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Exponential regression for censored data with outliers
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We propose a penalized likelihood method to detect the possible outliers in the exponential regression
model while it is utilized to fit the censored survival data. It features that the proposed method can
simultaneously cope with outlier detection and estimation for the regression coefficient. We recast the out-
lier detection issue into a high-dimensional regularization regression and employ the coordinate descent
algorithm to facilitate the computation. From both extensive simulation studies and an illustrative real
example, it is shown that the proposed method works quite well in outlier detection as well as parameter
estimation for the exponential regression model.

Keywords: censored data; exponential regression; outlier detection; penalty function; smoothly clipped
absolute deviation

1. Introduction

Most real-world data sets contain outliers that have unusually larger or smaller values when
compared with others in the data set. Outliers may cause a negative effect on data analysis, or
may provide useful information about data when we look into an unusual response to a given
study. Thus, outlier detection is an important part of data analysis. Grubbs [1] pointed out that
an outlier is one that appears to deviate markedly from other members of the sample in which it
occurs. Furthermore, Barnett and Lewis [2] considered that an observation which appears to be
inconsistent with the remainder of that set of data. Outliers usually arise because of human error,
instrument error, natural deviations in populations, fraudulent behaviour, changes in behaviour
of systems or faults in systems. Hample et al. [3] estimated that a routine data set may contain
about 1–10% (or more) outliers. In many cases, outliers may have serious effects in estimation,
inference, and model selection. Weisberg [4] pointed out that although outliers have these bad
effects, sometimes they often go unnoticed. Consequently, it is vital to detect the potential outliers
for a given data set before conducting the routine statistical inference.

The outlier detection methods can be roughly classified into two categories: testing the dis-
cordancy and labelling the outliers. For the discordancy test method, it usually tests whether or
not the target extreme value deviates from the assumed underlying well-behaving distribution.
Iglewicz and Hoaglin [5] reviewed and compared five test statistics which are applied to the
normal distribution. On the other hand, the outlier labelling method usually proposes an interval
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432 J. Zhang et al.

or criterion, and any observation beyond the interval or criterion is considered as an outlier. The
classical approach to labelling the data for outliers is the Z-score which is defined by the ratio
of the sample mean and the sample standard deviation. However, the sample mean or standard
deviation can be affected by the extreme values. Iglewicz and Hoaglin [5] proposed a robust
version of the Z-score method, where the median and the median of the absolute deviation of the
median are employed to replace the mean and the standard deviation, respectively.

It also has been appeared extensive literature on the outlier detection in the context of regres-
sion models. The observation with larger residual is usually more likely to be suspected as an
outlier. Furthermore, the leave-one-out method [4] and Cook’s distance [6] and their variants
are frequently used in outlier detection for regression analysis. She and Owen [7] proposed a
new outlier detection method from the view of regularization method by using the nonconvex
penalized linear regression.

Although the methods for the outlier detection are relatively well developed for the com-
pletely observed data, such as the linear regression model and the general linear model,[2,8] the
detection of outliers for the censored survival data has received little attention despite that the
censored data are commonly encountered in clinical trial and medical science. The aforemen-
tioned methods cannot be applicable when response are subject to censoring. What is more, the
censoring may mask the potential outliers. Some martingale-based residual methods were pro-
posed by Gramhsch and Therneau [9] to suspect the possible outliers for censored data in terms
of graphics. It is intuitive but not rigorous.

Motivated by She and Owen,[7] we propose a penalized likelihood method to detect the pos-
sible outliers in the exponential regression model while it is utilized to fit the censored survival
data. It features that the proposed method can simultaneously cope with outlier detection and
parameter estimation for the regression coefficient. We recast the outlier detection issue into a
framework of high-dimensional regularization regression so that we can borrow the sophisticated
techniques for the analysis of high-dimensional data to handle the outlier detection of interest.
Furthermore, we extend the proposed method to the outlier detection for the high-dimensional
exponential regression model.

