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Summary. The main challenge in the context of cure rate analysis is that one never knows whether censored subjects are
cured or uncured, or whether they are susceptible or insusceptible to the event of interest. Considering the susceptible indicator
as missing data, we propose a multiple imputation approach to cure rate quantile regression for censored data with a survival
fraction. We develop an iterative algorithm to estimate the conditionally uncured probability for each subject. By utilizing this
estimated probability and Bernoulli sample imputation, we can classify each subject as cured or uncured, and then employ
the locally weighted method to estimate the quantile regression coefficients with only the uncured subjects. Repeating the
imputation procedure multiple times and taking an average over the resultant estimators, we obtain consistent estimators for
the quantile regression coefficients. Our approach relaxes the usual global linearity assumption, so that we can apply quantile
regression to any particular quantile of interest. We establish asymptotic properties for the proposed estimators, including
both consistency and asymptotic normality. We conduct simulation studies to assess the finite-sample performance of the
proposed multiple imputation method and apply it to a lung cancer study as an illustration.
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1. Introduction
It is commonly observed in oncology studies that a substantial
proportion of subjects are either cured following treatment or
are insusceptible to the event of interest, and thus they are
risk-free of disease relapse or cancer recurrence. To explicitly
incorporate the survival fraction for such data, cure rate mod-
els have been studied extensively, among which a widely used
approach is the two-component mixture cure rate model, with
the assumption that the underlying population is a mixture
of susceptible and insusceptible subjects. For those suscep-
tible subjects who would eventually experience the event of
interest if the follow-up is sufficiently long, one can apply the
usual survival models. However, when an observation is cen-
sored, we do not know whether the subject is susceptible or
insusceptible to the event. Typically, the logistic regression is
used to model the susceptibility indicator. In the paramet-
ric modeling framework, Berkson and Gage (1952) proposed
the exponential–logistic mixture model, and Farewell (1982,
1986) considered the Weibull-logistic mixture model for cen-
sored data with a survival fraction. For the semiparametric
models, Kuk and Chen (1992) proposed to use the Cox pro-
portional hazards (PH) model (Cox, 1972) for the survival
times of susceptible subjects and a logistic regression model
for the susceptibility indicators. Extensive research has been
conducted on other semiparametric cure rate models. For
example, Lu and Ying (2004) and Mao and Wang (2010) pro-
posed transformation cure rate models based on transformed
linear regression. Zeng, Yin, and Ibrahim (2006), on the other

hand, developed nonparametric maximum likelihood estima-
tors for a general class of transformation cure rate models that
include proportional hazards and proportional odds struc-
tures. Zhang and Peng (2009) studied an accelerated hazards
cure rate model, and Lu (2010) further developed an acceler-
ated failure time (AFT) model under the mixture cure rate
structure through kernel-smoothed nonparametric maximum
likelihood estimation. In the Bayesian paradigm, Yin (2005)
incorporated frailty to cure rate modeling to account for cor-
relations due to clustering or grouping, and Yin and Ibrahim
(2005) proposed a unified class of cure rate models based on
the Box–Cox type transformations, which can accommodate
both mixture and non-mixture cure rate frameworks.

Censored quantile regression (CQR) has become a valuable
complement to the traditional hazards-based survival mod-
els, as it allows for modeling heterogeneity and offers more
complete assessment based on different quantiles of the sur-
vival data. In the field of econometrics, Powell (1984, 1986)
studied CQR with fixed censoring, where the censoring times
are known for all subjects. In survival analysis with ran-
dom censoring, CQR has gained much popularity. Under the
independence assumption between the survival and censoring
times, Ying, Jung, and Wei (1995) proposed a semiparametric
estimation procedure for CQR. Nevertheless, a more realistic
assumption is the conditional independence of survival and
censoring times given the covariates. Yang (1999) proposed a
median regression model based on the weighted empirical sur-
vival function, which, however, requires homogeneous errors
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or that the error distributions converge to a common dis-
tribution at a certain rate. Portnoy (2003) developed CQR
based on the scheme of redistributing the censored data to the
right. By utilizing the martingale structure of right-censored
survival data, Peng and Huang (2008) proposed a martingale-
based estimating equation for CQR. Both methods of Portnoy
(2003) and Peng and Huang (2008) rely on a global linearity
assumption; that is, in order to estimate the τth conditional
quantile of the survival times, it requires estimation of all
the conditional quantiles lower than τ in advance by assum-
ing the same linear CQR structure. To relax such a global
linearity assumption, Wang and Wang (2009) proposed a
locally weighted quantile regression approach by adopting the
weighting scheme of redistribution-of-mass to the right, which
is applicable for any particular quantile of interest.

Due to the existence of a survival fraction, the underlying
population could be heterogeneous and heavily right-skewed.
As a result, CQR is more attractive than the traditional mean-
or hazards-based mixture cure rate regression models. For sur-
vival data with a cure possibility, Wu and Yin (2013) proposed
cure rate quantile regression, which, however, also relies on the
global linearity assumption. Motivated by the fact that one
never knows whether a censored subject is cured or not, we
cast the cure rate indicator in a missing data framework and
propose a new estimation procedure based on multiple impu-
tation. To relax the global linearity assumption, we apply the
locally weighted CQR of Wang and Wang (2009) to model
any particular quantile of the survival times of the susceptible
subjects after filling in the cure indicator. Specifically, we first
consider an iterative method to estimate the coefficients in the
logistic regression. We then evaluate the conditional uncured
probability for each censored observation, via which we can
utilize Bernoulli sampling to mark each subject either cured
or uncured. Based on those subjects labeled with uncured,
we employ the locally weighted CQR method (Wang and
Wang, 2009) to estimate the coefficients in CQR. Repeat-
ing the imputation procedure for multiple times and taking
an average over the resultant estimators, we can obtain the
estimators for the quantile regression coefficients.

