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Abstract: In survival analysis a proportion of patients may be cured by the treatment, and thus they become
risk-free of the event of interest and their survival times change to infinity. The existence of such a survival
fraction often makes the underlying population more heterogeneous and heavily right-skewed. Compared
with the traditional mean- or hazard-based regression methods, quantile regression is more suitable for such
survival data as it is more robust against outliers or infinite survival times. Moreover, it offers a compre-
hensive assessment of the covariate effects on the survival times at different quantile levels. We propose a
new cure rate quantile regression model for the entire population including both finite and infinite survival
times. By invoking non-parametric functional estimation an iterative algorithm is developed to estimate
the cure rate parameters. The scheme of redistribution-of-mass to the right for censored data is adopted
to estimate the quantile regression parameters. The consistency and asymptotic normality of the proposed
estimators are established. Extensive simulation studies are conducted to evaluate the finite-sample perfor-
mance of the proposed method, which is further illustrated with a phase III melanoma clinical trial study.
The Canadian Journal of Statistics 45: 29–43; 2017 © 2016 Statistical Society of Canada

Résumé: En analyse de survie, certains patients peuvent guérir, de sorte que leur durée de vie devient l’infini
puisqu’ils ne sont plus à risque de vivre l’événement à l’étude. L’existence de cette fraction de survivants
rend souvent la population hétérogène en plus d’infliger une forte asymétrie vers la droite. En comparaison
des méthodes de régression traditionnelles basées sur la moyenne ou le risque, les méthodes de régression
quantile sont mieux adaptées à de telles données puisqu’elles sont plus robustes aux valeurs aberrantes et
aux temps de survie infinis. De plus, elles offrent une évaluation détaillée de l’effet des covariables sur le
temps de survie à différents quantiles. Les auteurs proposent un nouveau modèle de régression quantile
pour la population entière, incluant les temps de survie finis et infinis. Ils développent un algorithme itératif
invoquant l’estimation fonctionnelle non paramétrique afin d’estimer les paramètres de taux de guérison.
Ils adoptent un schéma de redistribution de la masse des données censurées vers la droite pour estimer les
paramètres de la régression quantile. Les auteurs établissent la convergence et la normalité asymptotique de
leurs estimateurs. Ils présentent des simulations approfondies pour évaluer la performance de leur méthode
sur des échantillons finis et ils l’illustrent avec les données d’une étude clinique de phase III sur le mélanome.
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1. INTRODUCTION

In many cancer studies a proportion of subjects may either be cured following treatment or be
immune to the event of interest from the study origin. Such patients become risk-free and thus
cannot be counted in the usual risk set in survival analysis. To explicitly incorporate such a survival
fraction, cure rate models have been investigated extensively, among which a commonly used ap-
proach is the two-component mixture cure rate model. The mixture model assumes the underlying
population is composed of susceptible (uncured) and immune (cured) subjects. As the susceptible
subjects would eventually experience the event of interest if follow-up is sufficiently long, one
can apply the usual survival models to their survival times, and logistic regression is often used
to model the susceptibility indicator. For parametric models Berkson & Gage (1952) proposed
the exponential–logistic mixture cure model, and Farewell (1982, 1986) considered the Weibull–
logistic mixture cure model for censored data with a survival fraction. For semiparametric models
Kuk & Chen (1992) proposed to use the Cox proportional hazards (PH) model (Cox, 1972) for
the survival times of susceptible subjects and a logistic regression model for the cure indicator.
Lu & Ying (2004) and Mao & Wang (2010) proposed transformation mixture cure models. In an
extension of the accelerated hazards model (Chen & Wang, 2000), Zhang & Peng (2009) studied
an accelerated hazards mixture cure model. Lu (2010) further developed the accelerated failure
time mixture cure model using kernel-smoothed non-parametric maximum likelihood estimation.
In the quantile regression framework Wu & Yin (2013) proposed a mixture cure rate model which
separates the entire population into two subgroups and fits censored quantile regression to the sus-
ceptible subgroup. More recently Choi et al. (2014) proposed a semiparametric inverse-Gaussian
cure rate model by taking into account the patients’ health status prior to their failure.

Although extensive research has been conducted on the mixture cure rate models, the Cox PH
cure rate model proposed by Yakovlev & Tsodikov (1996) is a viable alternative to the mixture
modelling counterparts. It also has been further studied by Tsodikov (1998); Chen, Ibrahim, &
Sinha (1999); and Tsodikov, Ibrahim, & Yakovlev (2003). The PH cure rate model is also known
as the bounded cumulative hazards cure rate model or the non-mixture cure rate model. Instead of
dividing the underlying population into cured and uncured groups the PH cure rate model directly
characterizes the covariate effects on the survival times of the entire population, including the
fraction of infinite survival times. Zeng, Yin, & Ibrahim (2006) proposed a variant of the PH
cure rate model which introduces a gamma frailty to accommodate the possible heterogeneity
in survival data with a cure fraction. However it is difficult to check the gamma distributional
assumption for the frailty, which can be misspecified in practice. As the underlying population
contains a fraction of immune subjects with infinitely long survival times, the overall survival
times are thus heavily right-skewed. It is well-known that quantile regression can handle outliers
or extreme observations (infinity in our case) naturally, and thus there is no need to fit quantile
regression to the subgroup of susceptible subjects as in Wu & Yin (2013). By considering the
infinite survival times to be outliers but viable observations we propose to model the conditional
quantiles of the survival times of the entire population directly. Using the reweighting scheme of
Wang & Wang (2009) for redistributing probability mass we can achieve the goal of fitting quantile
regression to the entire population. To characterize those subjects who are cured (with infinite
survival times) and those who are susceptible (with finite survival times) a logistic regression
is used to model the latent cure indicator. Compared with the familiar mean- or hazard-based
regression methods our cure rate quantile regression model can directly evaluate covariate effects
on the survival times of the entire population at different quantile levels, which would provide a
more complete assessment of covariate effects. The robust feature of quantile regression makes it
particularly appealing for such survival data as the infinite survival times would all fall on one side
of the quantile regression lines. The proposed cure rate quantile regression model also naturally
takes into account the heterogeneity without requiring any explicit distributional assumption. Our
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method can be regarded as the counterpart of the quantile-based non-mixture cure rate analysis,
which is a useful alternative to quantile-based mixture cure rate analysis (Wu & Yin, 2013).