The rest of the article is organized as follows. In Section 2, we present the outlier detection
method for censored data in the framework of the exponential regression model. The iterative
coordinate descent algorithm is also developed. We conduct extensive simulation studies to eval-
uate the proposed method in Section 3. An illustrative real example is analysed in Section 4.
Some concluding remarks are relegated in Section 5.

2. Outlier detection and parameter estimation

Let T denote the failure time and C the censoring time. Correspondingly, let Y = min(T , C)

be the observed time and � = I(T ≤ C) be the failure indicator. Let X = (X1, . . . , Xp)
T be the

associated covariates. Assume that the censoring mechanism is random, that is, the survival time
T and the censoring time C are conditionally independent given X.

For the ith subject (i = 1, . . . , n), assume that, given covariate Xi, the conditional survival
time Ti follows the exponential distribution with rate r(Xi). Further assume

r(Xi) = exp(XT
i β + γi),

where β is the unknown regression parameter, and the unknown shifted parameter γi is incor-
porated into the exponential regression to indicate whether the ith observation is an outlier. Let
γ = (γ1, . . . , γn)

T and assume the sparsity on γ . Consequently, the nonzero components of γ
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will correspond to the outliers. In what follows, we will propose a method to identify the out-
liers, or equivalently, to find the nonzero components of γ , as well as to estimate the unknown
regression coefficient β.

Based on the independent observations (Yi, �i, Xi), i = 1, . . . , n, the likelihood function can
be written as

Ln(β, γ ) =
n∏

i=1

[{exp(XT
i β + γi)}�i exp{−Yi exp(XT

i β + γi)}].

Obviously, we need estimate γ as well as β, but the dimension of the unknown parameters is
n + p which is greater than the sample size n, nevertheless p may be less than n. We recast the
task of detecting outliers into a framework of high-dimensional variable selection so that we
can employ the well-developed tools such as the regularization regression method to handle our
concerns in this paper.

Fan and Li [10] advocated the smoothly clipped absolute deviation (SCAD) penalty, which
satisfies pλ(0) = 0 and has the first-order derivative

p′
λ(θ) = λ

{
I(θ ≤ λ) + (aλ − θ)+

(a − 1)λ
I(θ > λ)

}
,

for some a > 2 and θ > 0, where λ > 0 is the tuning parameter. The SCAD penalty is contin-
uous and differentiable on (−∞, 0) ∪ (0, ∞), but not differentiable at 0. Its derivative vanishes
outside [−aλ, aλ]. Hence, the SCAD penalty can produce estimators with continuity, sparsity,
and unbiasedness for the large coefficients. More details can be found in [10]. Zou and Li [11]
proposed a local linear approximation to the SCAD penalty, which maintains the same asymp-
totic properties and significantly improves the computational efficiency. As suggested by Fan
and Li,[10] we fix a = 3.7. To emphasize the dependence of λ on n, we denote λ by λn hereafter.

As a result, the penalized log likelihood is given by

Qn(β, γ ) = ln(β, γ ) − n
n∑

j=1

p ′
λn

(|γ̂ (0)
j |)|γj|,

where

ln(β, γ ) = log Ln(β, γ ) =
n∑

i=1

{�i(XT
i β + γi) − Yi exp(XT

i β + γi)}

and γ̂
(0)
j is an initial estimator.

Define

(β̂, γ̂ ) = argmaxβ,γ Qn(β, γ ),

which are the proposed estimators for β and γ , respectively. However, the maximizing procedure
is nontrivial. We propose an iterative algorithm between β and γ to get estimators and meanwhile
the coordinate descent algorithm [12] is utilized to obtain the estimator of γ for each iteration.
The coordinate descent algorithm, which was also used by Wu and Lange [13] and Breheny and
Huang,[14] is one of the most efficient algorithms in processing large-scale data for its simple
operation and fast convergence. The procedure of our algorithm proceeds as follows:

