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Abstract Additive hazards model with random effects is proposed for modelling the correlated failure

time data when focus is on comparing the failure times within clusters and on estimating the correlation

between failure times from the same cluster, as well as the marginal regression parameters. Our model

features that, when marginalized over the random effect variable, it still enjoys the structure of the

additive hazards model. We develop the estimating equations for inferring the regression parameters.

The proposed estimators are shown to be consistent and asymptotically normal under appropriate

regularity conditions. Furthermore, the estimator of the baseline hazards function is proposed and

its asymptotic properties are also established. We propose a class of diagnostic methods to assess

the overall fitting adequacy of the additive hazards model with random effects. We conduct simulation

studies to evaluate the finite sample behaviors of the proposed estimators in various scenarios. Analysis

of the Diabetic Retinopathy Study is provided as an illustration for the proposed method.

Keywords Additive hazards regression, clustered failure times, counting process, empirical process,

frailty, model checking, random effects
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1 Introduction

Multivariate failure time data are encountered frequently in scientific investigation, in which the
study subjects are sampled in clusters and the failure times within the same cluster tend to be
correlated. Much work in this context has focused on the marginal hazards models, including
but not limited to, the marginal proportional hazards model (Spiekerman and Lin [17]) and
the marginal additive hazards model (Yin and Cai [20]), which do not specify the dependence
structure but adjusts for it in inference. When the intracluster dependence is of interest as well
as the effects of covariates on the failure times, a useful approach is to incorporate a random
effect or frailty into the hazards regression to describe the intracluster dependence. In the
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proportional hazards regression, the hazard function for the k-th subject of the i-th cluster
associated with covariates Zik( · ) takes the form

λ(t|Zik; ξi) = ξiλ0(t)eβTZik(t), (1.1)

where β is a vector of unknown regression parameters, λ0( · ) is an unspecified baseline haz-
ard function, and ξi is an unobserved random effect for the i-th cluster, which induces the
dependence between subjects within the cluster.

Model (1.1) with Gamma random effect has been investigated rigorously by Murphy [13, 14]
for the case without covariates, and by Parner [15] for the case with covariates; Model (1.1) with
positive stable random effect has been studied by Fine et al. [2] and Martinussen and Pipper [11].
Recently, Zeng and Lin [21] proposed a general class of semiparametric transformation models
with random effects based on the model (1.1), which includes the Cox proportional hazards and
proportional odds models with random effects as its special cases.

Although various hazards regression models with random effects have been extensively stud-
ied and applied in practice, we are not aware of the studies on the additive hazards model with
random effects for survival analysis. Both the proportional and additive hazards models have
sound biological and empirical bases, and construct two principal frameworks for studying the
association between covariates and disease occurrence or death. In contrast to the proportional
hazards model, the additive hazards model specifies that the hazards function associated with a
set of possibly time-dependent covariates is the sum of, rather than the product of, the baseline
hazard function and the regression function of covariates (see Lin and Ying [10]). The additive
hazards model offers a valuable alternative to the proportional hazards model when the inves-
tigator is interested in the hazards difference instead of the hazards ratio or the proportional
hazards assumption is violated in practice. Consequently, it is imperative to establish the esti-
mate method for the additive hazards model with random effects. To this point, in this article
we develop the statistical inference for fitting the correlated failure time data using the additive
hazards model with random effects. Specifically, we propose the additive hazards model with
random effects as follows:

λ(t|Zik, Xik; ξi) = λ0(t) + βTZik(t) + ξTi Xik(t), (1.2)

where β is a p-vector of unknown regression parameters, λ0( · ) is a completely unspecified
function, ξi is an unobserved positive frailty variable for the i-th cluster, Zik and Xik are the
p-vector and q-vector covariate processes, respectively, associated with the fixed and random
effects. To identify the proposed model (1.2), we require that Zik(t) and Xik(t) do not share any
components and that neither Zik(t) norXik(t) contains intercept term, where the intercept term
means the deterministic function of t. Our model (1.2) is different from the partly parametric
version of the Aalen additive model proposed by McKeague and Sasieni [12], in which the effect
of some covariates varies nonparametrically over time and that of the remaining is constant.
Our model (1.2) is akin to the mixed effect model in the longitudinal data analysis. Thus, the
parameters in our model possess similar interpretations as in the usual mixed effect models,
but in terms of hazard risks.

The remainder of this article is organized as follows. In Section 2, we introduce some
notation and derive the estimation procedures for the model parameters. Section 3 establishes
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the asymptotic properties for proposed estimators with proofs relegated to Section 8. Model
checking procedures are provided in Section 4. We conduct simulation studies in Section 5 to
evaluate the finite-sample behavior of the asymptotic approximation. The proposed methods
are illustrated with the Diabetic Retinopathy Study in Section 6. Some concluding remarks are
given in Section 7.

2 Estimation

Let ˜Tik and Cik denote the failure time and censoring time, respectively, for the k-th individual
in the i-th cluster, i = 1, 2, . . . , n, k = 1, 2, . . . ,K. Correspondingly, let Tik = min( ˜Tik, Cik) be
the observed time and denote the censoring indicator by Δik = I( ˜Tik ≤ Cik), where I( · ) is the
indicator function. Let τ denote the end time of study. Assume that { ˜Ti, Ci, ξi, Zi(t), Xi(t): t ∈
[0, τ ]} are independent and identically distributed (i.i.d.) for i = 1, 2, . . . , n, where ˜Ti =
(˜Ti1, . . . , ˜TiK), and Ci, Zi(t), and Xi(t) are defined in the same manner. Also, we assume
that, given the covariates in the i-th cluster, the censoring Ci is independent of ξi and ˜Ti and
that ˜Tik for k = 1, 2, . . . ,K are independent given ξi, Zi( · ), and Xi( · ). The counting process
is denoted by Nik(t) = I(Tik ≤ t)Δik and the at-risk process by Yik(t) = I(Tik ≥ t).

