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Abstract This paper considers the additive hazards regression analysis by utilizing continuous aux-

iliary covariate information to improve the efficiency of the statistical inference when the primary

covariate is ascertained only for a randomly selected subsample. The authors construct a martingale-

based estimating equation for the regression parameter and establish the asymptotic consistency and

normality of the resultant estimators. Simulation study shows that the proposed method can greatly

improve the efficiency compared with the estimator which discards the auxiliary covariate information

in a variety of settings. A real example is also provided as an illustration.

Keywords Additive hazards regression, continuous auxiliary covariate, estimating equation, kernel

smoothing, survival analysis.

1 Introduction

Due to financial limitation or technical difficulty, it is often expensive to measure the primary
exposure variable in many biomedical studies. In other words, the primary exposure variable
may only be measured precisely in a subset of study cohort. This subset is often referred to as
the validation set. Discarding the information of the subjects with missing values would result
in efficiency loss for regression parameters. One useful accommodating approach is to measure
some auxiliary covariate for primary exposure variable on all subjects, while conducting ascer-
tainments on the primary exposure variable only for a randomly selected subsample. Usually,
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the auxiliary information is cheap and easy to obtain. Consequently, a natural and important
question is that how to take use of the auxiliary information to improve the statistical inference.
Some methods have been developed for this issue in the Cox proportional hazards model[1]. For
example, the seminal work of Prentice[2] introduced a partial likelihood estimator based on
the induced relative hazards function under “rare disease” assumption about censored failure
time data. Pepe and Fleming[3] proposed an implemented method which is nonparametric with
respect to the mismeasurement process. Lin and Ying[4] provided a general solution to sur-
vival data with missing cavariate. Zhou and Pepe[5] proposed an estimated partial likelihood
method for discrete auxiliary covariate by using both validation and non-validation observations
to enhance efficiency. Zhou and Wang[6] extended the nonparametric inference procedure of
Zhou and Pepe[5] to handle a continuous auxiliary covariate. Greene and Cai[7] proposed using
the SIMEX method to handle measurement errors for multivariate failure time data when a
validation set is not available. Liu, Wu, and Zhou[8] and Liu, Zhou, and Cai[9] proposed the
statistical inference procedures for multivariate survival data by utilizing auxiliary information
for the discrete and continuous auxiliary covariates, respectively.

It can be seen that there is extensive literature on auxiliary covariate information under
the framework of the Cox proportional hazards model. As an important complement for Cox
proportional hazards model, the additive hazards model is also widely used in practice. See for
example Breslow and Day[10, 11], Cox and Oakes[12], Thomas[13], and Lin and Ying[14]. Further-
more, O’Neill[15] has shown that use of the Cox proportional hazards model can result in serious
bias when the additive hazards model is correct. Some researches on how to further utilize aux-
iliary information has been conducted under the framework of the additive hazards model. For
example, Kulich and Lin[16] proposed a method based on correcting the pseudo-score function
for the additive hazards model, which produces asymptotically unbiased estimation. However,
the corrected pseudo-score method requires the conditional moments of surrogate covariate
given the true covariate to be correctly specified. Jiang and Zhou[17] proposed an updated
pseudo-score method, which relaxed the moment conditions and thus avoided the possibility of
modelling miss-specifications. However, their updated pseudo-score method involves extensive
computation.

In this paper, we consider the additive hazards model with continuous auxiliary covariate.
We propose a method by implementing the missing items in estimating equations with its
kernel smoothing estimators based on auxiliary information and then obtained an estimated
estimating equation for the regression parameter. Our method does not need to specify the
form of baseline hazard function. The auxiliary covariate could be mismeasured surrogate to
the true covariate, or any covariate that is informative about the true covariate. Moreover, it is
known that surrogate variable could be considered as the auxiliary covariate but the visa versa
is not true. The proposed method is nonparametric with respect to the condition distribution
of the primary covariate given the auxiliary covariate and can be applied to allow the rescue of
the incomplete data and implemented easily in practice.
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The rest of this paper is organized as follows. In Section 2, we propose an estimated es-
timating equation method for the additive hazards model by using auxiliary information. In
Section 3, we establish the large sample properties of the resultant estimators. We conduct sim-
ulation studies to evaluate the finite sample performance of the proposed method in Section 4.
The proposed method is illustrated with application to a real data set in Section 5. Some
concluding remarks are provided in Section 6.

