
Biometrika (2015), 102, 1, pp. 65–76 doi: 10.1093/biomet/asu068
Printed in Great Britain Advance Access publication 16 February 2015

Conditional quantile screening in ultrahigh-dimensional
heterogeneous data

BY YUANSHAN WU

School of Mathematics and Statistics, Wuhan University, Wuhan, Hubei 430072, China

shan@whu.edu.cn

AND GUOSHENG YIN

Department of Statistics and Actuarial Science, University of Hong Kong, Pokfulam Road,
Hong Kong

gyin@hku.hk

SUMMARY

To accommodate the heterogeneity that is often present in ultrahigh-dimensional data, we pro-
pose a conditional quantile screening method, which enables us to select features that contribute
to the conditional quantile of the response given the covariates. The method can naturally han-
dle censored data by incorporating a weighting scheme through redistribution of the mass to the
right; moreover, it is invariant to monotone transformation of the response and requires substan-
tially weaker conditions than do alternative methods. We establish sure independent screening
properties for both the complete and the censored response cases. We also conduct simulations
to evaluate the finite-sample performance of the proposed method, and compare it with existing
approaches.

Some key words: Censored data; Feature screening; Heterogeneity; Quantile regression; Sure independent screening;
Transformation model; Ultrahigh dimensionality; Variable selection.

1. INTRODUCTION

Ultrahigh-dimensional data arise in fields such as genomics, imaging and economics. Because
the dimensionality pn of the covariates Z = (Z1, . . . , Z pn )

T increases very rapidly with the sam-
ple size n, existing penalized variable selection methods (Tibshirani, 1996; Fan & Li, 2001;
Zhang, 2010) may not perform well (Fan et al., 2009). To overcome the difficulties associated
with ultrahigh dimensionality, Fan & Lv (2008) proposed a sure independent screening method
to reduce the dimension, so that penalized variable selection procedures would be applicable.
Such screening procedures have been studied extensively in various ultrahigh-dimensional con-
texts, such as generalized linear models (Fan & Song, 2010), additive models (Fan et al., 2011),
Cox proportional hazards regression with survival data (Zhao & Li, 2012), and additive haz-
ard models (Gorst-Rasmussen & Scheike, 2013). Furthermore, Zhu et al. (2011) proposed a sure
independent ranking and screening procedure for ultrahigh-dimensional multi-index models, and
Li et al. (2012b) developed an alternative approach based on the distance correlation.

To identify active predictors from pn covariates, we define the active predictor set as

A= {k : F(y | Z) depends on Zk, k = 1, . . . , pn},
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where F(y | Z) = pr(Y � y | Z). Instead of F(y | Z), if we focus on the τ th conditional quantile,
which is defined as Qτ (Y | Z) = inf{t : pr(Y � t | Z) � τ } for a fixed τ ∈ (0, 1), the active pre-
dictor set corresponding to a particular τ is defined as

Aτ = {k : Qτ (Y | Z) depends on Zk, k = 1, . . . , pn}.
Obviously, Aτ ⊂A, because Aτ identifies only those predictors that contribute to the τ th condi-
tional quantile of Y , whereas A contains all the predictors associated with the conditional distri-
bution of Y . Regression quantile estimation is known to be able to handle heterogeneity (Koenker,
2005), which is often a feature of ultrahigh-dimensional data.

We consider a nonparametric regression model with heterogeneous errors,

Y = q(Z) + σ(Z)ε,

where q(·) and σ(·) > 0 are unspecified functions and ε is assumed to be independent of Z .
The τ th quantile is then Qτ (Y | Z) = q(Z) + σ(Z)Qτ (ε), where Qτ (ε) = inf{t : pr(ε � t) � τ }.
Clearly, all the predictors in q(·) belong to Aτ , while those in σ(·) would belong to Aτ if and
only if Qτ (ε) |= 0. For a particular τ th-quantile model satisfying Qτ (ε) = 0, the covariates in
σ(·) alone should not be selected. He et al. (2013) proposed a quantile adaptive sure independent
screening procedure to estimate Aτ , which employs spline approximation to model the marginal
covariate effects and the inverse probability weighting scheme to accommodate censored data.
To identify Aτ , Shao & Zhang (2014) developed a martingale difference correlation screening
procedure based on the distance correlation.