Let the distribution of ξ be Pα indexed by an unknown parameter α, whose dimension is
assumed to be equal to that of ξ to ensure the identifiability. Denote the Laplace transform by
Gα(u) = Eα{exp(−ξTu)}, where Eα( · ) is the expectation with respect to Pα. An interesting
feature of the model (1.2) is that, when marginalized over the random effect ξi, it still maintains
the structure of additive hazards regression. Specifically, noting that the marginal survival
function for the k-th subject in the i-th cluster is

P (Tik > t|Zik, Xik)

= exp
{

−
∫ t

0

λ0(u)du− βT

∫ t

0

Zik(u)du
}

Eα

[

exp
{

−ξTi
∫ t

0

Xik(u)du
}]

,

we can obtain the corresponding marginal hazards function as follows:

λ(t|Zik, Xik) = λ0(t) + βTZik(t) +Hα{X̄ik(t)}TXik(t), (2.1)

where Hα(u) = −∂{logGα(u)}/∂u and X̄ik(t) =
∫ t

0
Xik(u)du. For example, if ξ is from the

gamma distribution with mean μ and variance σ2, then Hα(u) = α2

α+σ2u if one takes α = μ.
We aim to make inference, based on the observed data {Ti,Δi, Zi( · ), Xi( · )} (i = 1, 2, . . . ,

n), about the regression parameter θ ≡ (βT, αT)T of interest and the cumulative hazards
function Λ0(t) =

∫ t

0
λ0(u)du under the model (2.1). Let

Mik(t, θ) = Nik(t) −
∫ t

0

Yik(u)λ(u|Zik, Xik)du

and θ0 denote the true value of θ. Then Mik(t, θ0) is a counting process martingale (Fleming
and Harrington [3]), which is denoted by Mik(t) in what follows for short.

Noting that E{dMik(t)|Zik(t), Xik(t)} = 0 and as elucidated by Lin and Ying [10], we
specify the estimating equations as follows:

n
∑

i=1

K
∑

k=1

∫ t

0

Mik(du) = 0, (2.2)
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and
n

∑

i=1

K
∑

k=1

∫ τ

0

Qik(u, θ)Mik(du, θ) = 0, (2.3)

for the cumulative baseline function Λ0(t) and the regression parameter θ, respectively. Qik(t, θ)
is a smooth (with respect to θ) (p+ q)-vector-valued function of Zik(t), Xik(t) and θ, but not
involving Λ0(t).

Solving (2.2) with given θ0, the Aalen–Breslow type estimator for Λ0(t) is given by ̂Λn(t, θ0),
where

̂Λn(t, θ) =
∫ t

0

∑n
i=1

∑K
k=1

[

dNik(u) − Yik(u)
{

βTZik(u) +Hα(X̄ik(u))TXik(u)
}

du
]

∑n
i=1

∑K
k=1 Yik(u)

.

Substituting ̂Λn(t, θ) for Λ0(t) in (2.3), the resultant estimating equation for θ is then given
by U(θ, τ ) = 0, where

U(θ, t)

=
n

∑

i=1

K
∑

k=1

∫ t

0

{Qik(u, θ) − Q̄(u, θ)}[dNik(u) − Yik(u){βTZik(u) +Hα(X̄ik(u))TXik(u)}du]

=
n

∑

i=1

K
∑

k=1

∫ t

0

{Qik(u, θ) − Q̄(u, θ)}Mik(du, θ)

and

Q̄(t, θ) =
∑n

i=1

∑K
k=1 Yik(t)Qik(t, θ)

∑n
i=1

∑K
k=1 Yik(t)

.

The solution to U(θ, τ ) = 0, denoted by ̂θ, is used to as an estimate for θ0. A natural
estimator for Λ0(t) is ̂Λn(t, ̂θ). To ensure monotonicity, we make a minor modification, that is,
̂Λ∗

n(t) ≡ max0≤u≤t
̂Λn(u, ̂θ). Following similar arguments in Lin and Ying [10], we have that

̂Λ∗
n(t) − ̂Λn(t, ̂θ) = op(n− 1

2 ), uniformly in t ∈ [0, τ ]. Usually, we may choose

Qik(t, θ) =

⎡

⎣

Zik(t)

hα(X̄ik(t))Xik(t)

⎤

⎦ (2.4)

for simplicity, where hα(t) = ∂Hα(t)T

∂α .

3 Asymptotic Properties

In this section, we establish the asymptotic properties of the proposed estimators. We impose
the following regularity conditions throughout our discussion.

(C1) {Ni( · ), Yi( · ), Zi( · ), Xi( · ), ξi, Qi( ·, θ)} are i.i.d. for i = 1, 2, . . . , n, where Ni, Yi and
Qi are defined in the similar manner as Zi. The parameter space, denoted by Θ, is compact
and contains the true value θ0 as its interior point.

(C2) P (Yik(t) = 1, for all t ∈ [0, τ ]) > 0 for k = 1, 2, . . . ,K and i = 1, 2, . . . , n.
(C3) For k = 1, 2, . . . ,K and i = 1, 2, . . . , n, both Zik( · ) and Xik( · ) have bounded total

variations. Qik( ·, θ) has bounded total variation uniformly in θ ∈ Θ.
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(C4) The matrix A is nonsingular, where

A = E

[ K
∑

k=1

{∫ τ

0

Y1k(u){Q1k(u, θ0) − q̄(u, θ0)}
(

Z1k(u)du

hα0(X̄1k(u))X1k(u)du

)T}]

with q̄(t, θ) =
E{∑K

k=1 Y1k(t)Q1k(t,θ)}
E{∑K

k=1 Y1k(t)} .