2 Inference Procedure

Suppose that there is a random sample of n independent subjects from an underlying pop-
ulation. Let ˜Ti and Ci denote the potential failure time and censoring time for the ith subject,
respectively. Due to censoring, we always observe Ti = min{˜Ti, Ci}. Let Δi = I( ˜Ti ≤ Ci)
be the failure indicator. Let Wi = (XT

i , ZT
i )T denote a set of covariates which could be time-

dependent, where Xi is the primary exposure subject to missing and Zi = (Zi1, Zi2, · · · , Zip)T is
the remaining covariate vector which is observed completely. Assume that the hazard function
of ˜Ti associated with Wi takes the additive form:

λ(t|Wi) = λ0(t) + βTXi(t) + γTZi(t), (1)

where θ = (βT, γT)T is the regression parameter to be estimated and λ0(t) is an unspecified
baseline hazard function.

We use the indicator variable ηi to indicate whether or not the ith subject has the primary
covariate Xi precisely ascertained and assume that the missing mechanism for Xi is referred
as missing completely at random in the sense of Rubin[18]. Denote V = {i: ηi = 1} and
V = {i: ηi = 0} as the validation and nonvalidation sets, respectively. Note that the primary
covariate Xi is only observed in the validation set. Thus, the conventional method can be
conducted based on the validation set (see [14]). However, this method could be suffered from
the loss of efficiency. Let Ai denote the auxiliary covariate that is related and surrogate to
the primary covariate Xi. The auxiliary covariate is ascertained for all subjects under study.
Assume that, given Xi, Ai provides no additional information to regression model in the sense
that λ(t|Wi, Ai) = λ(t|Wi) for all t ≥ 0. Then, the observed data structure is {Ti, Δi, Zi, Xi, Ai}
if i ∈ V and otherwise {Ti, Δi, Zi, Ai}. We aim to provide the inference procedure by utilizing
the auxiliary covariate information to improve the study efficiency.

If the ith subject belongs to the validation set V , then Zi and Xi are observed and the
hazards function of ˜Ti takes the form as (1). Otherwise, using the argument of Prentice[2], Zhou
and Pepe[5], and Zhou and Wang[6], it can be verified that the hazard function for λ(t|Zi, Ai)
satisfies the induced hazards regression model as follows:

λ(t|Zi, Ai) ≡ lim
Δt↓0

[

1
Δt

Pr{t ≤ ˜Ti < t + Δt| ˜Ti ≥ t, Zi(t), Ai(t)}
]

= λ0(t) + γTZi(t) + βTE{Xi(t)| ˜Ti ≥ t, Zi(t), Ai(t)}.

Under the independent censoring assumption, conditioning on Wi, ˜Ti and Ci are indepen-
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dent. Furthermore, we can rewrite the induced model as

λ(t|Zi, Ai) = λ0(t) + γTZi(t) + βTE{Xi(t)|Yi(t) = 1, Zi(t), Ai(t)},

where Yi(t) = I(Ti ≥ t) is the at-risk process. For notational simplicity, there exists A∗
i such

that P{Xi(t) ≤ x|Ti ≥ t, Zi(t), Ai(t)} = P{Xi(t) ≤ x|Ti ≥ t, A∗
i (t)} for any x ∈ R. Thus, we

further have

λ(t|Zi, Ai) = λ0(t) + γTZi(t) + βTE{Xi(t)|Yi(t) = 1, A∗
i (t)}. (2)

Obviously, the induced hazard model (2) still maintains the structure of the additive hazards
regression. Denote W ∗

i (t) = Wi(t)ηi + [E{Xi(t)|Yi(t) = 1, A∗
i (t)}T, Zi(t)T]T(1 − ηi) and the

counting process for the ith subject by Ni(t) = ΔiI(Ti ≤ t). Based on (1) and (2), the process