We propose a conditional quantile sure independent screening procedure to estimate Aτ .
The proposed method can also handle ultrahigh-dimensional survival data by employing
redistribution-of-mass weights for censored observations. Following the suggestion of a referee,
we further extend the conditional quantile screening procedure to a new model-free approach to
recovering the entire active set A. Compared with existing methods, our approach enjoys sev-
eral advantages. First, it does not involve any nonparametric approximation, which facilitates
its practical implementation. With censored data, the Kaplan–Meier estimator is used, which is
also straightforward. Second, the features selected using the proposed procedure are invariant to
monotone transformation of the response, whereas those in He et al. (2013) are not. Third, our
approach does not require any finite-moment assumption, although it achieves a higher expo-
nential rate for the dimensionality with respect to the sample size. Theoretical proofs and some
of the detailed numerical results are given in the Supplementary Material.

2. SCREENING PROCEDURES

2·1. Conditional quantile screening for a complete response

Suppose that for an independent and identically distributed sample {Yi , (Zi1, . . . , Zipn )
T : i =

1, . . . , n}, the dimensionality pn greatly exceeds the sample size n. Our goal is to identify a set
of active covariates associated with the response, for which we propose a marginal utility to rank
the covariates. If Qτ (Y | Zk) = Qτ (Y ) (k = 1, . . . , pn), then

E[τ − I {Y < Qτ (Y | Zk)} | Zk] = E[τ − I {Y < Qτ (Y )} | Zk] = 0.

Motivated by the definition of conditional expectation, we define

dk(t) = E
(
[τ − I {Y < Qτ (Y )}] I (Zk < t)

);
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it is easy to see that dk(t) = 0 for any t ∈ R. The empirical counterpart of dk(t) is

d̂k(t) = n−1
n∑

i=1

[
τ − I {Yi < Q̂τ (Y )}] I (Zik < t), (1)

where Q̂τ (Y ) is the estimate of the τ th quantile based on Y1, . . . , Yn. If the τ th conditional
quantile of Y given Zk does not depend on Zk , then d̂k(t) is expected to fluctuate around zero.
There is an analogy between (1) and the goodness-of-fit test based on the cumulative sum of
residuals (Lin et al., 1993; He & Zhu, 2003).

Based on this rationale, we construct the marginal utility for the kth predictor,

‖d̂k‖ = n−1
n∑

i=1

d̂k(Zik)
2.

Those predictors with a large value of ‖d̂k‖ are considered important. We define the estimated
active set as

Âτ = {k : ‖d̂k‖ � cn−α, k = 1, . . . , pn},
where the prespecified threshold values c and α ∈ [0, 1/2) are given in the following regularity
condition.

Condition 1. For some constant c > 0, mink∈Aτ ‖dk‖ � 2cn−α , where ‖dk‖ = E{dk(Zk)
2} is

the population counterpart of ‖d̂k‖.

The marginal utility ‖d̂k‖ is invariant under any monotone transformation of the response. Fur-
thermore, the proposed method can deal with transformation models without needing to directly
involve nonparametric estimation (Li et al., 2012a).

PROPOSITION 1. Let ZAτ = {Z j : j ∈Aτ } and ZAc
τ
= {Z j : j /∈Aτ }, and assume that:

(i) I {Y < Qτ (Y )} and ZAc
τ

are conditionally independent given ZAτ ; and
(ii) ZAτ is independent of ZAc

τ
.

Then, under Condition 1,

max
k /∈Aτ

‖dk‖ < min
k∈Aτ

‖dk‖,

with ‖dk‖ = 0 if and only if k /∈Aτ .

This result implies that ‖d̂k‖ is useful for feature screening, as it tends to rank important
covariates over unimportant ones. Due to the fact that Qτ (Y | Z) = Qτ (Y | ZAτ ), the assumption
(i) holds if Aτ =A, and the assumption (ii) is the partial orthogonality condition (Huang et al.,
2008).