(1) Set an initial estimate β̂
(0)

, which is obtained by the exponential regression ignoring the
possible outliers. Set k = 1.
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(2) Let γ̂
(k) = argmaxγ Qn(β̂

(k−1)
, γ ), where the coordinate descent algorithm is adopted to do

the maximization. Specifically, for j = 1, . . . , n,

γ̂
(k)
j = argmaxγj

Qn(β̂
(k−1)

, (γ̂ (k)
1 , . . . , γ̂ (k)

j−1, γj, γ̂
(k−1)
j+1 , . . . , γ̂ (k−1)

n )T)

and γ̂
(k) = (γ̂

(k)
1 , . . . , γ̂ (k)

n )T.

(3) Let β̂
(k) = argmaxβQn(β, γ̂ (k)

).
(4) Update k = k + 1 and repeat Steps 2 and 3 until the prespecified convergence criterion is

met.

Obviously, the iteration sequence (β̂
(k)

, γ̂ (k)
) satisfies that

Qn(β̂
(k)

, γ̂ (k)
) ≥ Qn(β̂

(k−1)
, γ̂ (k)

) ≥ Qn(β̂
(k−1)

, γ̂ (k−1)
),

which implies the iterative algorithm is convergent.
For practical implementation, it is desirable to have an automatically data-driven method for

selecting the tuning parameter λn involved in p ′
λn

(·). Here, we select λn via the Bayesian infor-
mation criterion (BIC), which was developed by Schwarz.[15] Specifically, define the BIC as
follows:

BIC(λn) = −2 ln ln(β̂(λn), γ̂ (λn)) + k ln(n),

where k is the number of nonzero elements of γ̂ (λn). Use

λ̂n = argminλn
BIC(λn)

as the optimal tuning parameter.

3. Simulation studies

To assess the effectiveness of the proposed procedure, we employ three evaluation criteria.[7]
We present the fraction of masking outliers (denoted by M), the fraction of mislabelling nor-
mal points as outliers (denoted by S), and the fraction of labelling normal points as normal
ones and true outliers as outliers (denoted by R). Obviously, the three quantities M, S, and R,
respectively, reflect the masking probability, the swamping probability, and the right detection
probability for the outlier detection procedure. In outlier detection, masking is more serious than
swamping. The former can cause gross distortions while the latter is often just a matter of lost
efficiency. The criterion R is usually used as the overall index to evaluate the effectiveness of
the outlier detection method. Ideally, M ≈ 0, S ≈ 0, and R ≈ 100%.

We randomly chose d components of γ = (γ1, . . . , γn)
T, half of which are set to be 5 and

half −5. The remaining n − d components of γ are set to be zero to indicate the normal points.
We refer to such an outlier-generated mechanism as ‘Case (a)’ whereas another different man-
ners were considered subsequently. We independently generated the survival time Ti from the
exponential distribution with rate,

r(Xi) = exp(XT
i β + γi).

Set β = (1, 0.5)T and Xi = (Xi1, Xi2)
T, where Xi1 was randomly generated from the Unif(0, 1)

and Xi2 from the Bernoulli distribution with success probability of 0.5. We took the censoring
time C = C̃ ∧ L, where C̃ was generated from Unif(0, L + 2). The study duration L was cho-
sen to yield the desirable censoring rate. Set sample size n = 200 and 400. We considered the
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Table 1. The masking, swamping, and right detection proportions of the pro-
posed outlier detection procedure among 500 simulations.