The rest of this article is organized as follows. In Section 2 we propose to apply the cure
rate quantile regression model to the entire population and introduce the estimation procedure
through a cure rate weighting scheme. The asymptotic properties of the proposed estimators
are established in Section 3. We conduct extensive simulation studies to examine the finite-
sample performance of the proposed method in Section 4 and illustrate it with a real data example
in Section 5. We conclude with some remarks in Section 6.

2. QUANTILE REGRESSION AND CURE RATE ESTIMATION

Let T denote the survival time of a subject in the underlying population. As T could be ∞ with
positive probability we assume it has a decomposition as

T = ηT ∗ + (1 − η)∞,

where T ∗ < ∞ denotes the survival time of a susceptible subject and the indicator η takes a
value of 1 if a subject is susceptible and 0 otherwise. Let Z be a (p + 1)-vector of covariates that
includes 1 as an intercept. For a fixed τ ∈ (0, 1) the quantile regression model for T associated
with covariate Z takes the form

QT (τ|Z) = exp{Z�β(τ)}, (1)

where QT (τ|Z) = inf{t: P(T ≤ t|Z) ≥ τ} is the τth conditional quantile function of survival
time T given covariate Z and β(τ) is an unknown (p + 1)-vector of regression coefficients. The
key difference between Equation (1) and the work in Wu & Yin (2013) is that the latter models
conditional quantiles of T ∗ instead of T directly. For ease of exposition hereafter we omit the
quantile level τ in β(τ) whenever there is no ambiguity. As there exists a constant c0 ∈ (0, 1) such
that P(T = ∞|Z) > c0 we require τ ≤ 1 − c0 to ensure the identifiability of the model. Let C

be the censoring time; then the observed time is denoted by Y = T ∧ C, the minimum of T and
C. Let � = I(T ≤ C) be the censoring indicator. We assume that (Yi, �i, Zi), i = 1, . . . , n, are
independent and identically distributed copies of (Y, �, Z).

Let FT (t|z) = P(T ≤ t|z) be the conditional cumulative distribution function (CDF) of the
survival time T given Z = z. If FT (t|z) was known, we could define a weight function as in Wang
& Wang (2009), that is,

υi(FT ) =
⎧⎨⎩

1, if �i = 1 or FT (Ci|Zi) > τ,

τ − FT (Ci|Zi)
1 − FT (Ci|Zi)

, if �i = 0 and FT (Ci|Zi) < τ.

Furthermore the quantile regression coefficient β could be estimated by minimizing the weighted
objective function

Qn(β; FT ) = n−1
n∑

i=1

[
υi(FT )ρτ{Yi − exp(Z�

i β)} + {1 − υi(FT )}ρτ{Y∞ − exp(Z�
i β)}

]
,

where ρτ(u) = u{τ − I(u < 0)} is the usual check function (Koenker, 2005) and Y∞ is any
sufficiently large value that exceeds all exp(Z�

i β) for i = 1, . . . , n. However both FT (t|Zi) and
the weight function υi(FT ) are unknown. To carry out inference concerning β we first need to
estimate FT . As the survival times are a mixture of the susceptible and immune subjects, this places
a point mass at infinity with positive probability. Thus the conditional CDF of T is improper and
its estimation is nontrivial.

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique



32 WU AND YIN Vol. 45, No. 1

Following Farewell (1982) we use logistic regression to model the susceptibility indicator η,
that is,

P(η = 1|Z) = π(γ�Z) = exp(γ�Z)
1 + exp(γ�Z)

. (2)

Under the assumption that T ∗ and η are conditionally independent given Z, it follows that
FT (t|z) = π(γ�z)FT ∗ (t|z) for any t < ∞, where FT ∗ (t|z) = P(T ∗ ≤ t|z) is the conditional CDF
of T ∗ given Z = z. To obtain an estimator for FT (t|z) we need to estimate γ and FT ∗ (t|z) itera-
tively. Let γ0 be the true value of the parameter γ and F0T ∗ be the true function FT ∗ . We can extract
the cure information to construct an estimating equation for γ (Lu & Ying, 2004). Subjects who
have experienced the event of interest must belong to the susceptible subgroup, whereas censored
observations may have been cured or may still remain susceptible; thus