(C5) The class
{

∂Qik(t, · )
∂θ

,Hα(X̄ik(t)), hα(X̄ik(t))Xik(t): t ∈ [0, τ ], k = 1, 2, . . . ,K, i = 1, 2, . . . , n
}

are equicontinuous and bounded uniformly in parameter space Θ.
(C6) Hα(X̄) = Hα0(X̄) for almost every X̄ implies that α = α0. If hα0(X̄)vα = 0 almost

everywhere for X̄, then vα = 0.
Let S(0)

k (t, θ) = n−1
∑n

i=1 Yik(t), S(1)
k (t, θ) = n−1

∑n
i=1 Yik(t)[ZT

ik(t), Xik(t)Thα(X̄ik(t))T]T,
and write E(t, θ) =

∑K
k=1 S(1)

k (t, θ){∑K
k=1 S(0)

k (t, θ)}−1. Denote the limiting values of S(0)
k (t, θ),

S(1)
k (t, θ), and E(t, θ) by s(0)

k (t, θ), s(1)
k (t, θ), and e(t, θ), respectively. Conditions (C1), (C2),

and (C5) imply that as n→ ∞ for k = 1, 2, . . . ,K and d = 0, 1,

sup
(t,θ)∈[0,τ ]×Θ

‖S(d)
k (t, θ) − s(d)

k (t, θ)‖ →a.s. 0, sup
(t,θ)∈[0,τ ]×Θ

‖E(t, θ) − e(t, θ)‖ →a.s. 0,

sup
(t,θ)∈[0,τ ]×Θ

‖Q̄(t, θ) − q̄(t, θ)‖ →a.s. 0,

where ‖a‖ is defined as the maximum norm for a vector or matrix a.
We summarize the asymptotic properties of ̂θ and ̂Λn(t, ̂θ) in the following theorems.

Theorem 3.1 Under conditions (C1)–(C6), ̂θ converges almost surely to θ0, while
√
n(̂θ−θ0)

converges weakly to a normal distribution with mean 0 and covariance A−1Σ(AT)−1, where
Σ =

∑K
j=1

∑K
k=1 Σjk(τ, τ ) with

Σjk(s, t) = E

[∫ s

0

{Q1j(u, θ0) − q̄(u, θ0)}dM1j(u)
∫ t

0

{Q1k(v, θ0) − q̄(v, θ0)}TdM1k(v)
]

for s and t in [0, τ ].

The asymptotic covariance can be estimated empirically by replacing the limiting values
with their empirical counterparts, say ̂A−1

̂Σ( ̂AT)−1, where

̂A = n−1
n

∑

i=1

K
∑

k=1

[ ∫ τ

0

Yik(u){Qik(u, ̂θ) − Q̄(u, ̂θ)}
{

Zik(u)du

hα̂(X̄ik(u))Xik(u)du

}T]

,

and ̂Σ =
∑K

j=1

∑K
k=1

̂Σjk(τ, τ ) with

̂Σjk(s, t) = n−1
n

∑

i=1

[∫ s

0

{Qij(u, ̂θ) − Q̄(u, ̂θ)}d̂Mij(u)
∫ t

0

{Qik(v, ̂θ) − Q̄(v, ̂θ)}Td̂Mik(v)
]

and
d̂Mik(t) = dNik(t) − Yik(t)

{

d̂Λn(t, ̂θ) + ̂βTZik(t)dt+Hα̂(X̄ik(t))TXik(t)dt
}

.

The proof of consistency in Theorem 3.1 involves several applications of the strong law of
large numbers and the inverse function theorem. The proof of asymptotic normality follows
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from that n
1
2 (̂θ − θ0) asymptotically behaves as a scaled normalized sum of independent and

identically distributed random vectors. The proof of Theorem 3.1 is provided in Section 8.

Theorem 3.2 Under conditions (C1)–(C6), ̂Λn(t, ̂θ) − Λ0(t) converges almost surely to 0,
uniformly in t ∈ [0, τ ], while n

1
2 {̂Λn(t, ̂θ) − Λ0(t)} converges weakly to a zero-mean Gaussian

process with covariance function ψ(s, t) = E[Ψ1(s)Ψ1(t)], where

Ψi(t) =
∫ t

0

∑K
k=1 dMik(u)

∑K
k=1 s(0)

k (u, θ0)
−

∫ t

0

e(v, θ0)TdvA−1
K

∑

k=1

[∫ τ

0

{Qik(u, θ0) − q̄(u, θ0)}dMik(u)
]

.

The covariance function ψ(s, t) can be estimated by replacing limiting quantities in Ψi(t)
with their respectively empirical counterparts. Specifically, ̂ψ(s, t) = n−1

∑n
i=1

̂Ψi(s)̂Ψi(t),
where

̂Ψi(t) =
∫ t

0

∑K
k=1 d

̂Mik(u)
∑K

k=1 S(0)
k (u, ̂θ)

−
∫ t

0

E(v, ̂θ)Tdv( ̂A)−1
K

∑

k=1

[∫ τ

0

{Qik(u, ̂θ) − Q̄(u, ̂θ)}d̂Mik(u)
]

.

Theorem 3.2 can be proved based on a decomposition and using the uniform strong law
of large numbers (Pollard [16]) and various empirical process results (van der Vaart and Well-
ner [18]). The proof of Theorem 3.2 is given in Section 8.