Censoring rate of 20% Censoring rate of 40%

n d/n M S R M S R

200 0% – 0.0777 0.9223 – 0.0795 0.9205
5% 0.0010 0.0757 0.9280 0.0010 0.0786 0.9253

10% 0.0017 0.0761 0.9313 0.0015 0.0798 0.9280
20% 0.0014 0.0776 0.9376 0.0013 0.0778 0.9375

400 0% – 0.0712 0.9288 – 0.0731 0.9269
5% 0.0020 0.0712 0.9323 0.0014 0.0739 0.9298

10% 0.0018 0.0733 0.9339 0.0015 0.0743 0.9330
20% 0.0014 0.0714 0.9426 0.0010 0.0745 0.9402

d/n, the proportion of the outliers; M, S, and R, the proportions of masking, swamping, and
right detection, respectively.

censoring rates of 20% and 40%, coupled with the proportions of the outliers, i.e. d/n, ranging
from 0% to 20%. For each configuration, we repeated 500 simulations.

We denote by β̂P the proposed estimator. We also considered the naive estimator, β̂N, by
ignoring the outliers and maximizing Ln(β, 0) over β; the oracle estimator, β̂O, by assuming that
γ was known and maximizing Ln(β, γ ) over β; and the second oracle estimator, β̂R, by assuming
that γ was known, removing the d outliers, and maximizing Ln−d(β, 0) over β.

The simulation results for the proposed outlier detection procedure are presented in Table 1.
In general, we can see that the values of M and S are very close to 0 and the value of R is
close to 100%, which demonstrates the proposed outlier detection procedure enjoys low masking
and swamping probabilities as well as high right detection probabilities. As a conclusion, it
demonstrates that the proposed method is effective for outlier detection in censored exponential
regression.

Table 2 summarizes estimators for β under sample size n = 200. We make the following
observations: (i) As expected, in terms of bias or standard error, the oracle estimator β̂O is supe-
rior to the proposed estimator β̂P and the naive estimator β̂N. Moreover, β̂O also outperforms
β̂R because the later discards some data and thus leads to efficiency loss while the former is
efficient. Nevertheless, these two estimators are not implementable in practice and just work as a
benchmark for comparison; (ii) The proposed estimator β̂P is essentially unbiased and performs
well under different censoring rates or proportions of outliers. Furthermore, it is comparable with
the second oracle estimator β̂R; (iii) Not surprisingly, the naive estimator β̂N is seriously biased,
especially when the proportion of the outliers d/n is increased; (iv) When d/n is 0%, the naive
estimator β̂N, the oracle estimator β̂O, and the second oracle estimator β̂R coincide with each
other. As a result, we only reported the results of β̂O. The performances of β̂P and β̂O are very
close. In other words, conservatively viewing the ‘clear’ data as ‘unclear’, the proposed method
still works well.

We further investigated performances of estimators for β under sample size n = 400. The
corresponding simulation results are summarized in Table 3, from which we can draw similar
conclusions. In particular, we do not observe the mitigation of the inherent bias for the naive
estimator β̂N as sample size increases to 400. On the contrary, larger sample size yields more
accurate estimators β̂O, β̂R, and β̂P.

Also considered were another three avenues for generating outliers via setting different values
for γ . The number of nonzero elements of γ was fixed at d.

Case (b): half of nonzeroes were generated from Unif(2, 10) and half from Unif(−10, −2).
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436 J. Zhang et al.

Table 2. Simulation results for parameter estimation with sample size n = 200.

