0.502 0.402 0.208 0.108
CRIS 0.490 0.572 0.552 0.390 0.200 0.094

100 CR-SIS 0.916 0.950 0.928 0.820 0.618 0.544
CRIS 0.940 0.966 0.940 0.836 0.624 0.580

200 CR-SIS 1.000 1.000 1.000 0.998 0.974 0.974
CRIS 1.000 1.000 1.000 0.996 0.974 0.974

1 50 CR-SIS 1.000 1.000 1.000 0.994 0.918 0.918
CRIS 0.998 1.000 1.000 0.992 0.912 0.912

100 CR-SIS 1.000 1.000 1.000 1.000 1.000 1.000
CRIS 1.000 1.000 1.000 1.000 1.000 1.000

200 CR-SIS 1.000 1.000 1.000 1.000 1.000 1.000
CRIS 1.000 1.000 1.000 1.000 1.000 1.000

Table 10
The screened UNIQIDs of genes for the Mantle cell lymphoma data.

CR-SIS CSIRS CRIS P-SIS FAST-SIS

30157 27095 30334 30157 30157
28346 30157 28872 34771 27095
27762 25234 17326 27095 34771
15936 32187 28990 27019 34790
24723 34790 17370 27762 32699
17198 28346 34790 30282 29330
27116 24794 34771 16587 28346
16312 34771 31420 28872 24713
34771 31420 27049 28346 16587
34790 16528 25234 34790 27762
27095 17326 16528 24723 15936
30334 28872 32699 25234 30282
31420 28990 30157 34687 25234
25234 32699 30282 32699 24723
24610 17343 27095 24734 27049
17326 27049 32187 24656 27019
17434 34687 33549 16528 28872
24656 26950 24710 17343 29209
30917 24723 24404 27049 31420
17174 24610 17176 31420 17343

to 14.05 years). Taking the survival times as the response and excluding the genes with missing values, we screened the
important ones among the 6312 genes using the CR-SIS, CSIRS, CRIS, FAST-SIS and P-SIS approaches, respectively.

We set the model size to be ⌈92/ log(92)⌉ = 20 and summarized the first 20 screened gene unique identifications
(UNIQIDs) in Table 10. We can see that six genes whose UNIQIDs are 25234 (i.e., Antigen identified by monoclonal antibody
Ki-67), 27095 (i.e., Topoisomerase (DNA) II alpha 170kDa), 30157 (i.e., Centromere protein F, 350/400ka (mitosin)), 31420
(i.e., Aurora kinase B), 34771 (i.e., Tubulin, alpha, ubiquitous) and 34790 (i.e., Thymidine kinase 1, soluble) were all selected
by the considered five screening methods, indicating that these genes could be strongly associated with patients’ survival
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Table 11
The results of selected important genes for the Mantle cell
lymphoma data using the regularization methods.

LASSO SCAD MCP
UNIQID EST. UNIQID EST. UNIQID EST.

30157 0.233 30157 0.826 30157 0.814
34687 0.124 34687 0.391 34687 0.433
27095 0.116
29330 0.059
34790 0.025
34771 0.020

risk. Moreover, the FAST-SIS, P-SIS and CR-SIS methods all rank gene 30157 at the top position and the CSIRS method ranks
it at the second top position. However, the CRIS method throws such informative gene in less attractive corner.

The screeningmethods are usually considered as an initial step to reduce the dimensionality and then followedwith some
model-based regularization methods. In particular, we first applied the P-SIS procedure of Zhao and Li (2012) to reduce the
dimension from pn = 6312 to dn = 3⌈n/ log(n)⌉ = 60 and then utilized different regularizationmethods such as the LASSO,
SCAD and MCP penalties to select the significant ones among these 60 genes under the framework of the Cox proportional
hazards regression. The selection results for UNIQID and the estimated value of the coefficient of selected predictors are
summarized in Table 11. We can see that six genes whose UNIQIDs are 30157, 34687, 27095, 29330, 34790, 34771 were
selected by LASSOmethod; both the SCAD andMCPmethods selected 30157 and 34687 simultaneously. On the other hand,
the selection results of the proposed screening method and the regularization methods coincide with each other to much
extent, which further implies that the proposed screening method can offer acceptable results.