P(η = 1|Y, �, Z) = � + (1 − �)
π(γ�

0 Z){1 − F0T ∗ (Y |Z)}
1 − π(γ�

0 Z) + π(γ�
0 Z){1 − F0T ∗ (Y |Z)} .

In conjunction with Equation (2) we define an estimating function

Sn(γ; FT ∗ ) = n−1
n∑

i=1

∫ L

0

Zi{1 − π(γ�Zi)}
1 − π(γ�Zi)FT ∗ (t|Zi)

dMi(t; γ, FT ∗ ) (3)

for γ , where L is the study ending time and

Mi(t; γ, FT ∗ ) = Ni(t) − �T,γ (t ∧ Yi|Zi),

Ni(t) = �iI(Yi ≤ t),

�T,γ (t|Zi) = − log{1 − π(γ�Zi)FT ∗ (t|Zi)}.

According to martingale theory (Fleming & Harrington, 1991), solving Sn(γ; FT ∗ ) = 0 leads
to an asymptotically consistent estimator for γ , provided F0T ∗ is known. To estimate FT ∗ (t|z),
or equivalently the cumulative hazard function �T ∗ (t|z), we construct a local Nelson–Aalen
type estimator in the context of cure rate analysis. Let Kp(·) denote a p-variate kernel function
and let hn > 0 be a bandwidth that converges to zero as n → ∞. For ease of exposition we
assume that Z contains only continuous covariates and thus adopt a multivariate product kernel
Kp(u) = ∏p

j=1 K(uj), where K(·) is a univariate kernel function and u = (u1, . . . , up)� ∈ Rp.

Then

�̂T ∗ (t|z) =
∫ t

0

∑n
i=1 Bni(z)dNi(u)∑n

k=1 I(Yk ≥ u)ωk(γ̂, �̂T ∗ )Bnk(z)
. (4)

In (4), ωk(γ, �T ∗ ) accommodates the cure information (Sy & Taylor, 2000; Lu, 2010) and is
defined by

ωk(γ, �T ∗ ) = �k + (1 − �k)
π(γ�Zk) exp{−�T ∗ (Yk|z)}

1 − π(γ�Zk) + π(γ�Zk) exp{−�T ∗ (Yk|z)} , (5)

whereas Bni(z) represents a sequence of Nadaraya–Watson type weights equal to

Bni(z) = Kp{(z − Zi)/hn}∑n
k=1 Kp{(z − Zk)/hn} .

A consistent estimator of F0T ∗ (t|z) is given by F̂T ∗ (t|z) = 1 − exp{−�̂T ∗ (t|z)}.
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In our numerical algorithm the initial value γ̂
(0) is set by evaluating a logistic regression of �

on Z, and �̂
(0)
T ∗ (t|z) is obtained from (4) by setting all the ωk’s to be one, which then leads to ω

(0)
k

in (5). At the mth iteration our algorithm for estimating γ0 proceeds as follows:

(i) Plug ω
(m)
k into (4) and obtain �̂

(m+1)
T ∗ (t|z);

(ii) Substitute �̂
(m+1)
T ∗ (t|z) into (3) and solve the resulting equation using the Newton–Raphson

algorithm to obtain γ̂
(m+1);

(iii) Obtain ω
(m+1)
k by plugging γ̂

(m+1) and �̂
(m+1)
T ∗ (t|z) into (5).

Repeat these three steps until a predetermined convergence criterion has been met; the resulting
estimate is γ̂ . Both γ̂ and F̂T ∗ (t|z) have been shown to be consistent estimators (Wu & Yin,
2013). It follows that F̂T (t|z) = π(γ̂�z)F̂T ∗ (t|z), and hence β̂ is the minimizer of Qn(β; F̂T ).
For identifiability and computational stability we set F̂T ∗ (t|z) = 1 if t is greater than the largest
uncensored observation. This is a standard approach in the context of cure rate analysis.

Bandwidth selection plays an important role in non-parametric functional estimation, for
which we recommend using a d-fold cross-validation method to select hn. We randomly divide
the data into d non-overlapping and roughly equal-sized subgroups. For the jth subgroup, Dj ,
we fit the model using D(−j), the data excluding subgroup j. Let γ̂ (−j) and F̂T ∗(−j) denote the
estimators of γ and FT ∗ based on D(−j). For each Dj we define

MCV
j (h) = 1

|{i: �i = 1 and i ∈ Dj}|
∑
k∈Dj

∫ L

0
{MCV

(−j)(t, Zk)}2dNk(t),

where |A| denotes the cardinality of A and

MCV
(−j)(t, z) = 1

|{i: i ∈ D(−j)}|

×
∑

i∈D(−j)

∫ t

0

I(Zi ≤ z){1 − π(γ̂�
(−j)Zi)}

1 − π(γ̂�
(−j)Zi)F̂T ∗(−j)(u|Zi)

dMi(u; γ̂ (−j), F̂T ∗(−j)).

Finally we choose the optimal bandwidth by minimizing
∑d

j=1 MCV
j (h).