The rest of this article is organized as follows. In Section 2,
we propose the multiple imputation method for cure rate
quantile regression. We establish the asymptotic properties
of the proposed method in Section 3, and conduct simulation
studies to evaluate its finite-sample performance in Section 4.
In Section 5, we illustrate our method with application to a
real data example. Some remarks are concluded in Section 6,
and technical details are provided in the supplementary
material.

2. CQR with Multiple Imputation

Let T (T < ∞) denote the possibly transformed failure time
of a susceptible (uncured) subject in the population under a
known monotone transformation, for example, the log trans-
formation. In the mixture cure rate model framework, we can
decompose the failure time of a randomly selected subject
from the entire population (including both susceptible and
insusceptible subjects) as

Y = ηT + (1 − η)∞,

where the indicator η takes a value of 1 if a subject is suscep-
tible to the event of interest, and 0 otherwise. Let C be the
censoring time, under the same transformation as T , let Z be
a (p + 1)-vector of covariates related to T , and let W be a
(q + 1)-vector of covariates associated with η. Both Z and W
include 1 as an intercept, and they may share common com-
ponents. The observed time is X = Y ∧ C, the minimum value
of Y and C, and let � = I(Y ≤ C) be the censoring indicator.
For i = 1, . . . , n, (Xi, �i,Zi,Wi) are independent and identi-
cally distributed copies of (X, �,Z,W), and (Ti, ηi) and Ci

are assumed to be conditionally independent given covariates
Zi and Wi.

Let FT (t|z) = P(T ≤ t|z) be the conditional distribu-
tion function of T given Z = z. For any given τ ∈ (0, 1),
let QT (τ|Z) = inf{t: FT (t|Z) ≥ τ} denote the τth conditional
quantile function given covariate Z, and the quantile regres-
sion model is given by

QT (τ|Z) = ZTβ(τ), (1)

where β(τ) is an unknown (p + 1)-vector of regression coeffi-
cients. For ease of exposition, the quantile level τ is omitted
hereafter in β(τ), while it is understood that β is quantile-
specific and we do not assume the usual global linearity across
all τ’s in (0, 1). Based on the logistic regression (Farewell,
1982), we can model the susceptibility indicator η as

P(η = 1|W) = π(γTW) = exp(γTW)

1 + exp(γTW)
, (2)

where γ is an unknown (q + 1)-vector of regression coeffi-
cients.

Define the counting process Ni(t) = �iI(Xi ≤ t), and the
cumulative hazard function is given by

�Y,γ(t|Zi,Wi) = − log{1 − P(Yi ≤ t|Zi,Wi)}
= − log{1 − π(γTWi)FT (t|Zi)}.

Clearly, Mi(t; γ, FT ) = Ni(t) − �Y,γ(t ∧ Xi|Zi,Wi) is a martin-
gale (Fleming and Harrington, 1991). To estimate the cure
rate parameter γ, we note two facts in the observed data: (1)
If a patient experiences the event of interest, this subject must
belong to the uncured group; (2) If a patient’s survival time
is censored at X, the conditional probability that this subject
belongs to the uncured group is π(γTW){1 − FT (X|Z)}/{1 −
π(γTW)FT (X|Z)}. As a result, the probability of a susceptible
indicator is given by

P(η = 1|�, X,Z,W) = � + (1 − �)
π(γTW){1 − FT (X|Z)}
1 − π(γTW)FT (X|Z)

.

Based on (2), we have

E
[
W

{
P(η = 1|�, X,Z,W) − π(γTW)

}] = 0,
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which leads to an estimating equation for γ,

Sn(γ, FT ) = n−1

n∑
i=1

Wi{1 − π(γTWi)}
1 − π(γTWi)FT (Xi|Zi)

×{
�i − π(γTWi)FT (Xi|Zi)

} = 0.

This can be rewritten in the martingale form,

Sn(γ, FT ) = n−1

n∑
i=1

∫ L

−∞

Wi{1 − π(γTWi)}
1 − π(γTWi)FT (t|Zi)

dMi(t; γ, FT ) = 0,

(3)

where L denotes the transformed study end time.
Obviously, solving (3) would yield a consistent estimator

for γ if the function FT (t|z) were known. Following the locally
weighted Kaplan–Meier estimator in Wang and Wang (2009),
we take a local Nelson–Aalen type estimator for the cumu-
lative hazard function �T (t|z) in the context of cure rate
analysis (Sy and Taylor, 2000; and Lu, 2010). For simplicity,
suppose that p components of Z (excluding the first com-
ponent 1) are continuous. We adopt a multivariate product
kernel Kp(u) = ∏p

i=1
K(ui), u ∈ Rp, where K(·) is a univari-

ate kernel function. Let hn > 0 be a bandwidth, and hn → 0
as n → ∞. We first define a sequence of Nadaraya–Watson
type weights,

Bni(z) = Kp{(z − Zi)/hn}∑n

k=1
Kp{(z − Zk)/hn}

,

and then we can estimate �T (t|z) via a local Nelson–Aalen
type estimator,

�̂T (t|z) =
∫ t

−∞

∑n

i=1
Bni(z)dNi(u)∑n

k=1
I(Xk ≥ u)ωk(γ̂, �̂T )Bnk(z)

, (4)

where

ωk(γ, �T )

= �k + (1−�k)
π(γTWk) exp{−�T (Xk|z)}

1 − π(γTWk) + π(γTWk) exp{−�T (Xk|z)} .