4 Model Checking Techniques

In this section, we develop methods for assessing the adequacy of the model (1.2). Denote
Wik(t) = {Zik(t)T, Xik(t)T}T. Mimicking idea proposed by Lin et al. [9], we consider the
following multiparameter stochastic process, which involves various functional forms of the
cumulative sums of residual ̂Mik(s; ̂θ):

Gn(t, x; θ) =
n

∑

i=1

K
∑

k=1

∫ t

0

f(Wik(s))I(Wik(s) ≤ x)d̂Mik(s; θ),

where f( · ) is a known vector-valued bounded function and the event I(Wik(s) ≤ x) means that
each of the components of Wik(s) is no larger than the respective component of x.

Define

gn(t, x) =
∑n

i=1

∑K
k=1 f(Wik(t))I(Wik(t) ≤ x)Yik(t)

∑n
i=1

∑K
k=1 Yik(t)

and

hn(t, x; θ)

= n−1
n

∑

i=1

K
∑

k=1

∫ t

0

f(Wik(s))I(Wik(s) ≤ x)Yik(s)
[{

Zik(s)

hα(X̄ik(s))Xik(s)

}

− E(s, θ)
]

ds.

Denote the limits of gn(t, x) and hn(t, x; θ) respectively by g̃(t, x) and h̃(t, x; θ). Using the
Taylor series expansions of Gn(t, x; ̂θ) and U(̂θ, τ ) around θ0, we have that n− 1

2 Gn(t, x; ̂θ) is
asymptotically equivalent to n− 1

2 G̃(t, x; θ0), where

G̃(t, x; θ) =
n

∑

i=1

Φi(t, x; θ)
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and

Φi(t, x; θ) =
K

∑

k=1

∫ t

0

{f(Wik(s))I(Wik(s) ≤ x) − g̃(s, x)} dMik(s, θ)

−h̃(t, x; θ)A−1
K

∑

k=1

∫ τ

0

{Qik(s, θ) − q̄(s, θ)}dMik(s, θ).

Theorem 4.1 Under conditions (C1)–(C6), n− 1
2 Gn(t, x; ̂θ) converges weakly to a zero-mean

Gaussian random field with the covariance function between (t, x) and (t∗, x∗) given by E{Φ1(t,
x; θ0)ΦT

1 (t∗, x∗; θ0)}.
The key steps in the proof are to verify the finite-dimensional distribution convergence and

the tightness condition as outlined in Section 8. Furthermore, the covariance function can be
consistently estimated by n−1

∑n
i=1

̂Φi(t, x; ̂θ)̂ΦT
i (t∗, x∗; ̂θ), where

̂Φi(t, x; θ) =
K

∑

k=1

∫ t

0

{f(Wik(s))I(Wik(s) ≤ x) − gn(s, x)} dMik(s, θ)

−hn(t, x; θ)A−1
K

∑

k=1

∫ τ

0

{Qik(s, θ) − Q̄(s, θ)}dMik(s, θ).

Using Theorem 4.1, we can simulate the limiting distribution of n− 1
2 Gn(t, x; ̂θ) to test the

goodness of fit through the resampling approach. Specifically, we simulate n i.i.d. observations,
say η1, . . . , ηn, from the standard normal distribution and then obtain the perturbed version of
the stochastic process ̂G(t, x; θ) =

∑n
i=1

̂Φi(t, x; θ)ηi.

The next theorem provides the theoretical justification for this perturbing procedure.

Theorem 4.2 Given the observed data {(Nik(t), Yik(t), Zik(t), Xik(t)): t ∈ [0, τ ]; i = 1, 2,
. . . , n; k = 1, 2, . . . ,K}, n− 1

2 ̂G(t, x; ̂θ) converges weakly to the same zero-mean Gaussian random
field as that of n− 1

2 Gn(t, x; ̂θ).

This theorem was also discussed by Lin et al. [9] and Yin [19]. The critical argument is
that conditional on the observed data, ̂G(t, x; ̂θ) can be viewed as a sum of the independent
random variables for each fixed time t and x. To save space, we omit the proof of Theorem 4.2.

We illustrate that how Gn(t, x; ̂θ) can be used for different purposes of model checking in
the following derivations. To check the functional forms of a covariate, e.g., the j-th component
of Wik, denoted by Wikj , we take f(Wik) = 1, t = τ, and let every component except the j-th
component of x be ∞, then the resulting testing statistic is

Gj
n(τ, x; ̂θ) ≡

n
∑

i=1

K
∑

k=1

∫ τ

0

I(Wikj(s) ≤ xj)d̂Mik(s; ̂θ).

In order to construct an omnibus test for checking the overall fit of the model, one can take
f(Wik) = 1, then the resulting testing process is

Go
n(t, x; ̂θ) ≡

n
∑

i=1

K
∑

k=1

∫ t

0

I(Wik(s) ≤ x)d̂Mik(s; ̂θ).

To approximate the distribution of Go
n(t, x; ̂θ) one can obtain a large number of realizations

from ̂Go
n(t, x; ̂θ), by repeatedly generating the standard normal random sample (η1, . . . , ηn)
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while fixing the data {(Nik(t), Yik(t), Zik(t), Xik(t)): t ∈ [0, τ ]; i = 1, 2, . . . , n; k = 1, 2, . . . ,K}
at their observed values. Graphically, one can plot a few realizations of ̂Go

n(t, x; ̂θ) along with
the observed Go

n(t, x; ̂θ) to see if they can be regarded as arising from the same population.
More formally and objectively, we can apply the supremum test statistic sup0≤t≤τ,x |Go

n(t, x; ̂θ)|
to test the overall fit of the model. The p-value of this test is obtained by generating a large
number of realizations from sup0≤t≤τ,x | ̂Go

n(t, x; ̂θ)| and comparing them with the observed
value of sup0≤t≤τ,x |Go

n(t, x; ̂θ)|. A similar resampling approach can be also applied to test
statistic Gj

n(τ, x; ̂θ).