Mi(t) ≡ Ni(t) −
∫ t

0

Yi(u){dΛ0(u) + θTW ∗
i (u)du}

is a local square integrable zero-mean martingale at the true parameter θ0 = (βT
0 , γT

0 )T(see [19]),
where Λ0(t) =

∫ t

0
λ(u)du is the unknown cumulative baseline hazards function. Consequently,

it is natural to obtain the Breslow-Aalen type estimator (see [20, 21]) for Λ0(t) with given θ:

˜Λ0(t; θ) =
∫ t

0

∑n
i=1{dNi(u) − Yi(u)θTW ∗

i (u)du}
∑n

j=1 Yj(u)
.

The parameter θ can be estimated from the following estimating equation

U(θ) ≡
n

∑

i=1

∫ τ

0

W ∗
i (t){dNi(t) − Yi(t)d˜Λ0(t; θ) − Yi(t)θTW ∗

i (t)dt} = 0,

or equivalently,

U(θ) =
n

∑

i=1

∫ τ

0

{W ∗
i (t) − E(t)}{dNi(t) − Yi(t)θTW ∗

i (t)dt} = 0,

where E(t) =
∑n

i=1 Yi(t)W ∗
i (t)/{∑n

i=1 Yi(t)} and τ is the end time of study.
Since U(θ) involves the unknown conditional expectation except the regression parameter,

in what follows we first seek an estimate for the conditional expectation and then construct
an estimated estimating function for U(θ). Assume that A∗

i is a d-vector continuous auxiliary
covariate. If the ith subject lies in the nonvalidation set V , we can estimate the conditional
expectation E{Xi(t)|Yi(t) = 1, A∗

i (t)} by using the method of Nadaraya[22] and Watson[23] as
follows:

̂Xi(t) ≡
∑

j∈V Yj(t)K{B−1(A∗
j − A∗

i )}Xj(t)
∑

j∈V Yj(t)K{B−1(A∗
j − A∗

i )}
,

where K(·) is a kernel function with bandwidth matrix B, which is d× d positive-definite, with
its element possibly depending on n. For simplicity, we only consider the situation in which B is
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a diagonal matrix with element at (l, l) denoted by bl. Then, replacing the unknown conditional
expectation by its estimated counterpart ̂Xi(t) in U(θ), we obtained an estimated estimating
equation, which is given by

̂U(θ) ≡
n

∑

i=1

∫ τ

0

{̂Wi(t) − ̂E(t)}{dNi(t) − Yi(t)θT
̂Wi(t)dt} = 0,

where ̂Wi(t) = Wi(t)ηi + [ ̂Xi(t)T, Zi(t)T]T(1 − ηi) and ̂E(t) =
∑ n

i=1 Yi(t)̂Wi(t)
∑ n

i=1 Yi(t)
. The proposed

estimator, denoted by ̂θE , which solves ̂U(θ) = 0, can be explicitly obtained as follows,

̂θE =

[

n
∑

i=1

∫ τ

0

Yi(t){̂Wi(t) − ̂E(t)}⊗2dt

]−1 [

n
∑

i=1

∫ τ

0

{̂Wi(t) − ̂E(t)}dNi(t)

]

,

where a⊗2 = aaT for a column vector a. Furthermore, Λ0(t) can be estimated by ̂Λ0(t; ̂θE),
where

̂Λ0(t; θ) =
∫ t

0

∑n
i=1{dNi(u) − Yi(u)θT

̂Wi(u)du}
∑n

j=1 Yj(u)
.

Note that ̂Λ0(t; ̂θE) may not be monotonicity in t. Define ̂Λ∗
0(t, ̂θE) = maxs≤t

̂Λ0(s, ̂θE)
to ensure the monotonicity. Using the similar arguments in [14], we have that ̂Λ∗

0(t, ̂θE) −
̂Λ0(t; ̂θE) = op(n−1/2) uniformly over t.