Shao & Zhang (2014) ranked the distance correlation between τ − I {Y < Qτ (Y )} and Zk ,
so their screening method is also invariant under any monotone transformation. However, since
our method is based on the indicator I (Zk < t), it does not require a finite-moment assumption
for each Zk , and this yields more robustness with respect to heavy-tailed distributions. Like all
existing sure independent screening procedures based on marginal utilities, our method suffers
in situations where the predictors are jointly but not marginally important.
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2·2. Conditional quantile screening for a censored response

To accommodate censoring, we extend the screening procedure to ultrahigh-dimensional
survival data. Suppose that we observe the data {Xi , �i , (Zi1, . . . , Zipn )

T : i = 1, . . . , n}, con-
sisting of independent copies of (X, �, Z) where X = min(Y, C) and � = I (Y � C), with C
representing the censoring variable. For ease of exposition, we assume that the censoring distri-
bution is independent of covariates. For censored conditional quantile screening, we propose a
weight-adjusted version of dk(t),

rk(t) = E
{

[τ − ω(F)I {X < Qτ (Y )}] I (Zk < t)
}
,

where F(y) = pr(Y � y) and the weight function

ω(F) =
⎧⎨
⎩

1, � = 1 or F(C) > τ,
τ − F(C)

1 − F(C)
, � = 0, F(C) � τ

redistributes the masses of censored observations to the right (Portnoy, 2003; Wang & Wang,
2009). For any t ∈ R, if the τ th conditional quantile of Y given Zk does not depend on Zk , then
rk(t) = 0. Let F̂n(y) = 1 − Ŝn(y), where Ŝn(y) is the Kaplan–Meier estimator of Y based on
{(Xi , �i ) : i = 1, . . . , n}. The τ th sample quantile F̂−1

n (τ ) is an estimator of Qτ (Y ) when Y is
subject to right censoring. Likewise, we define the empirical version of rk(t) as

r̂k(t) = n−1
n∑

i=1

[
τ − ωi (F̂n)I {Xi < F̂−1

n (τ )}] I (Zik < t).

We expect r̂k(t) to be close to zero if the τ th conditional quantile of Y given Zk does not depend
on Zk . We define ‖r̂k‖ = n−1 ∑n

i=1 r̂k(Zik)
2 and then select a set of active variables

Â∗
τ = {k : ‖r̂k‖ � c∗n−α, k = 1, . . . , pn},

where c∗ is a prespecified threshold value, given in Condition 5 below.

2·3. Conditional distribution function screening

The proposed conditional quantile utility can be extended to recover the whole active predictor
set A, which contains all the predictors associated with the conditional distribution of Y . Define

hk(y, t) = E
[{F(y) − I (Y � y)}I (Zk < t)

]
and its empirical version

ĥk(y, t) = n−1
n∑

i=1

⎧⎨
⎩n−1

n∑
j=1

I (Y j � y) − I (Yi � y)

⎫⎬
⎭ I (Zik < t).

We propose a model-free screening procedure based on ‖ĥk‖ = n−1 ∑n
i=1{hk(Yi , Zik)}2, and

thus the set of active variables can be identified as

Â= {k : ‖ĥk‖ � c̃n−α, k = 1, . . . , pn},
where c̃ is the constant in Condition 6 below.
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In fact, hk(y, t) = −cov{I (Y � y), I (Zk < t)}, which is also the basis for the statistic used in
Heller et al. (2013) to test independence of two variables. Similarly, our model-free screening
method has distinctive features: invariance under any monotone transformation and no require-
ment of finite moments. By introducing appropriate weights, the model-free screening utility can
also be modified to handle censoring. In particular, the screening utility for the kth predictor can
be constructed by cumulatively summing Ŝn(y) − �i I (Xi > y)/R̂n(Xi ) over Zik from i = 1 to
i = n, where R̂n(y) is the Kaplan–Meier estimator of the censoring time.

3. THEORETICAL PROPERTIES

In addition to Condition 1, we introduce further regularity conditions.

Condition 2. In a neighbourhood of Qτ (Y ), F(y) is twice differentiable; the density function
of Y , f (y), is uniformly bounded away from zero and infinity, and its derivative f ′(y) is bounded
uniformly.