(5)

In the numerical algorithm, we first obtain an initial value

γ̂
(0)

by performing the logistic regression of � on W, and

then obtain �̂
(0)
T (t|z) from (4) by setting all ωk’s to be one.

Plugging γ̂
(0)

and �̂
(0)
T (t|z) into (5) leads to ω

(0)
k . At the mth

iteration, our algorithm for estimating γ and �T (t|z) proceeds
as follows.

(i) Plug ω
(m)
k into (4) and obtain �̂

(m+1)
T (t|z).

(ii) Plug �̂
(m+1)
T (t|z) into (3) and solve the resultant equation

using the Newton–Raphson algorithm to obtain γ̂
(m+1)

.

(iii) Plug γ̂
(m+1)

and �̂
(m+1)
T (t|z) into (5) and obtain ω

(m+1)
k .

(iv) Repeat steps (i), (ii), and (iii) until a predetermined
convergence criterion is met.

The resultant estimators for γ and �T (t|z) are denoted by

γ̂ and �̂T (t|z), respectively. For identifiability and computa-

tional stability, we set �̂T (t|z) = ∞ if t is greater than the
largest uncensored observation. Correspondingly, the condi-
tional cumulative distribution function can be estimated by
F̂T (t|z) = 1 − exp{−�̂T (t|z)}.

It is recognized that the main challenge in cure rate analysis
is that one never knows which censored observation is cured
and which is uncured. Therefore, the susceptibility indica-
tor can be viewed as missing data. By invoking the multiple
imputation approach, we can estimate the parameter β in the
quantile regression model (1). Let η = (η1, . . . , ηn)

T, whose
components are 1 for observed failure times and are miss-
ing for censored observations. Ideally, if both η and FT were
known, we can directly follow Wang and Wang (2009) to
define the weight function by redistributing censored data to
the right,

υi(FT ) =

⎧⎨
⎩

1, if �i = 1 or FT (Ci|Zi) > τ,

τ − FT (Ci|Zi)

1 − FT (Ci|Zi)
, if �i = 0 and FT (Ci|Zi) < τ.

The estimator of the quantile regression coefficient β can be
obtained by minimizing the weighted objective function based
on those susceptible subjects only,

Qn(β, η, FT ) = n−1

n∑
i=1

ηi

[
υi(FT )ρτ(Xi − ZT

i β)

+ {1 − υi(FT )}ρτ(X
∞ − ZT

i β)
]
, (6)

where ρτ(u) = u{τ − I(u < 0)} is the check function and X∞

is any value sufficiently large to exceed all ZT
i β. Even though

we obtain an estimator of FT as a byproduct when estimating
γ, the components of η are unknown (missing) for censored
subjects. To facilitate the minimization of Qn(β, η, FT ), it is
vital to identify the value of each component of η. Fortunately,
once the estimators γ̂ and F̂T are obtained, we can estimate
the conditionally uncured probability for each subject given
its observation,

p̂i = �i + (1 − �i)
π(γ̂

T
Wi){1 − F̂T (Xi|Zi)}

1 − π(γ̂
T
Wi)F̂T (Xi|Zi)

, (7)

from which multiple imputation of the missing values of ηi

can be implemented.
Suppose that we conduct K times of imputation, and let

η̂i(k) be the kth imputed value for ηi (i = 1, . . . , n), which is
sampled from the Bernoulli distribution with success proba-
bility p̂i. For the kth imputation, once η̂(k) = (η̂1(k), . . . , η̂n(k))

T

are sampled, we employ the locally nonparametric Nelson–
Aalen estimator to estimate FT (t|z) based on the filled-in data
set consisting of {i: η̂i(k) = 1, i = 1, . . . , n}. The estimator of

FT (t|z) is F̂T (k)(t|z) = 1 − exp{−�̂T (k)(t|z)}, where

�̂T (k)(t|z) =
∫ t

−∞

∑n

i=1
η̂i(k)Bni(z)dNi(u)∑n

i=1
η̂i(k)I(Xi ≥ u)Bni(z)

.
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As a result, a censored observation would be retained
if the corresponding imputed value of ηi is 1. Thus, we
can obtain the kth imputed estimator β̂(k) by minimiz-

ing the objective function Qn(β, η̂(k), F̂T (k)). We repeat this
imputation–estimation procedure K times and then take an
average to obtain the multiple imputation estimator

β̂ = K−1

K∑
k=1

β̂(k).

In nonparametric functional estimation, it is critical to
select the bandwidth for the kernel smoothing. We recom-
mend a d-fold cross-validation method for choosing hn as
follows. We randomly divide the data into d nonoverlap-
ping and equal-sized subgroups. For the jth subgroup, Dj,
we fit the model using D(−j), the data excluding subgroup
j, and calculate a loss function based on the martingale
residuals,

LCV
j (h) = 1

|{i: �i = 1 and i ∈ Dj}|
∑
k∈Dj

∫ L

−∞
{MCV

(−j)(t,Wk)}2dNk(t),

where |A| denotes the cardinality of a set A, and

MCV
(−j)(t,w)

= 1

|{i: i ∈ D(−j)}|
∑

i∈D(−j)∫ t

−∞

I(Wi ≤ w){1 − π(γ̂
T
(−j)Wi)}

1 − π(γ̂
T
(−j)Wi)F̂T (−j)(u|Zi)

dMi(u; γ̂(−j), F̂T (−j)).