3 Asymptotic Properties

For simplicity, we introduce some notation. For a vector a, define a⊗0 = 1, a⊗1 = a, ||a|| =
supi |ai|. For a matrix D = (dij), define ||D|| = supi,j |dij |. For k = 0, 1, define ̂S(k)(t) =
n−1

∑n
i=1 Yi(t)̂W⊗k

i (t), S(k)(t) = n−1
∑n

i=1 Yi(t)W ∗
i
⊗k(t), s(k)(t) = E{Y (t)W ∗⊗k(t)}, e(t) =

s(1)(t)/s(0)(t). For given t, let F (y, z) be the joint distribution of (Y (t), A∗(t)) and A be the
domain of A∗(t). Denote fA∗(z) = ∂F (1, z)/∂z and ρ = limn→∞ v/n, where v is the cardinality
of the validation set V . For j ∈ V , let

Qj(θ) =
∫ τ

0

[

E{Wj(t)|Yj(t) = 1, A∗
j} − e(t)

]

Yj(t)[Wj(t) − E{Wj(t)|Yj(t) = 1, A∗
j}]Tθdt,

Qv
j (θ) =

1
v

∑

i∈V

∫ τ

0

|B|−1 {W ∗
i (t) − e(t)} Yi(t)Yj(t)K{B−1(A∗

j − A∗
i )}

fA∗(a)
{Wj(t) − W ∗

i (t)}Tθdt

for any a ∈ A, where v = n − v.

We impose the following conditions through our derivations:

C1.
∫ τ

0 λ0(t)dt < ∞.

C2. P{Y (t) = 1|A∗ = a} > 0 for any a ∈ A.

C3. E
{

supt∈[0,τ ] ||Y (t)W ∗⊗k(t)||
}

< ∞ for k = 0, 1.
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C4. Let K(·) be a multivariate symmetric kernel function, which is non-negative and uniformly
bounded with a compact bounded support satisfying that

∫

K(u)du = 1 and
∫

K2(u)du < ∞.

Furthermore, the kernel function K(·) has order α0 in the sense that

α0 ≡ inf
{

α > d:
∫

Rd

uαK(u)du �= 0
}

,

where uα = uα1
1 uα2

2 · · ·uαd

d , |α| = α1 +α2 + · · ·+αd, u = (u1, u2, · · · , ud), α = (α1, α2, · · · ,
αd), and αl is non-negative integer. The bandwidth B satisfies that ||B|| → 0,

√
n||B||α0 →

0, log n√
n||B||d → 0.

C5. For given t, let F (y, z) be the joint distribution of (Y (t), A∗(t)), G(y, z, x) be the joint dis-
tribution of (Y (t),A∗(t), X(t)) and H(y, z, w) be the joint distribution of (Y (t), A∗(t),W (t)).
Suppose that fA∗(z) = ∂F (1,z)

∂z , g(z, x) = ∂2G(1,z,x)
∂z∂x and h(z, w) = ∂2H(1,z,w)

∂z∂w have the α0th
continuous derivation with respect to every component of z.

C6. supt∈[0,τ ] ||W v(t)|| = OP (1), where

W v(t) =
√

v

⎧

⎨

⎩

|B|−1 1
v

∑

j∈V

Yj(t)K{B−1(A∗
j − a)}Wj(t) − fA∗(a)E[W (t)|Y (t), A∗ = a]

⎫

⎬

⎭

for any a ∈ A.

Remark 3.1 Conditions C1–C3 are standard assumptions in survival analysis. Condi-
tion C4 is on the kernel function. Specifically, we can choose the bandwidth B = 2σ̂An−1/3 for
d = 1 and α0 = 2, where σ̂A is the sample standard deviation of A. Condition C5 is a technical
assumption for proving. Condition C6 is imposed to simplify the derivations of the asymptotic
properties, which can be satisfied if the class of functions {|B|−1Yj(t)K{B−1(A∗

j − a)}Wj(t): a ∈
A, j = 1, 2, · · · , n; t ∈ [0, τ ]} is Donsker.