Condition 3. In a neighbourhood of Qτ (Y ), G(x) = pr(C � x) is twice differentiable; the
density function of C , g(x), is uniformly bounded away from zero and infinity, and its derivative
g′(x) is bounded uniformly.

Condition 4. Let L be the end time of the study; then τ satisfies 0 < τ < pr(Y � L).

Condition 5. For a constant c∗ > 0, mink∈Aτ ‖rk‖ � 2c∗n−α , where ‖rk‖ = E{rk(Zk)
2}.

Condition 6. For a constant c̃ > 0, mink∈A ‖hk‖ � 2c̃n−α , where ‖hk‖ = E{hk(Y, Zk)
2}.

Conditions 2 and 3 are standard in censored quantile regression. Condition 4 ensures estima-
bility of the τ th regression quantile. Conditions 1 and 5, for complete and censored responses,
respectively, require the marginal utilities carrying information for the features in the active set
not to decay too fast, and Condition 6 corresponds to the model-free screening. Compared with
the finite exponential moment conditions C3 in Zhu et al. (2011), C1 in Li et al. (2012b) and
B2 in Shao & Zhang (2014), as well as the bounded support condition C1 in He et al. (2013),
we impose no conditions on the predictor Z , so our screening procedures are more robust with
respect to heavy-tailed predictors.

The sure independent screening properties of our procedures can be stated as follows.

THEOREM 1. Under Condition 2, there exist positive constants c1 and c2 such that

pr

(
max

1�k�pn

∣∣∣‖d̂k‖ − ‖dk‖
∣∣∣ � cn−α

)
� O

{
pn exp(−c1n1−2α) + pn exp(−c2n3−2α)

}
,

and under Conditions 1 and 2,

pr(Aτ ⊆ Âτ ) � 1 − O
{

an exp(−c1n1−2α) + an exp(−c2n3−2α)
}
,

where an = |Aτ | is the cardinality of Aτ .

Let (Ỹ , Z̃) be an independent copy of (Y, Z), and define V = [τ − I {Ỹ < Qτ (Ỹ )}]I (Z̃ < Z),
where I (Z̃ < Z) = {I (Z̃1 < Z1), . . . , I (Z̃ pn < Z pn )}T. Let ‖·‖E denote the Euclidean norm. The
next result says that if E(‖V ‖2

E) = O(nγ ) for some γ > 0, the model after screening is of poly-
nomial size with probability approaching 1.
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THEOREM 2. Under Conditions 1 and 2, there exist positive constants b1 and b2 such that

pr
{|Âτ | � 2c−1nα E(‖V ‖2

E)
}

� 1 − O
{

pn exp(−b1n1−2α) + pn exp(−b2n3−2α)
}
.

We can also establish the sure independent screening properties for ultrahigh-dimensional
survival data with censoring.

THEOREM 3. Under Conditions 2–4, there exist positive constants c∗
1 and c∗

2 such that

pr

(
max

1�k�pn

∣∣∣‖r̂k‖ − ‖rk‖
∣∣∣ � c∗n−α

)
� O

{
pn exp(−c∗

1n1−2α) + pn exp(−c∗
2n3−2α)

}
,

and under Conditions 2–5,

pr(Aτ ⊆ Â∗
τ ) � 1 − O

{
an exp(−c∗

1n1−2α) + an exp(−c∗
2n3−2α)

}
.

Theorems 1 and 3 imply that our screening procedures can handle nonpolynomial dimension-
ality of order log pn = o(n1−2α) with α ∈ [0, 1/2) for both complete and censored data. Com-
pared with Zhu et al. (2011), Li et al. (2012b), He et al. (2013) and Shao & Zhang (2014), we
can achieve a higher exponential rate for the dimensionality under weaker conditions on the pre-
dictors, mainly due to the use of indicator functions in our screening utility. Let (Ỹ , C̃, Z̃) be an
independent copy of (Y, C, Z), and write X̃ = min(Ỹ , C̃) and �̃ = I (Ỹ � C̃).