Here, both γ̂(−j) and F̂T (−j) are estimated using the data from
D(−j). Finally, we choose the bandwidth that minimizes the

total loss,
∑d

j=1
LCV

j (h).
As a common practice in CQR, we adopt the resampling

method to estimate the standard errors of the proposed esti-
mators (Parzen, Wei, and Ying, 1994; Lin et al., 2000; Jin,
Lin, and Ying, 2006), which proceeds as follows.

(i) Independently generate n variates, G1, . . . , Gn, from a
distribution with mean 1 and variance 1, for example,
Exp(1).

(ii) Perturb the kernel weights

B∗
ni(z) = Kp{(z − Zi)/hn}∑n

k=1
Kp{(z − Zk)/hn}Gk

and the local Nelson–Aalen type estimator

�̂∗
T (t|z) =

∫ t

−∞

∑n

i=1
B∗

ni(z)dNi(u)Gi∑n

k=1
I(Xk ≥ u)ωk(γ̂, �̂∗

T )B∗
nk(z)Gk

.

(8)

(iii) Perturb the estimating equation for γ,

S∗
n(γ, F ∗

T )

= n−1

n∑
i=1

∫ L

−∞

Wi{1 − π(γTWi)}
1 − π(γTWi)F

∗
T (t|Zi)

dMi(t; γ, F ∗
T )Gi = 0,

(9)

and by employing the iterative procedure based on (8)
and (9), we obtain the bootstrap estimates γ̂

∗
and

F̂ ∗
T (t|z).

(iv) Based on the uncured probability from the bootstrap

estimates γ̂
∗

and F̂ ∗
T (t|z),

p̂∗
i = �i + (1 − �i)

π(γ̂
∗T

Wi){1 − F̂ ∗
T (Xi|Zi)}

1 − π(γ̂
∗T

Wi)F̂
∗
T (Xi|Zi)

,

we generate the kth set of imputation values η̂
∗
(k) =

(η̂∗
1(k), . . . , η̂

∗
n(k))

T, k = 1, . . . , K.

Let

�̂∗
T (k)(t|z) =

∫ t

−∞

∑n

i=1
η̂∗

i(k)B
∗
ni(z)dNi(u)Gi∑n

i=1
η̂∗

i(k)I(Xi ≥ u)B∗
ni(z)Gi

.

Perturb the objective function for β,

Q∗
n(β, η̂

∗
(k), F̂

∗
T (k)) = n−1

n∑
i=1

η̂∗
i(k)

[
υi(F̂

∗
T (k))ρτ(Xi − ZT

i β)

+ {1 − υi(F̂
∗
T (k))}ρτ(X

∞ − ZT
i β)

]
Gi.

(10)

Minimizing (10) results in the estimate β̂
∗
(k). Thus, we

obtain the bootstrap version of the multiple imputation

estimator β̂
∗ = K−1

∑K

k=1
β̂

∗
(k).

Repeating this perturbation procedure for a large number of
times, we can obtain the bootstrap standard error estimates.

3. Asymptotic Properties

We denote FC(t|Z,W) = P(C ≤ t|Z,W), F̄C(t|Z,W) = 1 −
FC(t|Z,W), and define fT (t|z) = dFT (t|z)/dt and fC(t|z,w) =
dFC(t|z,w)/dt. Let β0, γ0, F0T , and f0T , respectively, denote
the true values of β, γ, FT , and fT . Let B ⊂ Rp+1 and K ⊂
Rq+1 be compact subsets that contain β0 and γ0 as the inte-
rior points, respectively. Let H denote an infinite dimensional
distribution space whose support is the same as that of F0T .
Also, denote Z and W as the domains of covariates Z and W,
respectively. We impose the conditions as follows.

C1. With probability 1, both Z and W are bounded;
E(ZZT) and E(WWT) are positive definite matrices.

C2. The kernel function K(·) has a compact support in
R, and it is an 
th order kernel satisfying that
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Table 1
Simulation results for the proposed multiple imputation method under the cure rate quantile regression model when ετ follows

a normal distribution

γ0 = 1 and β0 = 2 γ1 = −1 and β1 = 1

τ n Method Coef. Est. SE ESE CP(%) Est. SE ESE CP(%)

0.5 200 Impute η γ 1.034 0.311 0.323 96.0 −1.027 0.521 0.544 95.2
β 2.010 0.247 0.280 95.2 0.972 0.548 0.622 93.8

True η β 2.010 0.246 0.282 95.0 0.971 0.544 0.626 95.4

400 Impute η γ 1.019 0.248 0.226 93.2 −1.035 0.433 0.380 92.0
β 1.999 0.180 0.194 95.8 0.995 0.395 0.429 95.4

True η β 1.998 0.178 0.194 95.8 0.999 0.390 0.430 95.4

0.7 200 Impute η γ 1.030 0.318 0.319 95.0 −1.028 0.561 0.538 93.6
β 2.013 0.265 0.291 95.0 0.944 0.586 0.648 94.4

True η β 2.007 0.265 0.292 95.0 0.959 0.582 0.652 94.8

400 Impute η γ 1.009 0.226 0.224 95.2 −1.017 0.364 0.376 94.8
β 1.987 0.195 0.210 95.0 1.018 0.426 0.459 95.6

True η β 1.986 0.191 0.211 95.0 1.020 0.414 0.459 96.8

Note: Coef. represents the regression coefficient, Est. is the average of the parameter estimates, SE is the sample standard error of the
estimates, ESE is the average of bootstrap estimates of the standard error, and CP is the coverage probability of 95% confidence intervals.
“Impute η” represents the proposed multiple imputation method, and “True η” refers to the ideal case where the true susceptibility
indicators were known.∫