β1 = 1 β2 = 0.5

d/n
Cen.
rate Method EST SE MSE EST SE MSE

0% 20% β̂O 1.0065 0.1641 0.0270 0.5001 0.1358 0.0184

β̂P 1.0152 0.1684 0.0286 0.4967 0.1382 0.0191

40% β̂O 1.0027 0.1914 0.0366 0.4968 0.1580 0.0250

β̂P 1.0314 0.1940 0.0386 0.5019 0.1589 0.0252

5% 20% β̂O 1.0085 0.1613 0.0261 0.4985 0.1375 0.0189

β̂R 1.0076 0.1645 0.0271 0.4997 0.1385 0.0192

β̂N 0.9558 0.1664 0.0297 0.4703 0.1456 0.0221

β̂P 1.0144 0.1702 0.0292 0.4952 0.1410 0.0199

40% β̂O 1.0018 0.1906 0.0363 0.4982 0.1607 0.0258

β̂R 0.9997 0.1963 0.0385 0.4997 0.1634 0.0267

β̂N 0.9975 0.1942 0.0377 0.4904 0.1656 0.0275

β̂P 1.0283 0.1988 0.0403 0.5053 0.1636 0.0268

10% 20% β̂O 1.0095 0.1621 0.0264 0.4974 0.1373 0.0189

β̂R 1.0087 0.1681 0.0283 0.4985 0.1411 0.0199

β̂N 0.8864 0.1796 0.0452 0.4340 0.1537 0.0280

β̂P 1.0123 0.1730 0.0301 0.4940 0.1433 0.0206

40% β̂O 1.0026 0.1913 0.0366 0.4982 0.1590 0.0253

β̂R 1.0005 0.2023 0.0409 0.4995 0.1656 0.0274

β̂N 0.9888 0.1959 0.0385 0.4811 0.1642 0.0273

β̂P 1.0295 0.2048 0.0428 0.5050 0.1661 0.0276

20% 20% β̂O 1.0127 0.1705 0.0292 0.4983 0.1391 0.0194

β̂R 1.0129 0.1814 0.0331 0.4989 0.1469 0.0216

β̂N 0.6608 0.2132 0.1605 0.3320 0.1771 0.0596

β̂P 1.0033 0.1862 0.0347 0.4903 0.1490 0.0223

40% β̂O 1.0073 0.1928 0.0372 0.4956 0.1569 0.0246

β̂R 1.0054 0.2131 0.0454 0.4960 0.1718 0.0295

β̂N 0.9713 0.2071 0.0437 0.4586 0.1664 0.0294

β̂P 1.0315 0.2149 0.0472 0.5001 0.1723 0.0297

Note: β̂R and β̂O, the oracle estimators with or without removing outliers; β̂N, the naive estimator; and β̂P,
the proposed estimator.

Case (c): all nonzeroes were generated from Unif(2, 10).
Case (d): all nonzeroes were generated from Unif(−10, −2).

The remaining set-up was kept the same as before. Table 4 reports the resulting outlier detec-
tion while Table 5 summarizes estimates for β. It can be seen that the proposed method is immune
to the considered outlier-generated mechanisms and performs equally well. On the other hand,
the existence of outliers deteriorates the behaviours of the naive method.

It is interesting to evaluate the ability of our method to cope with high-dimensional covariate
X. Denote the dimension of X by p. We generated X from the multivariate normal distri-
bution with mean 0 and correlation matrix (0.5|i−j|)p

i=1,j=1. Set n = 200, p = 250, and β =
(1, 0.5, 0, 2, 0, . . . , 0)T while keeping the remaining settings as before. As p > n, we need add
a penalty function to select significant variables and estimate the sparse regression coefficient β.
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Table 3. Simulation results for parameter estimation with sample size n = 400.