We adopt the usual resampling method for variance estimation (Lin et al., 2000). Thus we
generate n independent variables G1, . . . , Gn with unit mean and unit variance from the Exp(1)
distribution, for example. We then multiply each individual term i in the estimating function
Sn(γ; FT ∗ ) and the objective function Qn(β; FT ) by the corresponding variate Gi and obtain

S∗
n(γ; FT ∗ ) = n−1

n∑
i=1

∫ L

0

Zi{1 − π(γ�Zi)}
1 − π(γ�Zi)FT ∗ (t|Zi)

dMi(t; γ, FT ∗ )Gi

and

Q∗
n(β; FT ) = n−1

n∑
i=1

[
υi(FT )ρτ{Yi − exp(Z�

i β)} + {1 − υi(FT )}ρτ{Y∞ − exp(Z�
i β)}

]
Gi,

respectively. By using this proposed iterative algorithm, finding the root of S∗
n(γ; FT ∗ ) and the

minimum of Q∗
n(β; FT ), we obtain one resampling pair of estimates. If we repeat this procedure

a large number of times we can obtain resampling variances for the proposed estimators.
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3. ASYMPTOTIC PROPERTIES

Denote FC(t|z) = P(C ≤ t|z), F̄C(t|z) = 1 − FC(t|z), f0T ∗ (t|z) = dF0T ∗ (t|z)/dt, and fC(t|z) =
dFC(t|z)/dt. LetZ be the domain of covariates Z and impose the following conditions throughout
this derivation.

C1 Let B ⊂ Rp+1 and K ⊂ Rp+1 be compact sets that contain β0 and γ0 as interior points,
respectively. With probability one Z is bounded and E(ZZ�) > 0.

C2 With a compact support in R, K(·) is an 
th order kernel function satisfying
∫
R

K(u)du = 1,∫
R

K2(u)du < ∞,
∫
R

ujK(u)du = 0 for 1 ≤ j < 
,
∫
R

u
K(u)du �= 0, and
∫
R

|u|
K(u)du <

∞. Moreover it is Lipschitz continuous of order 
 with 
 ≥ 2.
C3 The first 
 partial derivatives of fZ(z), the density function of Z, are uniformly bounded for

z ∈ Z, and f0T ∗ (t|z) and fC(t|z) are bounded away from infinity uniformly for t ∈ (0, L] and
z ∈ Z, and the first 
 partial derivatives of f0T ∗ (t|z) and fC(t|z) with respect to z are uniformly
bounded for t and z. Moreover π(γ�z) is uniformly bounded away from 0 and 1 for z ∈ Z
and γ ∈ K, and τ is smaller than the lower bound of π(γ�

0 z).
C4 For γ in a neighbourhood of γ0 the matrix

�(γ; F0T ∗ ) = −∂E{Sn(γ; F0T ∗ )}
∂γ

= E

[∫ L

0

Z⊗2π(γ�Z){1 − π(γ�Z)}{1 − F0T ∗ (t|Z)}
{1 − π(γ�Z)F0T ∗ (t|Z)}2 dM(t; γ, F0T ∗ )

]

+E

[∫ L

0

(
Z{1 − π(γ�Z)}

1 − π(γ�Z)F0T ∗ (t|Z)

)⊗2

I(X ≥ t)d�T,γ (t|Z)

]
(6)

is positive definite, where a⊗2 = aa� for any column vector a.
C5 For β in a neighbourhood of β0 and γ in a neighbourhood of γ0

�(β, γ) = E[ZZ�π(γ�Z)F̄C{exp(Z�β)|Z}f0T ∗{exp(Z�β)|Z}]

is positive definite.
C6 The bandwidth hn = O(n−v), where 0 < v < min(1/p, 1/
).
C7 The bandwidth hn = O(n−v), where 1/(2
) < v < 1/(3p) and 
 > 3p/2.

The bounded aspects of the parameter spaces and covariates in condition C1 are common
assumptions in survival analysis. Condition C3 enables Taylor’s expansion to determine the order
of convergence of the estimators. For ease of exposition we assume Z to be continuous, whereas
discrete covariates can be handled by replacing integration with summation over the probability
mass functions. Furthermore if Z1, the first component of Z, is a discrete covariate, for example,
the corresponding kernel function is simply K(u1) = I(u1 = 0). This is the routine treatment
for the kernel smoothing method when discrete covariates are involved; this approach is also
known as stratification by discrete covariates. Due to censoring as well as the existence of a
cure fraction in the underlying population, we require that the quantile level τ be smaller than
the lower bound of π(γ�

0 z) to guarantee model identifiability. Conditions C4 and C5 are the
positive definite assumptions for the “Hessian” matrices of the regression parameters. These two
conditions obviously hold at the true parameter values. The theoretical verification of these two
conditions requires further assumptions as discussed in Asgharian (2014). Condition C6 states
the convergence rate of the bandwidth which is needed to obtain the consistency of the proposed
estimators, whereas condition C7 is a strengthened version which is required to establish the
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weak convergence properties. Due to the dependence of 
 on p, a higher order kernel function is
required to control the bias for a larger p (Wang, Zhou, & Li, 2013). Overall these conditions are
mild and are commonly required in survival analysis and kernel smoothing theory.