R K(u)du = 1,
∫
R K2(u)du < ∞,

∫
R ujK(u)du = 0 for

1 ≤ j < 
, and
∫
R |u|
K(u)du < ∞. Moreover, it is Lip-

schitz continuous of order 
, with 
 ≥ 2.
C3. The first 
 partial derivatives of the density function of

Z, fZ(z), with respect to z are uniformly bounded for
z ∈ Z, and f0T (t|z) and fC(t|z,w) are bounded (uni-
formly in t, z, and w) away from infinity, and the

first 
 partial derivatives of f0T (t|z) and fC(t|z,w)
with respect to z or w are uniformly bounded in
t ∈ (−∞, L], z ∈ Z, and w ∈ W. In addition, π(γTw)
is uniformly bounded away from 0 and 1 for w ∈ W
and γ ∈ K.

C4. For γ in the neighborhood of γ0, the “Hessian” matrix
of γ (minus of the first derivative of (3) evaluated at

Table 2
Simulation results for the proposed multiple imputation method under the cure rate quantile regression model when ετ follows

an extreme value distribution

γ0 = 1 and β0 = 2 γ1 = −1 and β1 = 1

τ n Method Coef. Est. SE ESE CP(%) Est. SE ESE CP(%)

0.5 200 Impute η γ 1.033 0.324 0.323 94.4 −1.057 0.560 0.546 94.2
β 2.017 0.279 0.325 96.6 0.988 0.603 0.728 96.6

True η β 2.010 0.277 0.326 97.0 0.995 0.590 0.729 97.6

400 Impute η γ 1.025 0.237 0.227 94.0 −1.018 0.403 0.383 92.0
β 2.006 0.208 0.221 94.0 1.002 0.467 0.494 94.0

True η β 2.005 0.205 0.221 94.4 0.999 0.459 0.494 94.4

0.7 200 Impute η γ 1.052 0.319 0.321 95.6 −1.069 0.536 0.540 94.6
β 2.031 0.369 0.419 95.2 0.960 0.806 0.928 95.6

True η β 2.019 0.365 0.420 95.4 0.969 0.792 0.927 94.8

400 Impute η γ 1.013 0.220 0.224 95.2 −1.015 0.371 0.376 95.0
β 2.007 0.260 0.285 95.6 0.965 0.568 0.638 96.2

True η β 2.005 0.256 0.284 96.2 0.962 0.564 0.634 96.8

Note: See the footnote of Table 1.
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Table 3
Simulation results for the proposed multiple imputation method under the cure rate quantile regression model when ετ follows

a Cauchy distribution

γ0 = 1 and β0 = 2 γ1 = −1 and β1 = 1

τ n Method Coef. Est. SE ESE CP(%) Est. SE ESE CP(%)

0.5 200 Impute η γ 0.996 0.332 0.330 96.6 −1.032 0.560 0.554 96.0
β 1.988 0.333 0.371 96.0 0.963 0.734 0.819 95.8

True η β 1.995 0.333 0.373 95.6 1.005 0.739 0.828 95.2

400 Impute η γ 1.002 0.252 0.235 95.2 −1.013 0.404 0.395 95.6
β 1.994 0.249 0.257 95.0 0.987 0.535 0.576 96.2

True η β 1.995 0.237 0.254 95.0 1.007 0.508 0.564 96.6

0.7 200 Impute η γ 1.050 0.396 0.345 94.2 −1.078 0.658 0.584 94.4
β 1.996 0.364 0.380 96.8 0.951 0.806 0.849 95.6

True η β 1.991 0.338 0.372 95.2 0.980 0.766 0.828 97.2

400 Impute η γ 1.005 0.225 0.230 95.8 −1.034 0.373 0.384 96.4
β 2.024 0.329 0.385 95.8 0.957 1.340 1.236 95.8

True η β 2.017 0.327 0.362 96.2 0.995 0.743 0.796 96.4

Note: See the footnote of Table 1.

F0T (t|z)), �(γ, F0T ), is positive definite, where

�(γ, FT )

= E

[∫ L

−∞

W⊗2
π(γTW){1 − π(γTW)}{1 − FT (t|Z)}

{1 − π(γTW)FT (t|Z)}2 dM(t; γ, FT )

]

+E

[∫ L

−∞

(
W{1 − π(γTW)}

1 − π(γTW)FT (t|Z)

)⊗2

I(X ≥ t)d�Y,γ(t|Z,W)

]

with a⊗2 = aaT for any column vector a.
C5. For β and γ in the neighborhood of their true values,

�(β, γ) = E[ZZTπ(γTW)F̄C(ZTβ|Z,W)f0T (ZTβ|Z)]

is positive definite.
C6. The bandwidth hn = O(n−v), where 0 < v < min(1/p,

1/
).
C7. The bandwidth hn = O(n−v), where 1/(2
)< v < 1/(3p)

and 
 > 3p/2.

Condition C2 requires K(·) to be an 
th order kernel. Con-
dition C3 guarantees the boundedness of the 
th term in the
Taylor expansion. The convergence rate of the bandwidth in
condition C6 is required to obtain the consistency of the pro-
posed estimators while a higher convergence rate is imposed
in condition C7 for establishing their weak convergence prop-
erties. For a larger p, we need a higher order kernel function
to control the bias.