In the following, we use notation →p, →a.s., and →d to denote the convergence in proba-
bility, convergence in probability 1 and convergence in distribution, respectively. Denote the
determinant of matrix B by |B|. Let b = (b1, b2, · · · , bd)′ and α∗

0 = (α∗
01, α

∗
02, · · · , α∗

0d)
′ such that

each α∗
0l is non-negative integer and |α∗

0| ≡
∑d

l=1 α∗
0l = α0. For d-vector u = (u1, u2, · · · , ud)

and v = (v1, v2, · · · , vd), define uv =
∏d

l=1 uvl

l and uv = (u1v1, u2v2, · · · , udvd). To derive our
theorems, we need the following lemma.

Lemma 3.2 Under conditions C4–C5,

sup
t∈[0,τ ]

||Xi(t) − ̂Xi(t)|| −→p 0 for i ∈ V .

Proof Let A be the domain of the process A∗(t) for t ∈ [0, τ ]. Let Pn be the empirical
measure from the n i.i.d. observations and P be the corresponding probability measure. For
fixed a ∈ A, let

Ln(t, a) = Pn{|B|−1K{B−1(A∗ − a)}Y (t)X(t)}.
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Note that the stochastic process A∗(t), Y (t), X(t) have bounded total variation over t ∈
[0, τ ]. It follows from Lemma 9.10 in [24] that they are VC-subgraph with finite VC-index.
Using the similar argument used in [25], thus, we obtain that

sup
t∈[0,τ ],a∈A

||Ln(t, a) − P{|B|−1K{B−1(A∗ − a)}Y (t)X(t)}|| = Op

(

log n√
n||B||d

)

.

Furthermore, under condition C5 and using the Taylor expansion, we have

P{|B|−1K{B−1(A∗ − a)}Y (t)X(t)}
=

∫

(b1b2 · · · bd)−1K{B−1(z − a)}g(z, x)xdzdx

=
∫

K(u)g(bu + a, x)xdudx

=
∫

K(u)

⎡

⎣

α0−1
∑

|α|=0

{

∂αg(a, x)
∂uα

1
α!

bαuα

}

+
∂α∗

0g(a∗, x)
∂uα∗

0

1
α0!

bα∗
0uα∗

0

⎤

⎦xdudx

=
∫

g(a, x)xdx + O(bα∗
0 )

= fA∗(a)
∫

g(a, x)
fA∗(a)

xdx + O(||B||α0 )

= fA∗(a)E {X(t)|Y (t) = 1, A∗ = a} + O(||B||α0 ),

where a∗ is the line segment of a and bu.
Therefore, we can conclude that by condition C4,

sup
t∈[0,τ ],a∈A

|Ln(t, a) − fA∗(a)E{X(t)|Y (t) = 1, A∗ = a}| −→p 0.

Denote Qn(t, a) = Pn{|B|−1K{B−1(A∗ − a)}Y (t)}. Similarly, we can conclude

sup
t∈[0,τ ],a∈A

|Qn(t, a) − fA∗(a)| −→p 0.

Consequently, it follows straightforwardly that

sup
t∈[0,τ ],a∈A

∣

∣

∣

∣

Ln(t, a)
Qn(t, a)

− E{X(t)|Y (t) = 1, A∗ = a}
∣

∣

∣

∣

−→p 0.

Furthermore, note that

̂Xi(t) =
|B|−1v−1

∑

j∈V Yj(t)K{B−1(A∗
j − A∗

i )}Xj(t)
|B|−1v−1

∑

j∈V Yj(t)K{B−1(A∗
j − A∗

i )}
,

then we can conclude
sup

t∈[0,τ ]

||Xi(t) − ̂Xi(t)|| →p 0, for i ∈ V .

Thus, the proof of Lemma 3.2 has been done.
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Furthermore, we can conclude that

sup
t∈[0,τ ]

||̂Wi(t) − W ∗
i (t)|| →p 0, for i ∈ V . (3)

According to the definition of ̂S(k)(t), S(k)(t), and s(k), we also have that

sup
t∈[0,τ ]

||̂S(k)(t) − S(k)(t)|| →p 0, for k = 0, 1.

On the other hand, it follows from the uniformly strong law of large numbers that

sup
t∈[0,τ ]

||S(k)(t) − s(k)(t)|| →a.s. 0, for k = 0, 1.