Suppose that there exists another group of parameters β†, γ†, and F
†
T ∗ such that (i)

π(z�γ†)F †
T ∗ (t|z) = π(z�γ)FT ∗ (t|z) and (ii) exp(z�β†) = exp(z�β). Obviously (ii) implies β† =

β under condition C1. And when t → ∞ in (i) we have π(z�γ†) = π(z�γ). Then γ† = γ under
conditions C1 and C3 and F

†
T ∗ = FT ∗ follows directly. Thus the identifiability of model parame-

ters is guaranteed. The asymptotic results are summarized in the following two theorems.

Theorem 1. Under conditions C1–C4 and C6 γ̂ converges in probability to γ0 as n → ∞.
Under conditions C1–C4 and C7 we have

n1/2(γ̂ − γ0) = n−1/2
n∑

i=1

�−1
0 ξ(Oi; γ0, F0T ∗ ) + oP (1), (7)

where �0 = �(γ0, F0T ∗ ), Oi = (Yi, �i, Zi), and ξ is a measurable function from O to Rp+1 with
a zero mean and finite variance. Thus n1/2(γ̂ − γ0) is asymptotically normal with a zero mean
and variance–covariance matrix �−1

0 �0�
−1
0 , where �0 = E{ξ(O; γ0, F0T ∗ )⊗2}.

The consistency and asymptotic normality of Theorem 1 follows directly from Wu & Yin
(2013) and thus the proofs are omitted. Under conditions C1–C4 and C6, and following Theorem
2.3 of Liang, de Una-Alvarez, & Iglesias-Perez (2012), we obtain the Bahadur representation of
F̂T ∗ (t|z),

F̂T ∗ (t|z) − F0T ∗ (t|z) = 1
nh

p
nfZ(z)

n∑
i=1

Kp

(
z − Zi

hn

)
ψ(Oi, t, z; γ0, F0T ∗ ) + OP (αn), (8)

where ψ(O, t, z; γ0, F0T ∗ ) is a measurable function with a zero mean and finite variance for any
t and z and αn = h


n + {log n/(nh
p
n )}3/4.

Theorem 2. Under conditions C1–C6 β̂ converges in probability to β0 as n → ∞. Under
conditions C1–C5 and C7 we have

n1/2(β̂ − β0) = n−1/2
n∑

i=1

�−1
0 φ(Oi; β0, γ0, F0T ∗ ) + oP (1), (9)

where �0 = �(β0, γ0) and φ is a measurable function fromO toRp+1 with a zero mean and finite
variance. Thus n1/2(β̂ − β0) is asymptotically normal with a zero mean and variance–covariance
matrix �−1

0 	0�
−1
0 , where 	0 = E{φ(O; β0, γ0, F0T ∗ )⊗2}.

Obviously F̂T (t|z) = π(γ̂�z)F̂T ∗ (t|z) is a uniformly consistent estimator for F0T (t|z) follow-
ing Theorem 1 and the Bahadur representation in Equation (8). It follows that Theorem 2 holds
immediately (Wang & Wang, 2009). Detailed formulations of the measurable functions ξ, ψ, and
φ are provided in the Supplementary Material for this article.

4. SIMULATION STUDIES

We conducted extensive simulation studies to examine the effectiveness of the proposed cure
rate quantile regression method. We first generated the susceptibility indicator η from the logistic
regression model in Equation (2) with Z = (1, Z)� and the true parameter value γ�

0 = (γ0, γ1) =
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(1, −1), where Z ∼ Unif(0, 1). We generated the survival times T ∗ of susceptible subjects from
the quantile regression model

log T ∗ = β0 + β1Z + (1 + Z)ετ∗ ,

where β�
0 = (β0, β1) = (2, 1), τ∗ = τ/π(γ�

0 Z), and the error ετ∗ follows a normal distribution
with the τ∗th quantile of zero. If η = 0 we set T to be a very large number, say 109; otherwise T =
T ∗. We simulated the censoring time C = C̃ ∧ L, where C̃ was generated from Unif(l0, L + 2)
if Z < 0.5, and from Unif(l0 + 1, L + 2) otherwise. The constant l0 and the study duration time
L were chosen to yield a censoring rate of 45%. The cure rate was approximately 38%. We
adopted the biquadratic kernel function and selected the bandwidth hn via the proposed 10-fold
cross-validation procedure. We replicated 1,000 simulations for each configuration.

Table 1 summarizes the simulation results for the proposed method. For the normal model error
ετ we consider quantile levels τ = 0.1 and 0.3, coupled with two different sample sizes n = 200
and 400. The biases of the estimates for the cure rate parameters are essentially negligible across
the considered quantile levels. As expected more precise estimates are obtained as n increases
to 400. Estimation of the quantile regression parameters is reasonably good. When the model
error ετ follows the extreme value distribution or the heavy-tailed student t distribution with two
degrees of freedom similar conclusions can be drawn.

We also conducted simulations to evaluate the bootstrap standard errors; these results are
summarized in Table 2. Clearly the estimated standard errors (ESE) that we obtained using the
bootstrap method agree with the sample standard errors (SE), and the coverage probabilities (CP)
of the bootstrap confidence intervals are close to the nominal level of 95%.