Conditions C1–C4 and C7 entail the approximate represen-
tation (Wu and Yin, 2013),

n1/2(γ̂ − γ0) = n−1/2

n∑
i=1

�−1
0 φ(Oi, γ0, F0T ) + oP(1), (11)

where �0 = �(γ0, F0T ), Oi = (Xi, �i,Zi,Wi), and φ is a mea-
surable function from Oi to Rq+1 with mean zero and finite
second moments. Thus, n1/2(γ̂ − γ0) is asymptotically normal
with mean zero and variance–covariance matrix �−1

0 �0�
−1
0 ,

where �0 = E{φ(O, γ0, F0T )⊗2}.
Under conditions C1–C4 and C6 and following Theorem

2.3 in Liang, Una-Alvarez, and Iglesias-Perez (2012), we also

have the Bahadur representation of F̂T (t|z),

F̂T (t|z) − F0T (t|z) = 1

nh
p
nfZ(z)

n∑
i=1

Kp

(
z − Zi

hn

)

×ψ(Xi, �i,Wi, t, z; γ0, F0T )

+ OP(αn), (12)

where ψ(X, �,W, t, z; γ0, F0T ) is measurable function with
mean zero and finite variance for any t and z, and αn =
h


n + {log n/(nhp
n)}3/4.

Theorem 1. Under conditions C1–C6, β̂ converges in
probability to β0 as n goes to infinity.

Theorem 2. Under conditions C1–C5 and C7, n1/2(β̂ −
β0) is asymptotically normal with mean zero and variance–
covariance matrix �−1

0 �0�
−1
0 , where �0 = �(β0, γ0) and �0

is given in Web Appendix B.

Proofs of Theorems 1 and 2 are relegated to Web Appen-
dices A and B in the supplementary material, respectively.
The derivation of (A.4) in Web Appendix A follows the similar
arguments in Wang and Feng (2012).
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Table 4
Comparison between the cure rate censored quantile regression (CQR) under global linearity and the proposed multiple

imputation method with three covariates and a cure rate of 25%

CQR under global linearity Multiple imputation

Error Int. Z1 Z2 Z3 Int. Z1 Z2 Z3

Homo. β(τ) True 2.000 1.000 −1.000 1.000 2.000 1.000 −1.000 1.000
0.1 Est. 0.686 0.948 −0.945 0.947 1.679 0.874 −0.806 0.804

MSE 1.787 0.141 0.047 0.015 0.171 0.137 0.097 0.052
0.2 Est. 1.121 0.917 −0.934 0.937 1.775 0.878 −0.852 0.836

MSE 0.815 0.098 0.037 0.012 0.094 0.106 0.055 0.037
0.3 Est. 1.428 0.914 −0.928 0.927 1.814 0.867 −0.845 0.857

MSE 0.365 0.080 0.035 0.013 0.067 0.093 0.052 0.027
0.4 Est. 1.695 0.897 −0.924 0.918 1.847 0.885 −0.876 0.863

MSE 0.128 0.078 0.033 0.013 0.054 0.081 0.042 0.025
0.5 Est. 1.947 0.877 −0.919 0.908 1.961 0.991 −0.971 0.965

MSE 0.039 0.087 0.032 0.015 0.027 0.065 0.023 0.008
0.6 Est. 2.192 0.870 −0.915 0.894 1.909 0.913 −0.914 0.898

MSE 0.074 0.088 0.036 0.018 0.037 0.069 0.033 0.017
γ True 1.000 −1.000 2.000 −1.000 1.000 −1.000 2.000 −1.000

Est. 1.045 −1.146 2.232 −1.169 1.045 −1.146 2.232 −1.169
MSE 0.183 0.422 0.226 0.215 0.183 0.422 0.226 0.215

Hete. β(τ) True 2.000 1.000 −1.000 1.000 2.000 1.000 −1.000 1.000
0.1 Est. 0.652 0.263 −1.646 0.355 0.659 1.286 −0.686 1.092

MSE 2.038 1.063 0.602 0.463 2.040 0.581 0.253 0.098
0.2 Est. 1.330 0.496 −1.436 0.500 1.334 1.013 −0.859 1.542

MSE 0.529 0.467 0.258 0.278 0.524 0.226 0.091 0.330
0.3 Est. 1.665 0.630 −1.284 0.588 1.647 0.889 −0.944 1.172

MSE 0.145 0.236 0.118 0.192 0.156 0.121 0.036 0.055
0.4 Est. 1.857 0.764 −1.173 0.674 1.839 0.836 −1.046 0.888

MSE 0.035 0.101 0.048 0.126 0.042 0.077 0.019 0.033
0.5 Est. 1.987 0.845 −1.098 0.765 1.965 0.960 −1.028 0.898

MSE 0.007 0.049 0.019 0.073 0.008 0.026 0.010 0.026
0.6 Est. 2.123 0.884 −1.041 0.845 2.061 0.713 −1.195 0.468

MSE 0.029 0.048 0.017 0.040 0.013 0.112 0.049 0.297
γ True 1.000 −1.000 2.000 −1.000 1.000 −1.000 2.000 −1.000

Est. 1.137 −1.106 1.868 −1.159 1.137 −1.106 1.868 −1.159
MSE 0.189 0.381 0.141 0.045 0.189 0.381 0.141 0.045

Note: Homo. represents the homogeneous error case, Hete. represents the heterogeneous error case, Int. is the intercept, Est. is the average
of the parameter estimates, and MSE is the mean squared error.