β1 = 1 β2 = 0.5

d/n
Cen.
rate Method EST SE MSE EST SE MSE

0% 20% β̂O 1.0059 0.1212 0.0147 0.4975 0.0999 0.0100

β̂P 1.0140 0.1217 0.0150 0.4973 0.0991 0.0098

40% β̂O 1.0067 0.1451 0.0211 0.4977 0.1159 0.0134

β̂P 1.0311 0.1466 0.0225 0.5058 0.1186 0.0141

5% 20% β̂O 1.0057 0.1225 0.0150 0.4984 0.1009 0.0102

β̂R 1.0056 0.1243 0.0155 0.4982 0.1017 0.0103

β̂N 0.9506 0.1273 0.0186 0.4674 0.1067 0.0125

β̂P 1.0100 0.1234 0.0153 0.4974 0.1006 0.0101

40% β̂O 1.0065 0.1465 0.0215 0.4982 0.1168 0.0137

β̂R 1.0064 0.1488 0.0222 0.4977 0.1176 0.0138

β̂N 1.0021 0.1470 0.0216 0.4883 0.1180 0.0141

β̂P 1.0313 0.1500 0.0235 0.5048 0.1206 0.0146

10% 20% β̂O 1.0063 0.1233 0.0152 0.4990 0.1012 0.0102

β̂R 1.0060 0.1265 0.0160 0.4992 0.1035 0.0107

β̂N 0.8837 0.1373 0.0324 0.4367 0.1156 0.0174

β̂P 1.0076 0.1271 0.0162 0.4971 0.1026 0.0105

40% β̂O 1.0061 0.1474 0.0218 0.5001 0.1175 0.0138

β̂R 1.0055 0.1537 0.0236 0.5002 0.1212 0.0147

β̂N 0.9947 0.1512 0.0229 0.4834 0.1211 0.0149

β̂P 1.0303 0.1557 0.0252 0.5070 0.1241 0.0155

20% 20% β̂O 1.0087 0.1263 0.0160 0.4954 0.1022 0.0105

β̂R 1.0081 0.1338 0.0180 0.4965 0.1080 0.0117

β̂N 0.6592 0.1461 0.1375 0.3311 0.1296 0.0453

β̂P 1.0006 0.1331 0.0177 0.4887 0.1075 0.0117

40% β̂O 1.0074 0.1463 0.0215 0.4969 0.1166 0.0136

β̂R 1.0054 0.1587 0.0252 0.4985 0.1259 0.0158

β̂N 0.9741 0.1490 0.0229 0.4615 0.1237 0.0168

β̂P 1.0298 0.1614 0.0269 0.5043 0.1295 0.0168

Note: β̂R and β̂O, the oracle estimators with or without removing outliers; β̂N, the naive estimator; and β̂P,
the proposed estimator.

Without loss of generality, we chose the SCAD penalty function and shared the tuning parameter
λn. In addition, the coordinate descent algorithm was also employed to obtain the estimate for
β and the tuning parameter was selected via the BIC criterion. The resulting outlier detection
and parameter estimation are summarized in Tables 6 and 7, respectively. The column ‘Size’ in
Table 7 is the average number of nonzero components of β̂P while ‘Prop’ is the proportion of
the true model being nested by the selected models. Apparently, the proposed method exhibits
sound results even in the scenario of high-dimensional covariates.

It demonstrates in Figure 1 that the outliers indeed exert negative effects on the estimates
of the survival functions whereas, after kicking out the suspected outliers using the proposed
method, the resulting Kaplan–Meier curves agree well with the true ones. Note that these esti-
mates were calculated based on one simulated data set without covariates in order to facilitate the
comparison. We fixed n = 200 and both the censoring rate and the proportion of outliers at 20%.
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Table 4. The masking, swamping, and right detection proportions of
the proposed outlier detection procedure with sample size n = 200,
censoring rate of 20%, and outlier proportion d/n = 10% under var-
ious outlier-generated scenarios.

Case M S R

(b) 0.0441 0.0783 0.9252
(c) 0.0318 0.0799 0.9249
(d) 0.0360 0.0774 0.9268

Note: M, S, and R, the proportions of masking, swamping, and right detection,
respectively.

Table 5. Simulation results for parameter estimation with sample size n = 200, censoring rate of 20%,
and outlier proportion d/n = 10% under various outlier-generated scenarios.