5 Simulation Study

We conducted simulation studies to assess the adequacy of the asymptotic approximation of the
proposed method. Specifically, we generated clustered survival time data using the following
model

λ(t|Zik, Xik; ξi) = 1 + βTZik + ξTi Xik.

The covariates of Zik and Xik for each subject in the same cluster were both generated from
Unif(0, 1). The frailty variables ξi were generated from the Gamma or the Inverse Gaussian
(IG) distribution both with mean μ and variance σ2. For simplicity, we take α = μ while letting
σ2 be fixed. Censoring times were set to be the minimum of a Unif(0, c) distributed variable
and τ , where c and τ were chosen to yield an approximately censoring rate of 35% or 60%
in all the considered configurations. The estimating function U(θ, τ ) was derived by choosing
Qik(t, θ) according to (2.4).

To investigate the performance of the proposed estimator in practical sample size and the
cluster size, we set n = 200 and 400 and K = 2 and 5 and consider two different censoring rates
of 35% and 60% and the covariate effect size (β0, α0) = (1, 2) with σ2 fixed at 1. The corre-
sponding results of 1000 replications are summarized in Table 1. The sample mean and sample
standard deviation of the 1000 estimates are given in the Mean and SD columns, respectively.
The SE columns give the average of the estimated standard errors and the CP columns give
the coverage probability of the nominal 95% confidence interval for the true parameter using
the estimated standard error. When the censoring rate is 60%, it can be seen from Table 1
in both the Gamma and IG frailties that the biases of the proposed estimators are essentially
negligible, the estimated standard errors agree well with the sample standard errors, and the
coverage probabilities are around the nominal level 95%. More precise estimators are obtained
when the cluster size, K, increases from 2 to 5 or the censoring rate decreases to 35%.

Table 2 is presented to summarize the effect of σ2 on the parameter estimation. It can be
seen that the proposed estimator works well in the considered scenarios. When σ2 is misspec-
ified to be 1, the corresponding results are reported in Table 3. When the frailty is Gamma
distributed, the estimate for β0 performs well and does not show the negative effects arising
from the misspecification of σ2. On the other hand, the estimate for α0 is still of satisfactory
when the cluster size is small. The performance is attenuated along with the cluster size in-
creasing, especially in the case of σ2 = 2. This is partly due to that more error is cumulated
when more correlations among more cluster members are misspecified. Similar conclusions can
be drawn from the IG frailty. Thus, our proposed method is to some extent robust against to
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the misspecification of σ2 in the case of small cluster size, which is frequently encountered in
practice.

β0 = 1 α0 = 2

Frailty Cen. n K Mean SD SE CP Mean SD SE CP

Gamma 35% 200 2 0.988 0.510 0.516 0.951 2.036 0.521 0.529 0.954

5 1.004 0.317 0.324 0.950 2.004 0.330 0.336 0.947

400 2 0.986 0.355 0.363 0.966 2.010 0.373 0.372 0.947

5 0.990 0.224 0.228 0.952 2.010 0.231 0.237 0.945

60% 200 2 1.050 0.672 0.670 0.952 2.010 0.667 0.676 0.958

5 1.000 0.414 0.421 0.961 2.017 0.422 0.428 0.950

400 2 1.020 0.469 0.471 0.949 1.993 0.474 0.474 0.958

5 0.985 0.294 0.296 0.956 2.012 0.290 0.302 0.961

IG 35% 200 2 0.993 0.509 0.515 0.952 2.048 0.669 0.673 0.952

5 0.999 0.323 0.324 0.950 2.043 0.439 0.423 0.945

400 2 0.995 0.364 0.363 0.950 2.007 0.445 0.465 0.960

5 0.987 0.226 0.229 0.952 2.004 0.305 0.295 0.951

60% 200 2 1.028 0.656 0.665 0.955 2.019 0.780 0.783 0.948

5 0.993 0.417 0.421 0.955 2.009 0.490 0.492 0.946

400 2 1.012 0.485 0.472 0.933 2.040 0.546 0.550 0.952

5 0.985 0.307 0.297 0.946 2.008 0.350 0.346 0.944

Table 1 Simulation results for the proposed estimator with σ2 = 1

β0 = 1 α0 = 2

Frailty σ2 K Mean SD SE CP Mean SD SE CP

Gamma 0.5 2 0.996 0.505 0.523 0.949 2.002 0.541 0.530 0.950

5 1.004 0.325 0.328 0.955 1.999 0.327 0.335 0.952

7 0.999 0.279 0.275 0.944 1.996 0.282 0.284 0.942

2 2 1.009 0.514 0.506 0.937 2.021 0.527 0.532 0.957

5 1.021 0.312 0.317 0.955 2.005 0.343 0.338 0.947

7 0.999 0.260 0.268 0.956 1.999 0.301 0.288 0.941

IG 0.5 2 1.013 0.524 0.519 0.944 2.053 0.622 0.607 0.952

5 0.990 0.334 0.326 0.948 2.028 0.390 0.380 0.945

7 0.991 0.275 0.276 0.938 2.016 0.327 0.321 0.938

2 2 1.004 0.532 0.505 0.937 2.160 0.789 0.825 0.972

5 0.994 0.317 0.318 0.949 2.056 0.537 0.500 0.933

7 0.998 0.273 0.268 0.949 2.019 0.419 0.420 0.952

Table 2 Simulation results for the proposed estimator with n = 200 and a censoring rate of 35%
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β0 = 1 α0 = 2