4. Simulation Studies

We conducted simulation studies to evaluate the finite-sample
performance of the proposed multiple imputation method
under the cure rate quantile regression model. We first gen-
erated survival times of susceptible subjects from the model
with heterogeneous errors,

T ≡ log T̃ = β0 + β1Z + (1 + Z)ετ,

where the true coefficients are β0 = 2 and β1 = 1, Z ∼
Unif(0, 1), and the error ετ is normally distributed with the
τth quantile being zero. The susceptibility indicator η was
generated from the logistic regression model (2) with W =
(1, Z)T and the true coefficients γ0 = 1 and γ1 = −1. We set

the censoring time to be C = C̃ ∧ L, where C̃ was generated
from Unif(c0, L + 2) if Z < 0.5, and from Unif(c0 + 1, L + 2)
otherwise. The constant c0 and the study duration time L

were chosen to yield a censoring rate of 40%, and the cure rate
was approximately 37%. We adopted the biquadratic kernel
function and selected the bandwidth hn via the tenfold cross-
validation procedure. We repeated the imputation procedure
five times, that is, K = 5. To examine the effectiveness of the
proposed imputation procedure, we also considered the ideal
situation where the true ηi’s were known, so the imputation
method was not needed and one could directly estimate the
model coefficients based on those truly known uncured sub-
jects. For each configuration, we repeated 500 simulations,
and for each replicated data set 200 bootstrap samples were
generated for variance estimation based on the perturbation
resampling procedure.

Table 1 summarizes simulation results for two different
quantile levels τ = 0.5 and 0.7 under sample sizes n = 200
and 400, respectively. The cure rate parameter estimates
via the iterative nonparametric method appear to be unbi-
ased, and the proposed multiple imputation estimators for
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Table 5
Analysis results of the lung cancer data under the proposed
imputation cure rate censored quantile regression (CQR)

model with three particular quantiles (τ = 0.3, 0.5, and 0.7),
the Cox proportional hazards cure rate model, and the

accelerated failure time (AFT) cure rate model

Cure model Coef. Covariate Est. ESE p-value

CQR β(0.3) Intercept 1.391 0.500 0.005
Histology 0.749 0.484 0.122
Age 0.028 0.276 0.919
Sex −0.193 0.517 0.708

β(0.5) Intercept 2.762 0.442 < 0.001
Histology 0.884 0.474 0.062
Age −0.067 0.303 0.825
Sex −0.832 0.474 0.079

β(0.7) Intercept 3.955 0.585 < 0.001
Histology 0.719 0.725 0.322
Age −0.065 0.361 0.856
Sex −0.700 0.728 0.337

γ Intercept 1.161 0.505 0.022
Histology −0.506 0.473 0.285
Age 0.816 0.289 0.005
Sex −0.656 0.511 0.199

Cox β Histology −0.423 0.211 0.045
Age 0.135 0.130 0.297
Sex 0.160 0.229 0.485

γ Intercept 1.602 0.620 0.010
Histology −0.246 0.506 0.626
Age 0.860 0.345 0.013
Sex −0.675 0.590 0.252

AFT β Histology 0.850 0.435 0.051
Age −0.015 0.317 0.962
Sex −0.156 0.540 0.772

γ Intercept 0.924 1.064 0.385
Histology 0.773 0.916 0.399
Age 0.967 0.576 0.093
Sex −0.686 1.234 0.578

the quantile regression coefficients are also virtually unbiased.
Furthermore, the estimated standard errors using the boot-
strap method agree well with the sampling standard errors,
and the coverage probabilities of 95% confidence intervals
are around the nominal level. More remarkably, the multiple
imputation estimator is comparable with the ideal estimator
(when we know the true ηi under the hypothetical situation),
which demonstrates that the multiple imputation method can
on average “identify” the susceptible subjects in the censored
group. As expected, more precise estimators can be obtained
when the sample size is increased to n = 400.

We also explored different distributions for the model error
ετ including the extreme value distribution and the heavy-
tailed Cauchy distribution, while keeping the rest of data
generation scheme the same as before. The corresponding sim-
ulation results are presented in Tables 2 and 3, from which
we can draw similar conclusions.

To gain more insight, we further generated survival times T̃

of susceptible subjects from a more complicated model with

multiple covariates,

T ≡ log T̃ = β0 + β1Z1 + β2Z2 + β3Z3 + σ(Z)ετ, (13)

where Z = (1, Z1, Z2, Z3)
T, Z1 was simulated from Unif(0, 1),

Z2 from Bernoulli(0.5), and Z3 from a truncated standard
normal distribution between −3 and 3. The true quantile
regression coefficients are (β0, β1, β2, β3) = (2, 1, −1, 1). The
error ετ is normally distributed with the τth quantile being
zero, and for ease of exposition, we fixed τ at 0.5. We con-
sidered both the homogeneous and heteroscedastic cases with
σ(Z) ≡ 1 and σ(Z) = (Z2

1 + Z2)
1/2 sin(Z3) + ∑3

j=1
Zj, respec-

tively. For the homogeneous model error, the global linearity
assumption under the cure rate CQR model is satisfied by
appropriately shifting the intercept. However, for the het-
erogeneous case, the global linearity does not hold, while
we can still fit the CQR for the particular quantile with
τ = 0.5 using the proposed imputation method. The censor-
ing times were generated in the same manner as before by
considering different censoring distributions for Z1 < 0.5 and
Z1 ≥ 0.5, which yielded a censoring rate of 40%. We took
W = Z and the true parameter values in the logistic model
were (γ0, γ1, γ2, γ3) = (1, −1, 2, −1), which led to a cure rate
of 25%. We used the product fourth-order kernel and adopted
the cross-validation procedure to select the bandwidth.