6. Conclusion

Wepropose a novel model-free feature screening procedure for the ultrahigh-dimensional data, including complete data
and censored data. Its theoretical properties are established when the number of covariates diverges at an exponential
rate of the sample size. Numerical studies demonstrate that the performance of the proposed method is competitive with
the existing model-dependent procedures such as the SIS, FAST-SIS and P-SIS procedures. However, for the complicated
nonlinear models, the proposed model-free screening procedure delivers favorable performance over the existing ones. As
common to all existing sure independent screening procedures based onmarginal utilities, ourmethod also suffers from the
situations where covariates are jointly but not marginally important. It is warranted for further exploration of correlations
among predictors using iterative approaches.
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Appendix. Theoretic proofs

Proof of Theorem 1. Let
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We prove this theorem via two steps.
First, we derive the exponential tail probability bound of P(|rk − r∗
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By the strong law of large numbers, we have
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Combining it with condition C2, there exists a positive constant c1 such that

1
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n
i=1

Z2
ik ≤ c21 (A.1)

holds almost surely when n is sufficiently large. Without loss of generality, assume that (A.1) holds for the total probability
space as the set with measure zero does not affect the derivations. Using the Cauchy–Schwarz inequality and the
boundedness ofGn(t) and G(t), we have1
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Using condition C1, along with (A.1) and (A.2), we have
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where c3 = 2c1, c4 = c3c1/δ and S(t) = P(C > t) represents the survival function of the censoring variable. It follows from
Theorem 1 in Bitouzé et al. (1999) that
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where c5 is a constant.
Second, we derive the exponential tail probability bound of P(|r∗

k − rk| ≥ υn−α) for any positive constants υ and
0 ≤ α < 1/2. Using the similar arguments, we also have
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By the exponential Chebyshev inequality, for any ζ > 0, we have
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Using the law of the iterated logarithm, we have
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Without loss of generality, when n is large enough and removing a zero measure set, under condition C2, there exists a
positive constant c6 such that n
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, then it follows from (A.4) and (A.5) that
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Combining (A.3) and (A.6), we have
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where η = c−1
3 υ . Immediately, we have
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which proves the first part of Theorem 1 by taking c = 2υ .
If A ⊈ A, then there must exist some k ∈ A such thatrk < cn−α . It follows from condition C3 that |rk − rk| > cn−α for

some k ∈ A, which implies that {A ⊈ A} ⊆ {|rk − rk| > cn−α for some k ∈ A}. As a result, {maxk∈A |rk − rk| ≤ cn−α
} ⊆

{A ⊆ A}. Using (A.7), we have
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where an = |A|. Thus, the proof of Theorem 1 is completed. �

Proof of Theorem 2. Under assumption (i), we rewrite

Rk(Y ) = E [ZkE {G(Y )|Z}] = E [ZkE {G(Y )|ZA}] .

If k ∉ A, then assumption (ii) implies that

Rk(Y ) = E(Zk)E [E {G(Y )|ZA}] = 0.

As a result, rk = [Rk(Y )]2 = 0. It follows from condition C3 that maxk∉A rk < mink∈A rk. On the other hand, rk = 0 directly
implies that k ∉ A under condition C3. Thus, the first part of Theorem 2 is proved.

Under condition C3 and assumptions (i) and (ii), coupled with (A.8), we have
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k∉A

rk = P

max
k∉A

rk − max
k∉A

rk − min
k∈A

rk + min
k∈A

rk ≥ min
k∈A

rk


≤ P

max
k∉A
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which completes the proof of Theorem 2. �
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