5. MELANOMA DATA EXAMPLE

We illustrate our proposed cure rate quantile regression method by applying it to data from a phase
III melanoma clinical trial conducted by the Eastern Cooperative Oncology Group (Kirkwood et
al., 2000). In this study there were 212 patients in the high-dose interferon arm and 205 patients
in the control arm. The response variable was the relapse-free survival time (in years) and about
42.4% of the patients’ survival times were censored. In the high-dose interferon arm 113 patients
experienced the event, and in the control arm 127 patients relapsed. The covariates of interest
included in this analysis were treatment (51% high-dose interferon = 1; 49% control = 0), age
(ranging from 19.13 to 78.05 years with mean 48.05 years), sex (37% female = 1; 63% male
= 0) and nodal status taking a value of 0 if there was no positive node or 1 if a patient had one
or more positive nodes (27% nodal status = 0; 73% nodal status = 1). The covariate age was
standardized to have mean 0 and variance 1. Our analysis focused on evaluating the treatment
effect of the high-dose interferon on patients’ relapse-free survival. The median follow-up time
for this study was approximately 4 years, which was considered sufficient follow-up for this
disease. Figure 1 shows the Kaplan–Meier survival curves for patients with melanoma in the
high-dose interferon arm and the control arm, respectively. A stable plateau can be observed after
approximately 5.5 years of relapse-free survival, which indicates the possible existence of a cure
fraction.

We applied the proposed models outlined in (1) and (2) to fit the melanoma data by taking
Z = (1, Treatment, Age, Sex, Nodal)�. Table 3 displays the estimates of covariate effects under
the quantile and cure rate regression, and the corresponding P-values on the basis of 200 bootstrap
samples. It can be seen that patients in the high-dose interferon arm survived significantly longer
than those in the control arm at the τ = 0.1 quantile level of the relapse-free survival time, whereas
the adjusted treatment effects were not significant for τ = 0.3 and 0.5. Patients with no positive
node survived significantly longer than those with one or more positive nodes at all three quantiles
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Table 1: Simulation results under the proposed cure rate quantile regression model with sample sizes
n = 200 and 400 and three different distributions of model errors

Intercept: γ0 = 1 and β0 = 2 Slope: γ1 = −1 and β1 = 1
Model

ετ τ n parameter Est. Bias SE MSE Est. Bias SE MSE

Normal 0.1 200 γ 1.0248 0.0248 0.3449 0.1194 −1.0398 −0.0398 0.5863 0.3450

β 1.9958 −0.0042 0.3246 0.1053 1.0210 0.0210 0.6994 0.4891

400 γ 1.0125 0.0125 0.2369 0.0562 −1.0118 −0.0118 0.3995 0.1595

β 1.9864 −0.0136 0.2264 0.0514 1.0141 0.0141 0.4769 0.2274

0.3 200 γ 1.0148 0.0148 0.3438 0.1183 −1.0211 −0.0211 0.5801 0.3366

β 2.0000 0.0000 0.3132 0.0980 0.9818 −0.0182 0.7226 0.5220

400 γ 1.0089 0.0089 0.2365 0.0559 −1.0071 −0.0071 0.3964 0.1571

β 1.9910 −0.0090 0.2218 0.0492 0.9945 −0.0055 0.5064 0.2563

Extreme 0.1 200 γ 1.0374 0.0374 0.3320 0.1115 −1.0507 −0.0507 0.5749 0.3327

β 1.9907 −0.0093 0.5492 0.3014 0.9944 −0.0056 1.1960 1.4291

400 γ 1.0113 0.0113 0.2361 0.0558 −1.0092 −0.0092 0.3985 0.1588

β 1.9959 −0.0041 0.3845 0.1477 1.0087 0.0087 0.8003 0.6399

0.3 200 γ 1.0124 0.0124 0.3436 0.1181 −1.0162 −0.0162 0.5782 0.3342

β 1.9851 −0.0149 0.3802 0.1446 0.9696 −0.0304 0.8292 0.6878

400 γ 1.0065 0.0065 0.2357 0.0556 −1.0046 −0.0046 0.3952 0.1560

β 1.9806 −0.0194 0.2691 0.0727 0.9783 −0.0217 0.5819 0.3388

t(2) 0.1 200 γ 1.0192 0.0192 0.3650 0.1334 −1.0482 −0.0482 0.6047 0.3676

β 1.9742 −0.0258 0.6518 0.4250 0.9994 −0.0006 1.3166 1.7317

400 γ 1.0240 0.0240 0.2561 0.0661 −1.0557 −0.0557 0.4229 0.1818

β 1.9907 −0.0093 0.4316 0.1862 1.0076 0.0076 0.8522 0.7256

0.3 200 γ 1.0198 0.0198 0.3576 0.1282 −1.0364 −0.0364 0.5994 0.3602

β 1.9892 −0.0108 0.3636 0.1322 0.9889 −0.0111 0.8256 0.6810

400 γ 1.0134 0.0134 0.2558 0.0655 −1.0314 −0.0314 0.4190 0.1764

β 1.9838 −0.0162 0.2563 0.0659 1.0036 0.0036 0.5785 0.3343

“Est.” is the average value of the parameter estimates, “Bias” is the average difference between Est. and the true
value, “SE” is the sample standard error of the estimates, and “MSE” is the mean squared error of the parameter
estimates.