THEOREM 4. Under Conditions 2–5, there exist positive constants b∗
1 and b∗

2 such that

pr
{|Â∗

τ | � 2c∗−1nα E(‖V ∗‖2
E)

}
� 1 − O

{
pn exp(−b∗

1n1−2α) + pn exp(−b∗
2n3−2α)

}
,

where V ∗ = [τ − ω̃(F)I {X̃ < Qτ (Ỹ )}]I (Z̃ < Z) with

ω̃(F) =

⎧⎪⎨
⎪⎩

1, �̃ = 1 or F(C̃) > τ,

τ − F(C̃)

1 − F(C̃)
, �̃ = 0, F(C̃) � τ.

(2)

This suggests that with censored data, if E(‖V ∗‖2
E) = O(nγ ) for some γ > 0, the model after

screening is of polynomial size with probability approaching 1. For the model-free conditional
distribution screening procedure, we can establish similar sure independent screening properties.

THEOREM 5. Under Condition 2, there exist positive constants c̃1 and c̃2 such that

pr

(
max

1�k�pn

∣∣∣‖ĥk‖ − ‖hk‖
∣∣∣ � c̃n−α

)
� O

{
pn exp(−c̃1n1−2α) + pn exp(−c̃2n3−2α)

}
,

and under Conditions 2 and 6,

pr(A⊆ Â) � 1 − O
{

ãn exp(−c̃1n1−2α) + ãn exp(−c̃2n3−2α)
}
,

where ãn = |A|.
The proposed model-free screening method can also handle nonpolynomial dimensionality

without finite-moment assumptions. Let (Ỹ , Z̃) be an independent copy of (Y, Z), and write
Ṽ = {F(Y ) − I (Ỹ � Y )}I (Z̃ < Z).
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THEOREM 6. Under Conditions 2 and 6, there exist positive constants b̃1 and b̃2 such that

pr
{|Â| � 2c̃−1nα E(‖Ṽ ‖2

E)
}

� 1 − O
{

pn exp(−b̃1n1−2α) + pn exp(−b̃2n3−2α)
}
.

If E(‖Ṽ ‖2
E) = O(nγ ) for some γ > 0, the model based on the conditional distribution screen-

ing is of polynomial size with probability approaching 1.

4. SIMULATION STUDIES

We examine the finite-sample performance of the proposed methods and compare them with
existing methods via simulation studies.

Example 1. We consider the following model adapted from Zhu et al. (2011), He et al. (2013)
and Shao & Zhang (2014):

Y = Z1 + 0·8Z2 + 0·6Z3 + 0·4Z4 + 0·2Z5 + σ(Z)ε, (3)

where the ultrahigh-dimensional covariates Z = (Z1, . . . , Z pn )
T follow a multivariate normal

distribution with mean zero and correlation matrix 	 = (0·8|i− j |) (i, j = 1, . . . , pn). We con-
sidered the sample sizes n = 100 and 200, and set the number of covariates pn to 2000. For the
error term, we set σ(Z) = exp(Z20 + Z21 + Z22) and generated ε from the standard normal or
standard Cauchy distribution. We took the censoring time C to be min(C̃, L), where C̃ was gen-
erated from Un(1, L + 2) with L being the study duration time, which was chosen to yield a
censoring rate of 25%. If we take the τ th quantile of model (3), we have

Qτ (Y | Z) = Z1 + 0·8Z2 + 0·6Z3 + 0·4Z4 + 0·2Z5 + σ(Z)Qτ (ε).

Considering two quantile levels τ = 0·5 and τ = 0·75, the sizes of the true active predictor sets
A0·5 and A0·75 are p0 = 5 and 8, respectively. We chose the model size to be 	n/log n
. For each
configuration, we replicated 500 simulations.

To assess the performance of the screening procedures, we employed the evaluation criteria in
Li et al. (2012b). First, we compare the minimum model size S, which is the smallest number of
covariates needed to include all the active predictors. Obviously, S can be used to measure the
resulting model complexity for each screening procedure. The closer it is to the true minimum
model size, the better the screening procedure. We present the median and interquartile range of
S over 500 replications. The second criterion is the proportion, out of the 500 replications, that
all of the active predictors are selected for a given model size; we denote this proportion by PAll.
An effective screening procedure is expected to yield PAll close to 1.