Frailty σ2 K Mean SD SE CP Mean SD SE CP

Gamma 0.5 2 0.996 0.505 0.522 0.950 2.081 0.543 0.533 0.947

5 1.004 0.325 0.327 0.956 2.079 0.329 0.336 0.952

7 0.999 0.278 0.275 0.944 2.076 0.283 0.285 0.939

2 2 1.009 0.514 0.507 0.937 1.881 0.517 0.522 0.943

5 1.021 0.312 0.317 0.956 1.863 0.336 0.332 0.919

7 0.999 0.260 0.268 0.956 1.858 0.295 0.283 0.906

IG 0.5 2 1.009 0.523 0.518 0.943 2.137 0.659 0.685 0.966

5 0.990 0.333 0.326 0.947 2.117 0.432 0.429 0.951

7 0.991 0.275 0.276 0.938 2.102 0.364 0.360 0.944

2 2 1.003 0.533 0.506 0.935 1.940 0.655 0.654 0.945

5 0.994 0.318 0.318 0.950 1.899 0.449 0.409 0.901

7 0.998 0.273 0.268 0.948 1.872 0.353 0.347 0.924

Table 3 Simulation results for the proposed estimator with n = 200 and a censoring rate 35% when

σ2 is misspecified as 1

6 A Real Example

We now apply the methods to a data set from the Diabetic Retinopathy Study (Kupfer and ET-
DRS Research Group [8]; Huster et al. [6]). The study was conducted to assess the effectiveness
of laser photocoagulation in delaying visual loss among patients with diabetic retinopathy. Each
patient had one eye randomized to laser treatment and the other eye receiving no treatment
was a control. The failure time of interest is the time (in months) to visual loss as measured
by visual acuity less than 5

200 . As in previous analysis of this study we confine our attention
to a subset of 197 patients between risk group 6–12, and consider two covariates where Z1ik

indicates, by the value 1 or 0, whether or not the k-th eye (k = 1 for the left eye and k = 2 for
the right eye) of the i-th patient was treated with laser photocoagulation and Z2i1 = Z2i2 indi-
cates, by the value 1 or 0, whether the i-th patient had adult-onset or juvenile-onset diabetics.
Considering that different patients within different risk groups have very different courses of
disease progression, we further evaluate the potential random effect of risk group on the time
of visual loss by defining covariate Xi1 = Xi2 indicating, by the value 0 or 1, whether the i-th
patient is in risk group 6–9 or risk group 10–12.

The fitted model is

λ(t|Zik, Xik; ξi) = λ0(t) + βTZik + ξiXik,

where Zik = (Z1ik, Z2ik)T. For simplicity, we take α = Eξi and assume that ξi is from the
Gamma or IG distribution with σ2 fixed at 0.5, 1, or 2. The analysis results are summarized
in Table 4. It can be seen that the laser treatment could significantly delay the visual loss.
The adult-onset patients with diabetics tended to lost visual sooner. Furthermore, using our
proposed random effect additive hazards model, we found that the patients associated with
higher risk (risk group 10–12) were more likely to suffer from visual loss compared with these
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patients in risk group 6–9, although the sizes of the covariate effects of the risk groups seem
substantially different for the Gamma and IG frailties. Additionally, these findings seem not to
depend on the values of σ2. As a comparison, we also fitted the data set with the Cox propor-
tional hazards model (1.1), where ξi is Gamma distributed. We can draw similar conclusions
even though the magnitude of the covariate effect estimates is different. This is mainly due to
the different interpretation of the two model parameters: one is on the hazards difference and
the other on the hazards ratio.

Treatment Age-onset Risk groups

Model Frailty σ2 Est. SE Est. SE Est. SE

Additive Gamma 0.5 −0.1041 0.0197 0.0098 0.0237 0.2983 0.0443

1 −0.1038 0.0197 0.0100 0.0237 0.3668 0.0529

2 −0.1034 0.0197 0.0100 0.0237 0.4499 0.0648

IG 0.5 −0.1056 0.0202 0.0088 0.0239 0.1007 0.0240

1 −0.1056 0.0202 0.0088 0.0239 0.1027 0.0248

2 −0.1056 0.0200 0.0089 0.0240 0.1072 0.0267

Cox Gamma - −0.8050 0.1690 0.0697 0.1620 0.7416 0.1670

Table 4 Application to the Diabetic Retinopathy Study

7 Remarks

We propose a semiparametric regression method for the clustered failure time data when the in-
traclass dependence among the subjects from the same cluster is of interest, as well as the effects
of covariates on the failure times. Estimating equations for the model parameters have been
proposed. The resultant estimators were shown to be consistent and asymptotically normal.

The statistical challenge for the model (1.1) is mainly that, when marginalized over the
random effect, the model (1.1) usually no longer possesses the proportional form (Hougaard [5]).
The related inference procedures typically rely on the EM algorithm (Zeng and Lin [21]), which
is usually complicated to be implemented in practice. Our proposed additive hazards model
with random effect provides a useful alternative and features that, when marginalized over
the random effect, it still maintains the structure of the additive hazards regression. The
corresponding computational procedure is less demanding.

Note that the baseline hazard function is the same for all the subjects, which is more suitable
for the real example analyzed in current paper. However, to incorporate the distinct baseline
functions, the following model could be considered,

λ(t|Zik, Xik; ξi) = λ0k(t) + βTZik(t) + ξTi Xik(t),

where λ0k( · ) is the unspecified subject-specific baseline hazard function for the k-th subjects
in the clusters. Our proposed inference procedures can be slightly modified for this model.