Immediately, we have that

sup
t∈[0,τ ]

||̂S(k)(t) − s(k)(t)|| →p 0, for k = 0, 1,

and by Slutsky Theorem, we obtain

sup
t∈[0,τ ]

|| ̂E(t) − e(t)|| →p 0. (4)

Analogously, using the method of Taylor expansion to fA∗(z) and h(z, w), under condition
C4 and definition of W ∗

i (t) for i ∈ V , we have that

v−1
∑

j∈V

|B|−1Yj(t)K{B−1(A∗
j − a)} →p fA∗(a) (5)

for all a ∈ A and

v−1
∑

j∈V

|B|−1Yj(t)K{B−1(A∗
j − a)}W ∗

i (t) →p fA∗(a)E{W (t)|Y (t) = 1, A∗ = a} (6)

for any a ∈ A and i ∈ V .
Furthermore, under the definition of ̂Wi(t) and conditions C3 and C6, by (5) and (6), we

obtain

n−1/2
n

∑

i=1

∫ τ

0

{W ∗
i (t) − e(t)}Yi(t){W ∗

i (t) − ̂Wi(t)}Tθ0dt

= −n−1/2
∑

i∈V

( ∫ τ

0

{W ∗
i (t) − e(t)}
fA∗(a)

Yi(t)

×1
v

∑

j∈V

|B|−1K{B−1(A∗
j − A∗

i )}Yj(t){Wj(t) − W ∗
i (t)}Tθ0dt

)

(7)

for any a ∈ A.

Lemma 3.3 Under conditions C1–C6,

n−1/2
̂U(θ0) −→d N{0, (1 − ρ)Σ1(θ0) + ρΣ2(θ0)}.
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Proof The main idea is that we decompose n−1/2
̂U(θ0) as two independent parts and use

the martingale central limit theorem. Rewrite

n−1/2
̂U(θ0) = n−1/2

n
∑

i=1

∫ τ

0

{

̂Wi(t) − ̂E(t)
}

dMi(t)

+n−1/2
n

∑

i=1

∫ τ

0

{

̂Wi(t) − ̂E(t)
}

Yi(t)dΛ0(t)

+n−1/2
n

∑

i=1

∫ τ

0

{

̂Wi(t) − ̂E(t)
}

Yi(t){W ∗
i (t) − ̂Wi(t)}Tθ0dt

≡ B1n + B2n + B3n. (8)

Furthermore, we rewrite

B1n = n−1/2
n

∑

i=1

∫ τ

0

{

̂Wi(t) − W ∗
i (t) + W ∗

i (t) − e(t) + e(t) − ̂E(t)
}

dMi(t).

Note that n−1/2
∑n

i=1

∫ τ

0 {̂Wi(t) − W ∗
i (t)}dMi(t) is a square integrable martingale, which

converges in probability to zero by the Lenglart inequality (see [26]). Analogously,

n−1/2
n

∑

i=1

∫ τ

0

{e(t) − ̂E(t)}dMi(t)

also converges in probability to zero. Hence,

B1n = n−1/2
n

∑

i=1

∫ τ

0

{W ∗
i (t) − e(t)} dMi(t) + oP (1). (9)

We also rewrite

B3n = n−1/2
n

∑

i=1

∫ τ

0

{

̂Wi(t) − W ∗
i (t) + W ∗

i (t) + e(t) − ̂E(t) − e(t)
}

Yi(t){W ∗
i (t)−̂Wi(t)}Tθ0dt.

By (3), (5), (6), and condition C6, we have that

n−1/2
n

∑

i=1

∫ τ

0

{̂Wi(t) − W ∗
i (t)}Yi(t){W ∗

i (t) − ̂Wi(t)}Tθ0dt = oP (1).

Then, using (4), (5), (6), and condition C6, we have also that

n−1/2
n

∑

i=1

∫ τ

0

{e(t) − ̂E(t)}Yi(t){W ∗
i (t) − ̂Wi(t)}Tθ0dt = oP (1).