of the response variable fitted. Female patients tended to have significantly longer survival than
male patients when τ = 0.5, but similar effects were not detected when τ = 0.1 or 0.3. The results
suggested that patients’ age had no apparent effect on their relapse-free survival for all values of
τ that we considered. With respect to the cure rate the covariates sex and nodal status were not
significantly associated with susceptibility status, whereas patient age was significantly associated
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Table 2: Simulation results for the bootstrap estimated standard errors and the estimated coverage
probabilities when the sample size n = 200

Intercept: γ0 = 1 and β0 = 2 Slope: γ1 = −1 and β1 = 1
Model

ετ τ parameter ESE ESE/SE CP (%) ESE ESE/SE CP (%)

Normal 0.1 γ 0.3481 1.0003 96.4 0.5881 0.9959 95.6

β 0.3244 1.0217 95.0 0.7087 1.0004 94.8

0.3 γ 0.3465 0.9943 96.0 0.5796 1.0019 95.6

β 0.3193 1.0234 95.4 0.7558 1.0321 94.8

Extreme 0.1 γ 0.3466 1.0043 96.2 0.5860 1.0012 95.6

β 0.5723 1.0823 95.2 1.2098 1.0380 95.4

0.3 γ 0.3440 0.9908 96.0 0.5752 0.9995 95.4

β 0.3829 1.0181 94.8 0.8587 1.0200 94.6

t(2) 0.1 γ 0.4014 1.0878 97.0 0.6693 1.0658 96.4

β 0.7004 1.1960 96.6 1.4177 1.1359 96.6

0.3 γ 0.3963 1.0722 96.8 0.6584 1.0338 96.0

β 0.3727 1.0307 96.0 0.8787 1.0583 95.4

“ESE” is the average of the bootstrap estimated standard errors, “SE” is the sample standard error of the estimates,
“ESE/SE” is the ratio of ESE to SE, and “CP” is the estimated coverage probability of the 95% confidence intervals
obtained using the bootstrap.

with the cure rate, indicating that younger patients were more likely to be long-term relapse-free
survivors of melanoma. There also was a trend for patients in the high-dose interferon arm to
experience longer relapse-free survival.

We assess the validity of the logistic regression for the susceptible indicators and the proposed
local Nelson–Aalen type estimator using the predicted survival curves under the model specified in
Equation (2). These are obtained by averaging the estimated survival curves over all the covariates
except the treatment indicator. Figure 1 shows that the predicted survival curves are very similar to
the corresponding Kaplan–Meier survival curves, indicating that our model fits the data very well.
To quantify the overall fit of the logistic regression model, we further consider the cumulative
residuals

Tn(z) = n−1/2
n∑

i=1

∫ L

0

1 − π(γ̂�Zi)

1 − π(γ̂�Zi)F̂T ∗ (t|Zi)
dMi(t; γ̂, F̂T ∗ )I(Zi ≤ z)

over the covariates, where I(Zi ≤ z) is the indicator that each of the p + 1 components of Zi is no
larger than the corresponding component of z. The null distribution of Tn(z) can be approximated
by the zero-mean process

T∗
n(z) = n−1/2

n∑
i=1

∫ L

0

1 − π(γ̂�Zi)

1 − π(γ̂�Zi)F̂T ∗ (t|Zi)
dMi(t; γ̂, F̂T ∗ )I(Zi ≤ z)Gi,
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Figure 1: Kaplan–Meier survival curves (dotted and solid lines) and the corresponding predicted survival
curves (dashed and dot-dashed lines) under the proposed model for patients with melanoma in the interferon
and control arms, respectively

where (G1, . . . , Gn) are generated independently from the standard normal distribution while
fixing the data {(Yi, �i, Zi), i = 1, . . . , n} at their observed values. The supremum statistic
supz |Tn(z)| can be used to test the overall fit of our logistic regression model for the suscep-
tibility status. We generated a large number of realizations from supz |T∗

n(z)|, say 1,000, and
obtained its empirical 95th percentile as 1.122. The observed value of supz |Tn(z)| is 0.2, which
indicates that the logistic regression model fits the susceptible indicators very well. To evaluate
the fit of the cure rate quantile regression model we define another version of the cumulative
residuals over the covariates, namely

Rn(z, τ) = n−1/2
n∑

i=1

{τ − υi(F̂T )I(log Yi ≤ β̂
�

Zi)}I(Zi ≤ z).

The null distribution of Rn(z, τ) can be similarly approximated by the zero-mean process

R∗
n(z, τ) = n−1/2

n∑
i=1

{τ − υi(F̂T )I(log Yi ≤ β̂
�

Zi)}I(Zi ≤ z)Gi.