8 Proofs of the Asymptotics

The limit is taken as n → ∞ unless otherwise indicated. We restate a useful lemma which is
adapted from Spiekerman and Lin [17].
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Lemma 8.1 Assume that fn (n = 1, 2, . . . ) is a sequence of random functions on [0, τ ] that
satisfies

∫ τ

0
|dfn(u)| = Op(1) and supt∈[0,τ ] |fn(t)| = op(1). Then for k = 1, 2, . . . ,K,

sup
t∈[0,τ ]

∣

∣

∣

∣

n− 1
2

n
∑

i=1

∫ t

0

fn(u)dMik(u)
∣

∣

∣

∣

→p 0.

Proof See Spiekerman and Lin [17, p. 1172]. �
Let Uk(θ, t) =

∑n
i=1

∫ t

0
{Qik(u, θ) − Q̄(u, θ)}dMik(u). Then U(θ, t) =

∑K
k=1 Uk(θ, t). From

Lemma 8.1, we have that n− 1
2 Uk(θ0, t) is asymptotically equivalent to n− 1

2Uk(θ0, t), where

Uk(θ0, t) =
n

∑

i=1

∫ t

0

{Qik(u, θ0) − q̄(u, θ0)}dMik(u).

Lemma 8.2 −n−1 ∂U(̂θn,τ)
∂θ converges almost surely to A for any estimator ̂θn →a.s. θ0.

Proof Note that for k = 1, 2, . . . ,K,

n−1 ∂Uk(θ, τ )
∂θ

= n−1
n

∑

i=1

∫ τ

0

Yik(u)
{

Qik(u, θ) − Q̄(u, θ)
}

(

Zik(u)du

hα(X̄ik(u))Xik(u)du

)T

−n−1
n

∑

i=1

∫ τ

0

{

Q̇ik(u, θ) − ¯̇Q(u, θ)
}

dMik(u, θ)

≡ ak(θ) − bk(θ),

where Q̇ik(t, θ) = ∂Qik(t,θ)
∂θ and ¯̇Q(t, θ) =

∑n
i=1

∑ K
k=1 Yik(t)Q̇ik(t,θ)

∑ n
i=1

∑ K
k=1 Yik(t)

.

Under conditions (C3) and (C5), select δ sufficiently small such that n−1∂Uk(θ, τ )/∂θ
sufficiently closed to n−1∂Uk(θ0, τ )/∂θ uniformly in n whenever ‖θ − θ0‖ < δ. Using the
strong law of large numbers, we have that ak(θ0) converges almost surely to

E

{ ∫ τ

0

Y1k(u){Q1k(u, θ0) − q̄(u, θ0)}
(

Z1k(u)du

hα0(X̄1k(u))X1k(u)du

)T}

.

It follows from Lemma 8.1 that bk(θ0) is asymptotically negligible. Thus, the desired result
follows from a straightforward calculation. �
Proof of Theorem 3.1 Under Lemma 8.2 and the condition (C4), denote d = (4‖A−1‖)−1

and dn = [4‖{n−1∂U(θ0, τ )/∂θ}−1‖]−1 whenever n−1∂U(θ0, τ )/∂θ is nonsingular. Select δ
sufficiently small such that ‖n−1∂U(θ, τ )/∂θ − n−1∂U(θ0, τ )/∂θ‖ < d whenever ‖θ − θ0‖ < δ

for all n. Since dn almost surely converges to d by Lemma 8.2, we conclude that
∥

∥

∥

∥

n−1 ∂U(θ, τ )
∂θ

− n−1 ∂U(θ0, τ )
∂θ

∥

∥

∥

∥

< 2dn (8.1)

for n large enough, where n does not depend on θ. In other words, one can find a commonly
large n such that the inequality (8.1) holds for all θ.

Let Oδ = {θ: ‖θ − θ0‖ < δ} and it follows from the inverse function theorem (see Foutz
[4]) that n−1U( ·, τ ) is a one-to-one mapping from Oδ onto n−1U(Oδ, τ ) and the image set
n−1U(Oδ, τ ) contains an open neighborhood of n−1U(θ0, τ ) with radius dnδ. Hence, when n is
taken sufficiently large, the image set n−1U(Oδ, τ ) contains the open neighborhood n−1U(θ0, τ )
with radius dδ

2 . On the other hand, the convergence of n−1U(θ0, τ ) to zero can be derived



Additive Hazards Regression with Random Effects 523

obviously from straightforward extension of Lemma 8.1. Therefore, ̂θ exists and is unique in
Oδ and ̂θ converges to θ0 almost surely since δ can be taken arbitrarily small. Moreover, the
arguments in Jacobsen [7] can be used to demonstrated the global uniqueness of ̂θ for large n.

It follows from the Taylor expansion and Lemmas 8.1 and 8.2 that

n
1
2 (̂θ − θ0) =

{

−n−1 ∂U(θ∗, τ )
∂θ

}−1

n− 1
2 U(θ0, τ )

= A−1
K

∑

k=1

{

n− 1
2Uk(θ0, τ )

}

+ op(1),

where θ∗ is on the line segment between ̂θ and θ0. Obviously, n− 1
2Uk(θ0, τ ) converges in dis-

tribution to a zero-mean normal with covariance Σkk(τ, τ ). This result, combined with the
Slutsky theorem, concludes the proof of the asymptotic normality. �
Proof Theorem 3.2 Some manipulation entails that

̂Λn(t, ̂θ) − Λ0(t) = {̂Λn(t, θ0) − Λ0(t)} + {̂Λn(t, ̂θ) − ̂Λn(t, θ0)}

= n−1

∫ t

0

d
∑n

i=1

∑K
k=1Mik(u)

∑K
k=1 S(0)

k (u, θ0)
+

{

∂̂Λn(t, θ0)
∂θ

}T

(̂θ − θ0) + op(|̂θ − θ0|)

= n−1

∫ t

0

d
∑n

i=1

∑K
k=1Mik(u)

∑K
k=1 S(0)

k (u, θ0)
−

∫ t

0

E(v, θ0)Tdv(̂θ − θ0) + op(|̂θ − θ0|).