Although the data were simulated from model (13) with
τ being fixed at 0.5, we applied the proposed multiple
imputation method at different quantile levels such as τ =
0.1, . . . , 0.6. Note that only at quantile level 0.5 the fitted
cure rate quantile regression model is correct. We compare the
proposed multiple imputation method and the cure rate CQR
method under the global linearity assumption. Table 4 sum-
marizes the simulation results with the sample size n = 400.
It is evident that, at the quantile level of 0.5, the perfor-
mance of the multiple imputation method is satisfactory with
three covariates including one discrete and two continuous
variates and a lower cure rate. However, at other quantile
levels, the resulting estimates for the regression slope coef-
ficients are slightly biased. The global linearity assumption
holds under the homogeneous model error by appropriately
shifting the intercept, and thus under this case the globally
linear cure rate CQR method produces unbiased estimates
for the regression slope coefficients across all of the consid-
ered quantile levels. For the heterogeneous model error, when
τ 
= 0.5, the estimates of the regression coefficients are biased
by using either the multiple imputation method or the cure
rate CQR method with global linearity assumption. Further-
more, the bias tends to be more serious when the quantile
level moves farther away from the median, because the fit-
ted regression model deviates farther from the truth for the
lower quantiles. For the cure rate parameters, both methods
produce the same (unbiased) estimates as they use the same
estimation approaches.

5. Lung Cancer Data Example

As an illustration, we applied the proposed multiple impu-
tation method under the cure rate CQR to a lung cancer
study. This study involved 280 lung cancer patients with a
censoring rate of 64.3%. In our analysis, the covariates of
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Figure 1. Estimated quantile covariate effects for the lung cancer data and the corresponding 95% pointwise confidence
intervals under the cure rate censored quantile regression assuming global linearity.

interest included tumor histology (61% adenocarcinoma = 1;
39% squamous cell carcinoma = 0), age (ranging from 34 to 90
years with a mean of 66 years), and sex (52% female = 1; 48%
male = 0). The covariate age was standardized to have mean
0 and variance 1. The effect of tumor histology on patient
survival was of particular interest in this study. Based on the
usual Kaplan–Meier survival curves (shown in Web Appendix
C), after approximately seven years of follow-up, a stable
plateau at the tail of the survival curves can be observed,
which indicates the existence of a possible cure fraction. We
applied the proposed models (1) and (2) by taking Z = W
with both involving (Histology, Age, Sex) to fit the lung
cancer survival data, and the analysis results are summarized
in Table 5. We are particularly interested in the conditional
quantiles of survival times at τ = 0.3, 0.5, and 0.7, represent-
ing the lower, median, and higher quantiles, respectively. For
the considered regression quantiles, none of the covariates
showed an significant effect on the survival time, while there
was a trend that patients with adenocarcinoma tended to have
a longer median survival time, which nevertheless requires fur-
ther confirmation. For the estimation of cure rate parameters,
patient’s age was significantly associated with the cure rate
in the lung cancer and, in particular, younger patients were
more likely to be insusceptible to the event of interest.

For comparison, we also fitted the lung cancer data using
the cure rate CQR method under the global linearity assump-

tion (Wu and Yin, 2013). Figure 1 displays the quantile
regression estimates of covariate effects and the correspond-
ing 95% pointwise confidence intervals for τ ∈ [0.01, 0.58] with
a step size of 0.01. We did not find any significant covari-
ate effects for patients’ age and sex on the survival times
across the range of considered regression quantiles. Never-
theless, the tumor histology appeared to have an significant
influence on patients’ survival, for regression quantiles near
0.3. Furthermore, we analyzed the lung cancer data using the
Cox PH cure rate model (Sy and Taylor, 2000) and the AFT
cure rate model (Lu, 2010). Both delivered the same con-
clusion that histology appeared to be an important factor
on patient survival. In terms of the cure rate estimation, the
Cox PH cure rate model coincides with the proposed cure rate
quantile regression with multiple imputation; both showed a
significant age effect in the logistic regression. However, the
AFT cure rate model did not show the age effect to be sta-
tistically significant, although there was such a trend. The
estimated histology effects using the AFT cure rate model
and the quantile cure rate model were both insignificant but
with different signs. This is possibly due to the misspecifica-
tion of the AFT model structure upon which the cure rate
estimation relies. The proposed cure rate quantile regression
with multiple imputation does not impose any model assump-
tion for the survival times of the susceptible subjects, and thus
is more robust for practical use.
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6. Conclusions

The multiple imputation method is prevalent in handling
missing data problems. We recast the uncertainty of whether
a censored subject is susceptible or not in the missing data
framework and invoke the multiple imputation approach
to the cure rate analysis. We impose the usual censoring
assumption that survival times and censoring times are condi-
tionally independent given covariates. Global linearity is often
assumed by existing CQR methods (Portnoy, 2003; Peng and
Huang, 2008; Wu and Yin, 2013), while the proposed method
relaxes such a stringent model assumption for the cure rate
quantile regression. Numerical results indicate that the pro-
posed method performs well with finite samples. The proposed
multiple imputation method opens a new door to the tradi-
tional mean- or hazards-based mixture cure rate regression
models.

7. Supplementary Materials

Web Appendices referenced in Sections 3 and 5, and the R
script to obtain the proposed estimators and generate the
simulative data sets are available with this article at the Bio-
metrics website on Wiley Online Library.
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