For τ = 0.1 the 95th percentile of 1,000 realizations of supz |R∗
n(z, 0.1)| is 0.822, whereas the

observed value of supz |Rn(z, 0.1)| is 0.176. The corresponding two quantities at τ = 0.3 are
1.233 and 0.43, and those at τ = 0.5 are 1.316 and 0.313. As a result we conclude that the cure
rate quantile regression model also fits these melanoma data very well.
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Table 3: Analysis results for the melanoma data using the cure rate quantile regression model

Parameter Covariate Estimate Std. Error P-value

β (τ = 0.1) Intercept −0.9599 0.2638 0.0003

Treatment 0.5534 0.2640 0.0361

Age −0.0176 0.1202 0.8839

Sex −0.2341 0.2827 0.4076

Nodal −0.8598 0.2421 0.0004

β (τ = 0.3) Intercept 0.0293 0.2855 0.9182

Treatment 0.2859 0.2410 0.2354

Age −0.1341 0.1111 0.2275

Sex 0.0230 0.2712 0.9325

Nodal −0.7397 0.2919 0.0113

β (τ = 0.5) Intercept 0.8358 0.2117 0.0001

Treatment 0.3635 0.2549 0.1539

Age −0.1915 0.1327 0.1492

Sex 0.6100 0.2741 0.0260

Nodal −0.7479 0.2681 0.0053

γ Intercept 1.3135 0.4835 0.0066

Treatment −0.5820 0.3224 0.0710

Age 0.4611 0.1632 0.0047

Sex −0.1634 0.3311 0.6217

Nodal −0.0344 0.4678 0.9414

As a comparison we also fitted the melanoma data using the Cox PH mixture and non-mixture
cure rate regression methods and the traditional Cox PH regression model. The results summa-
rized in Table 4 show there is no significant association between treatment and the relapse-free
survival times of either the entire population or the susceptible subjects, whereas our fitted cure
rate quantile regression model indicates that when τ = 0.1 patients in the two treatment arms
experienced significantly different relapse-free survival. As one might expect, the Cox PH non-
mixture cure rate regression model produces results that are very similar to those derived from
a traditional Cox PH regression model that ignores the cure fraction. But the former model

can provide an estimate of cure probability via the quantity exp{− exp(β̂
�

z)} for each patient
with covariate z, which is not furnished by the traditional Cox PH model. We also applied the
quantile regression method of Wang & Wang (2009) to the melanoma data; it also does not in-
clude a cure fraction. Those results are summarized in Table 5. The estimates for β(τ) found
therein are very similar to those obtained using our proposed cure rate quantile regression model.
The reason is that no matter which quantile is fitted, subjects with survival times of ∞ must
lie to the right of the fitted quantile regression line. Nonetheless through the logistic regres-
sion, our proposed cure rate quantile regression can provide an in-depth analysis of covariate
effects on the cure rate; these are often viewed as long-term effects of the covariates. This kind
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Table 4: Analysis results for the melanoma data using the Cox PH mixture and non-mixture cure rate
regression models and the traditional Cox PH regression model

Parameter Covariate Estimate Std. Error P-value

Cox PH mixture cure rate regression model

β Treatment −0.0615 0.1747 0.7249

Age −0.0910 0.0901 0.3129

Sex −0.0297 0.1909 0.8762

Nodal 0.5803 0.1689 0.0006

γ Intercept 0.7613 0.3365 0.0237

Treatment −0.3239 0.3095 0.2954

Age 0.3729 0.1560 0.0168

Sex −0.3689 0.2880 0.2001

Nodal 0.3551 0.3435 0.3013

Cox PH non-mixture cure rate regression model

β Intercept −0.0985 0.1576 0.5319

Treatment −0.2342 0.1365 0.0862

Age 0.1630 0.0711 0.0219

Sex −0.2524 0.1479 0.0880

Nodal 0.5618 0.1659 0.0007

Traditional Cox PH regression model

β Treatment −0.2287 0.1302 0.0790

Age 0.1510 0.0663 0.0230

Sex −0.2332 0.1378 0.0910

Nodal 0.5501 0.1602 0.0006

of information cannot be inferred by using a quantile regression model that ignores the cure
fraction.

6. REMARKS

We have proposed a cure rate quantile regression method to analyze censored data when there is a
possibility of cure. Without requiring global linearity, our cure rate model can directly examine the
effects of covariates on the survival times, finite or infinite, of the entire underlying population
at any specific quantile level. Due to its robust features quantile regression is better suited to
extremely right-skewed survival data, especially when the data involve infinite survival times. In
theory we require that τ < π(γ�

0 Z) to ensure model identifiability. For a given data set we can
estimate the quantity π(γ�

0 Z) for all subjects. If we first set τ to be close to max1≤i≤n π(γ̂�Zi), we
can then select the final τ in an adaptive manner. If the regression quantiles at τ can be estimated
we try to increase τ by some small step size, for example, 0.05 or 0.1; otherwise we decrease τ
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Table 5: Analysis results for the melanoma data using the quantile regression model of
Wang & Wang (2009)

Parameter Covariate Estimate Std. Error P-value

β (τ = 0.1) Intercept −0.9599 0.2534 0.0002

Treatment 0.5534 0.2625 0.0350

Age −0.0176 0.1228 0.8860

Sex −0.2341 0.2751 0.3948

Nodal −0.8598 0.2366 0.0003

β (τ = 0.3) Intercept 0.0288 0.2512 0.9087

Treatment 0.2854 0.2202 0.1949

Age −0.1353 0.1122 0.2279

Sex 0.0093 0.2511 0.9705

Nodal −0.7384 0.2648 0.0053

β (τ = 0.5) Intercept 0.8533 0.2041 <0.0001

Treatment 0.3547 0.2432 0.1447

Age −0.1915 0.1285 0.1362

Sex 0.6013 0.2549 0.0183

Nodal −0.7566 0.2405 0.0017

by a small value. Through such a trial-and-error approach we can push τ to the largest value at
which all the model parameters can be identified.
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