β1 = 1 β2 = 0.5

Case Method EST SE MSE EST SE MSE

(b) β̂O 1.0094 0.1620 0.0263 0.4973 0.1377 0.0190

β̂R 1.0087 0.1681 0.0283 0.4985 0.1411 0.0199

β̂N 0.8879 0.1790 0.0446 0.4353 0.1535 0.0277

β̂P 1.0132 0.1742 0.0305 0.4930 0.1428 0.0204

(c) β̂O 1.0044 0.1677 0.0281 0.4992 0.1374 0.0189

β̂R 1.0031 0.1793 0.0322 0.5005 0.1459 0.0213

β̂N 1.1507 0.1839 0.0565 0.5457 0.1501 0.0246

β̂P 1.0243 0.1842 0.0345 0.5005 0.1483 0.0220

(d) β̂O 1.0090 0.1683 0.0284 0.4984 0.1395 0.0195

β̂R 1.0097 0.1685 0.0285 0.4986 0.1399 0.0196

β̂N 0.5305 0.1968 0.2591 0.2869 0.1733 0.0754

β̂P 0.9793 0.1710 0.0297 0.4800 0.1434 0.0210

Note: β̂R and β̂O, the oracle estimators with or without removing outliers; β̂N, the naive estimator; and β̂P, the proposed
estimator.

Table 6. The masking, swamping, and right detection proportions of the pro-
posed outlier detection procedure with sample size n = 200, the dimension of
covariates p = 250, censoring rate of 20%, and outlier proportion d/n = 10%
under various outlier-generated scenarios.

Case M S R

(a) 0.0087 0.0578 0.9471
(b) 0.0603 0.0579 0.9419
(c) 0.0412 0.0609 0.9411
(d) 0.0539 0.0570 0.9433

Note: M, S, and R, the proportions of masking, swamping, and right detection, respectively.

4. Real example

As an illustration, we applied the proposed method to the German Breast Cancer (GBC) study.
The data can be downloaded from http://www.umass.edu/statdata/statdata/data. In this study, a
total of 686 patients with primary node positive breast cancer were recruited between July 1984
and December 1989. There were 440 patients treated with hormone therapy and 246 patients with
chemotherapy. The primary endpoint of the study was the recurrence-free survival time (in days)
whereas the corresponding censoring rate is 56.4%. Figure 2 shows the Kaplan–Meier curves for
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Table 7. Simulation results for parameter estimation and variable selection of the proposed
method with sample size n = 200, the dimension of variables p = 250, censoring rate of 20%,
and outlier proportion d/n = 10% under various outlier-generated scenarios.

β1 = 1 β2 = 0.5 β4 = 2

Case EST SE EST SE EST SE Size Prop

(a) 0.9827 0.1653 0.4124 0.2261 1.9455 0.1597 8.19 86.2%
(b) 0.9926 0.1631 0.4197 0.2284 1.9583 0.1546 7.98 85.6%
(c) 1.0175 0.1155 0.4883 0.1565 2.0384 0.1085 3.78 95.8%
(d) 0.9426 0.2035 0.3780 0.2575 1.8526 0.1748 13.70 79.4%

Note: Size, the average number of nonzero components of β̂P; Prop, the proportion of the true model being
nested by the selected models.
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Figure 1. The Kaplan–Meier estimates of the naive method and the proposed method, respectively, under four different
outlier generation manners.

the two different therapy arms, from which we can see that patients in the chemotherapy arm
experienced longer recurrence-free survival time.

The covariates of interest included in this analysis were treatment (abbreviated as TRT, being
1 if treated with hormone therapy and 2 otherwise), age at diagnosis (AGE), menopausal sta-
tus (MS, being 1 if menopaused and 2 otherwise), the tumour size (TS), the tumour grade
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Figure 2. The Kaplan–Meier survival curves stratified by two different therapies in the GBC study.
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Figure 3. The scatter diagram of the estimator γ̂ versus subject ID for the GBC study.

(TG), the number of nodes (NN), the number of progesterone receptors (NPR), and the number
of oestrogen receptors (NER). For more detailed introduction of the GBC study, see Schmoor
et al.[16]
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Table 8. The analysis results of the covariates effects for the GBC study.