Table 1 shows that our distribution function screening method performs substantially better
than both the sure independent ranking and screening approach of Zhu et al. (2011) and the
distance correlation screening method of Li et al. (2012b). For conditional quantile screening at
τ = 0·5 or 0·75, our quantile screening method and the martingale difference correlation quantile
screening approach of Shao & Zhang (2014) perform comparably, and both are superior to the
quantile adaptive screening procedure of He et al. (2013). For censored data, our quantile screen-
ing method delivers better results than the procedure of He et al. (2013) at τ = 0·5, whereas the
opposite is true at τ = 0·75. The performances of all the screening procedures are enhanced as n
is increased to 200.

Figure 1 plots d̂k(t) and r̂k(t) against t , with k = 2 corresponding to an active predictor,
k = 8 to a nonactive predictor, and k = 20 to a nonactive predictor at τ = 0·5 but an active one
at τ = 0·75. Clearly, for active predictors Z2 and Z20 at τ = 0·75, the curves of d̂k(t) deviate
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Table 1. Simulation results for Example 1 with true model size p0: reported are the median and
interquartile range of the minimum model size needed to include all active predictors, along with

the proportion PAll (%) that all of the active predictors are selected for a given model size

n = 100 n = 200

Error τ Method p0 Median IQR PAll Median IQR PAll

Normal DF-SIS 8 28 38 41·0 10 2 99·6
SIRS 8 36 53 26·4 10 3 99·6
DC-SIS 8 360 628 8·2 126 358 30·6

0·5 Q-SIS 5 6 5 86·0 5 0 100·0
QaSIS 5 28 47 39·6 7 3 99·8
MDC-SISQ 5 6 4 87·8 5 0 100·0
Q-SIS cens. 5 8 18 74·6 5 0 99·6
QaSIS cens. 5 132 276 6·8 20 25 74·6

0·75 Q-SIS 8 245 680 4·8 26 73 57·4
QaSIS 8 270 357 0·0 50 62 38·6
MDC-SISQ 8 212 657 6·4 24 64 61·6
Q-SIS cens. 8 516 1020 1·6 66 244 40·4
QaSIS cens. 8 320 956 9·2 14 73 67·8

Cauchy DF-SIS 8 25 33 42·0 9 2 98·6
SIRS 8 34 38 28·6 9 3 99·0
DC-SIS 8 1017 802 0·0 828 755 0·8

0·5 Q-SIS 5 8 18 73·0 5 0 98·6
QaSIS 5 77 119 8·2 10 6 94·6
MDC-SISQ 5 7 17 74·0 5 0 98·8
Q-SIS cens. 5 16 50 57·2 5 1 97·4
QaSIS cens. 5 292 456 0·6 50 118 38·6

0·75 Q-SIS 8 410 744 1·6 52 130 40·2
QaSIS 8 598 605 0·0 192 248 3·6
MDC-SISQ 8 379 741 2·2 44 120 45·0
Q-SIS cens. 8 622 1041 0·4 71 201 34·0
QaSIS cens. 8 272 662 4·8 21 98 62·0

IQR, interquartile range of the minimum model size S; DF-SIS, proposed conditional distribution function sure inde-
pendent screening approach; SIRS, sure independent ranking and screening of Zhu et al. (2011); DC-SIS, distance
correlation sure independent screening of Li et al. (2012b); Q-SIS, proposed conditional quantile sure independent
screening approach; QaSIS, quantile adaptive sure independent screening of He et al. (2013); MDC-SISQ, martingale
difference correlation sure independent screening of Shao & Zhang (2014); cens., censored data case.

substantially from the zero axis. For nonactive predictors Z8 and Z20 at τ = 0·5, d̂8(t) and d̂20(t)
fluctuate around the zero axis. Similar phenomena can be observed for the censored version
r̂k(t). These plots demonstrate the effectiveness of the proposed conditional quantile screening
procedures.