Using Lemma 8.1, we obtain

sup
t∈[0,τ ]

∣

∣

∣

∣

∣

∫ t

0

d
∑n

i=1

∑K
k=1Mik(u)

∑K
k=1 S(0)

k (u, θ0)
−

∫ t

0

d
∑n

i=1

∑K
k=1Mik(u)

∑K
k=1 s(0)

k (u, θ0)

∣

∣

∣

∣

∣

= op(n
1
2 ).

This, coupled with the almost sure convergence of ̂θ to θ0, concludes that ̂Λn(t, ̂θ) converges
almost surely to Λ0(t), uniformly in t ∈ [0, τ ]. On the other hand, we could display the following
asymptotic approximation

n
1
2
{

̂Λn(t, ̂θ) − Λ0(t)
}

= n− 1
2

n
∑

i=1

∫ t

0

d
∑K

k=1Mik(u)
∑K

k=1 S(0)
k (u, θ0)

−
∫ t

0

E(v, θ0)Tdvn
1
2 (̂θ − θ0) + op(n

1
2 |̂θ − θ0|)

= n− 1
2

n
∑

i=1

∫ t

0

d
∑K

k=1Mik(u)
∑K

k=1 s(0)
k (u, θ0)

−
∫ t

0

e(v, θ0)TdvA−1
K

∑

k=1

{

n− 1
2Uk(θ0, τ )

}

+ op(1)

= n− 1
2

n
∑

i=1

Ψi(t) + op(1),

where op(1) is uniformly in t ∈ [0, τ ].
Obviously, the convergence of n

1
2 {̂Λn(t, ̂θ)−Λ0(t)} in finite-dimensional distribution follows

from the central limit theorem. On the other hand, we can write Ψi(t) as a sum of some
monotone functions in t and monotone functions have pseudodimension 1 (see Pollard [16,
p. 15]). Thus, the process {Ψi(t): i = 1, 2, . . . , n} are manageable (see Pollard [16, p. 38]). It
then follows from the functional central limit theorem (see Pollard [16, p. 53]) that {Ψi(t): i =
1, 2, . . . , n} is tight, which concludes the proof of the weak convergence. �
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Proof of Theorem 4.1 Using the functional central limit theorem, n− 1
2

∑n
i=1

∑K
k=1Mik(t)

converges weakly to a zero-mean Gaussian process with continuous sample paths. By the
strong embedding theorem (see van der Vaart and Wellner [18]) and Lemma A.3 (see Bilias et
al. [1]), we have that as n→ ∞,

n− 1
2

n
∑

i=1

K
∑

k=1

∫ t

0

{gn(s, x) − g̃(s, x)}dMik(s) → 0,

n− 1
2

n
∑

i=1

K
∑

k=1

∫ t

0

{Q̄(s, x) − q̄(s, x)}dMik(s) → 0,

in probability. Some calculations yield that n− 1
2 Gn(t, x; ̂θ) is asymptotically equivalent to

n− 1
2 G̃(t, x; θ0) = n− 1

2
∑n

i=1 Φi(t, x; θ0). For fixed t and x, {Φi(t, x; θ0): i = 1, 2, . . . , n} are i.i.d.
random vectors. Consequently, it follows from the central limits theorem that n− 1

2 Gn(t, x; ̂θ)
converges in finite-dimensional distribution to a zero-mean Gaussian process.

Without loss of generality, we assume that the covariates are bounded in [−1, 1]. Following
the arguments in Spiekerman and Lin [17], we next show the tightness of n− 1

2 Gn(t, x; ̂θ) in
D([0, τ ] × [−1, 1]p+q). Rewrite

n− 1
2 Gn(t, x; ̂θ) = n− 1

2 Φ(1)(t, x; θ0) + n− 1
2 Φ(2)(t, x; θ0) + n− 1

2 Φ(3)(t, x; θ0) + op(1),

where

Φ(1)(t, x; θ0) =
n

∑

i=1

K
∑

k=1

∫ t

0

f(Wik(s))I(Wik(s) ≤ x)dMik(s, θ0),

Φ(2)(t, x; θ0) =
n

∑

i=1

K
∑

k=1

∫ t

0

g̃(s, x)dMik(s, θ0),

Φ(3)(t, x; θ0) = h̃(t, x; θ0)n
1
2 (̂θ − θ0).

Note that n− 1
2 Φ(1)(t, x; θ0) is tight by using Example 2.11.16 in van der Vaart and Well-

ner [18]. It follows from the weak convergence of n− 1
2

∑n
i=1

∑K
k=1Mik(t, θ0) that n− 1

2 Φ(2)(t, x;
θ0) converges weakly to a zero-mean Gaussian random field. Thus, n− 1

2 Φ(2)(t, x; θ0) is tight by
Theorem 10.2 (Pollard [16]). The tightness of n− 1

2 Φ(3)(t, x; θ0) follows the uniform boundedness
of h̃(t, x; θ0) and the asymptotic normality of n

1
2 (̂θ− θ0). Hence, we have proved the tightness

of n− 1
2 Gn(t, x; ̂θ) and then its weak convergence property. �
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