Method

Covariate β̂Cox β̂N β̂P β̂C−P β̂C−Cox

TRT EST − 0.3372 − 1.2027 − 1.3522 − 1.3752 − 0.8453
SE 0.1290 0.2022 0.2918 0.1982 0.1629

p-value .0089 < .0001 < .0001 < .0001 < .0001

AGE EST − 0.0094 − 0.1042 − 0.1147 − 0.1141 − 0.0596
SE 0.0093 0.0086 0.0112 0.0083 0.0116

p-value .3121 < .0001 < .0001 < .0001 < .0001

MS EST 0.2673 0.7649 1.1061 1.1187 0.7663
SE 0.1833 0.2260 0.2999 0.2137 0.2139

p-value .1448 .0007 .0002 < .0001 .0003

TS EST 0.0077 − 0.0071 − 0.0022 − 0.0018 0.0066
SE 0.0039 0.0060 0.0084 0.0058 0.0047

p-value .0507 .2368 .7934 .7563 .1629

TG EST 0.2803 − 0.9582 − 1.0038 − 1.0178 − 0.2271
SE 0.1061 0.1048 0.1361 0.1059 0.1274

p-value .0082 < .0001 < .0001 < .0001 .0747

NN EST 0.0499 0.0517 0.0610 0.0611 0.0592
SE 0.0074 0.0133 0.0237 0.0159 0.0079

p-value < .0001 .0001 .0100 .0001 < .0001

NPR EST − 0.0022 − 0.0058 − 0.0078 − 0.0079 − 0.0054
SE 0.0006 0.0012 0.0025 0.0014 0.0009

p-value .0001 < .0001 .0018 < .0001 < .0001

NER EST 0.0002 0.0016 0.0019 0.0019 0.0012
SE 0.0004 0.0006 0.0009 0.0006 0.0005

p-value .7084 .0077 .0348 .0015 .0123

Note: β̂Cox, the Cox regression estimator; β̂N, the naive estimator; β̂P, the proposed estimator;
and β̂C−P and β̂C−Cox, the exponential and Cox regression estimators after removing the suspected
outliers.

Based on the proposed method, we obtained the estimator γ̂ and evaluated which observation
is an outlier. The scatter points of γ̂ versus subject ID shown in Figure 3 clearly demonstrate that
there are 85 possible outliers among the total 686 observations, which leads to the rate of outliers
being of 12.39%.

We summarized the analysis results of the covariates effects in Table 8, where we also pre-
sented the results by fitting the data with the Cox proportional hazards regression model [17]
and the resultant estimator was denoted by β̂Cox. Also, we obtained a ‘clear’ data set by delet-
ing the suspected outliers based on the nonzero components of the proposed estimator γ̂ . As a
comparison, we re-analysed the clear data using the exponential and Cox regression methods,
and denoted the resulting estimators by β̂C−P and β̂C−Cox, respectively. We adopt the bootstrap
method to obtain the standard error estimates, although it lacks rigorous justification. Including or
excluding the suspected outliers, the Cox regression method would get inconsistent conclusions
for evaluating effects of covariates, such as AGE, MS, and TG. The proposed method is very
effective to detect the possible outliers and estimate the regression parameter, resulting in simi-
lar conclusions from methods β̂C−P and β̂C−Cox. The magnitude of the covariate effects differs
between the proposed and naive methods. Furthermore, from all the considered methods, we can
conclude that patients in the chemotherapy arm would possess longer survival time to resist the
recurrence of the tumour, compared with ones in the hormone therapy arm. This coincides with
Figure 2.
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5. Conclusion

The main contribution of this paper is to propose a penalized likelihood method to detect the pos-
sible outliers in the exponential regression model as well as to estimate the unknown regression
parameter. The method can be also extended to high-dimensional covariates. Numerical results
demonstrate that the proposed method exhibits reasonable performance in practice.

It is surprised that the outlier detection procedure as a traditional topic in regression analysis is
under-developed for censored data analysis. We conjecture that it may be the mixing of censoring
and outlier that makes outlier detection and parameter estimation difficult. As an overture, our
current work assumes that the failure time is from the exponential regression model. It warrants
to further consider the outlier detection and parameter estimation in the classic Cox proportional
hazards model.
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