Example 2. To examine the nonlinear scenario, we consider a model with interactions,

Y = Z2
1 sin(Z2) + Z3

3 + cos2(Z4) + σ(Z)ε,

while keeping the rest of the set-up the same as in Example 1. The simulation results are sum-
marized in Table 2, from which we can draw similar conclusions to Example 1.

Under a given model size 	n/log n
, the selection proportions for each of Z20, Z21 and Z20 at
τ = 0·5 are reported in Table 3. These predictors do not belong toA0·5, the active set at τ = 0·5, in
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t = 0·5 t = 0·75

d k(
t)

^
r k(

t)
^

t

−3 −2 −1 0 1 2 3 −3 −2 −1 0 1 2 3

−3 −2 −1 0 1 2 3 −3 −2 −1 0 1 2 3

−0·10

−0·05

0·00

0·05
(a) (b)

(c) (d)

−0·10

−0·05

0·00

0·05

−0·10

−0·05

0·00

0·05

−0·10

−0·05

0·00

0·05

t

Fig. 1. Plots of d̂k(t) with complete response and r̂k(t) with censored response for k = 2 (solid), k = 8 (dashed)
and k = 20 (dotted), based on one simulated dataset in Example 1 with heterogeneous normal errors and n = 200:

(a) d̂k(t) at τ = 0·5; (b) d̂k(t) at τ = 0·75; (c) r̂k(t) at τ = 0·5; (d) d̂k(t) at τ = 0·75.

Table 2. Simulation results for Example 2 with true model size p0: reported are the median and
interquartile range of the minimum model size needed to include all active predictors, along with

the proportion PAll (%) that all of the active predictors are selected for a given model size

n = 100 n = 200

Error τ Method p0 Median IQR PAll Median IQR PAll

Normal DF-SIS 7 22 35 47·6 9 2 99·2
SIRS 7 32 50 31·4 9 4 98·8
DC-SIS 7 230 554 14·2 64 246 40·2

0·5 Q-SIS 4 5 8 85·4 4 0 100·0
QaSIS 4 14 17 69·4 6 2 100·0
MDC-SISQ 4 5 5 88·8 4 0 100·0
Q-SIS cens. 4 7 16 75·8 4 0 99·8
QaSIS cens. 4 110 192 6·0 21 22 76·2

0·75 Q-SIS 7 167 440 9·0 17 26 75·2
QaSIS 7 284 330 0·0 49 56 37·6
MDC-SISQ 7 146 410 10·6 15 24 76·6
Q-SIS cens. 7 406 1009 2·6 40 114 49·2
QaSIS cens. 7 78 575 21·8 10 10 84·8

Cauchy DF-SIS 7 24 33 45·0 8 2 99·6
SIRS 7 32 39 35·0 8 2 99·6
DC-SIS 7 932 889 0·6 678 777 1·4

0·5 Q-SIS 4 9 23 69·8 4 0 99·4
QaSIS 4 36 55 33·2 7 3 99·2
MDC-SISQ 4 8 21 73·2 4 0 99·4
Q-SIS cens. 4 18 59 53·0 4 1 98·8
QaSIS cens. 4 184 285 2·8 30 41 59·6

0·75 Q-SIS 7 285 595 1·8 36 80 52·2
QaSIS 7 539 601 0·0 162 180 6·2
MDC-SISQ 7 251 594 2·8 29 68 56·6
Q-SIS cens. 7 503 794 1·8 44 161 44·8
QaSIS cens. 7 190 888 11·8 12 48 71·2
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Table 3. Selection proportions P20, P21 and P22 (%) corresponding to nonactive predictors Z20,
Z21 and Z22 at τ = 0·5

n = 100 n = 200

Example Error Method P20 P21 P22 P20 P21 P22

1 Normal Q-SIS 2·0 1·8 0·4 2·2 3·0 2·2
QaSIS 57·4 69·2 58·0 66·2 76·4 64·8
MDC-SISQ 1·6 2·0 0·6 1·4 2·8 2·4
Q-SIS cens. 2·0 1·8 1·4 2·2 3·2 3·0
QaSIS cens. 93·2 96·8 92·6 99·4 100·0 99·8

Cauchy Q-SIS 1·4 1·0 1·0 2·8 3·0 2·2
QaSIS 61·4 71·2 58·0 69·4 80·4 71·6
MDC-SISQ 1·4 1·4 1·0 2·8 2·6 2·0
Q-SIS cens. 0·8 1·6 1·2 3·6 2·8 2·6
QaSIS cens. 96·0 98·4 95·8 100·0 100·0 100·0

2 Normal Q-SIS 1·8 1·8 1·8 3·8 4·4 3·6
QaSIS 63·0 71·0 57·0 73·6 84·6 70·4
MDC-SISQ 2·0 1·8 1·4 4·2 4·2 3·4
Q-SIS cens. 2·0 1·6 2·0 5·4 6·2 6·0
QaSIS cens. 93·0 97·4 93·0 100·0 100·0 100·0

Cauchy Q-SIS 3·2 3·6 2·6 2·8 3·6 4·2
QaSIS 59·2 69·4 57·2 71·2 80·8 73·8
MDC-SISQ 3·2 3·6 2·2 3·4 4·0 4·2
Q-SIS cens. 1·8 3·0 2·6 3·4 5·4 6·0
QaSIS cens. 93·6 97·8 93·4 100·0 100·0 99·8

Table 4. Selection results for the Msa.XXX.0 genes in the cardiomyopathy microarray data exam-
ple; selected genes are indicated by a

√
symbol

Model size 9 Model size 29

τ Method 2134 2877 26025 15442 10108 2134 2877 26025 15442 10108

DF-SIS
√ √ √ √ √ √ √ √ √

SIRS
√ √ √ √ √ √ √ √ √ √

DC-SIS
√ √ √ √ √ √ √ √ √ √

0·3 Q-SIS
√ √ √ √

QaSIS
√ √

MDC-SISQ
√ √

0·5 Q-SIS
√ √ √ √ √ √ √ √

QaSIS
MDC-SISQ

√ √ √ √ √ √ √ √
0·7 Q-SIS

√ √ √ √ √ √ √ √
QaSIS
MDC-SISQ

√ √ √ √ √ √ √ √

either Example 1 or Example 2, although they are present in the model error. It can be seen that
our quantile screening method, its censored version, and the martingale difference correlation
quantile screening approach of Shao & Zhang (2014) tend to drop these nonactive predictors,
which achieves the goal of conditional quantile screening. On the contrary, both the quantile
adaptive screening approach and its censored version in He et al. (2013) select these nonactive
predictors with high probability.
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5. REAL-DATA EXAMPLE

We illustrate the application of our procedure using a dataset from a cardiomyopathy microar-
ray study (Segal et al., 2003; Li et al., 2012b). The main goal of the study was to determine which
genes influence overexpression of a G protein-coupled receptor gene, Ro1, in mice; the findings
could potentially help us to understand various types of heart disease in humans. The response
is the Ro1 expression level, measured for n = 30 specimens, and the predictors are the expres-
sion levels of pn = 6319 genes. We focus on the selection results for the five genes Msa.2134.0,
Msa.2877.0, Msa.26025.0, Msa.15442.0 and Msa.10108.0, for a given model size of 9 or 29.
From Table 4, it can be seen that under a given model size of 29, all of the five genes were
selected by all three model-free screening methods, indicating that these genes could be strongly
associated with gene Ro1. The results of our quantile screening and the martingale difference
correlation quantile screening of Shao & Zhang (2014) coincide with each other: Msa.2134.0
is related to Ro1 across the considered quantiles and Msa.15442.0 displays some association
with Ro1 at the median and lower tails of the conditional distribution. The genes Msa.2877.0,
Msa.26025.0 and Msa.10108.0 tend to be associated with the median and upper quantile of the
expression of Ro1. Moreover, our quantile screening procedure detected the association between
Msa.10108.0 and the lower quantile of the expression of gene Ro1, which was missed by the
martingale difference correlation quantile screening. By contrast, quantile adaptive screening
(He et al., 2013) found only that Msa.2877.0 would affect the lower quantile of the expression of
gene Ro1.
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