Consequently, by (7) and the definition of Qv
j (θ), we obtain

B3n = −n−1/2 v

v

∑

j∈V

Qv
j (θ0) + oP (1).
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Finally, according to the definition of Qj(θ), we conclude that

n−1/2 v

v

∑

j∈V

{Qv
j (θ0) − Qj(θ0)} −→p 0.

Thus,

B3n = −n−1/2 v

v

∑

j∈V

Qj(θ0) + oP (1). (10)

Obviously, noting B2n = 0 and combining (9) and (10), we derive (8) as follows:

n−1/2
̂U(θ0) = n−1/2

n
∑

i=1

∫ τ

0

{W ∗
i (t) − e(t)} dMi(t) − n−1/2 v

v

∑

j∈V

Qj(θ0) + oP (1)

= n−1/2
∑

i∈V

∫ τ

0

{W ∗
i (t) − e(t)} dMi(t)

+n−1/2
∑

j∈V

[∫ τ

0

{

W ∗
j (t) − e(t)

}

dMj(t) − v

v
Qj(θ0)

]

+ oP (1).

Note that the first term is a martingale, which converges to a mean-zero normal distribu-
tion with covariance (1 − ρ)Σ1(θ0). Similarly, the second one also converges to a mean-zero
normal distribution with covariance ρΣ2(θ0) by noting that E{ v

v Qj(θ0)} = 0. The lemma fol-
lows immediately from that two terms are independent because they are summations over the
nonvalidation and validation sets, respectively.

Theorem 3.4 Under conditions C1–C6, ̂θE converges to θ0 in probability.

Proof We use Theorem 1 in [27] to prove the consistency of ̂θE by verifying the following
conditions.

(i) n−1∂ ̂U(θ)/∂θ exists and is continuous in an open neighborhood of θ0;

(ii) n−1∂ ̂U(θ)/∂θ converges in probability to Σ(θ), uniformly in an open neighborhood of θ0;
Furthermore, every element of Σ(θ) is a continuous function of θ in the neighborhood of
θ0 and Σ−1(θ0) exists;

(iii) n−1∂ ̂U(θ0)/∂θ is negative-definite with probability going to one;

(iv) n−1
̂U(θ0) −→p 0.

First, we have

−n−1 ∂ ̂U(θ)
∂θ

= n−1
n

∑

i=1

∫ τ

0

{

̂Wi(t) − ̂E(t)
}

̂Wi(t)TYi(t)dt.

Thus, (i) is satisfied. Second, rewrite

−n−1 ∂ ̂U(θ)
∂θ

= n−1
n

∑

i=1

∫ τ

0

{

̂Wi(t) − W ∗
i (t) + e(t) − ̂E(t) + W ∗

i (t) − e(t)
}⊗2

Yi(t)dt.
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Combining (3), (4), and condition C3, after some algebraic manipulations, we can further
conclude that

−n−1 ∂ ̂U(θ)
∂θ

= n−1
n

∑

i=1

∫ τ

0

{W ∗
i (t) − e(t)}⊗2

Yi(t)dt + oP (1).

It follows from the strong law of large numbers that

−n−1 ∂ ̂U(θ)
∂θ

−→p E

[∫ τ

0

{W ∗(t) − e(t)}⊗2
Y (t)dt

]

= Σ(θ). (11)

Thus, (ii) and (iii) are verified. Finally, (iv) also holds by Lemma 3.3. Hence, ̂θE converges in
probability to θ0.

Theorem 3.5 Under conditions C1–C6,
√

n(̂θE −θ0) is asymptotically normal with mean
zero and covariance matrix Σ(θ0)−1{(1 − ρ)Σ1(θ0) + ρΣ2(θ0)}{Σ(θ0)−1}T, where

Σ(θ) = E

[∫ τ

0

{W ∗(t) − e(t)}⊗2
Y (t)dt

]

,

Σ1(θ) = E

[∫ τ

0

{W ∗(t) − e(t)}⊗2 Y (t)dΛ0(t)
]

+ E

[∫ τ

0

{W ∗(t) − e(t)}⊗2 Y (t)θTW ∗(t)dt

]

,

Σ2(θ) = E

[∫ τ

0

{W (t) − e(t)} dM(t) − 1 − ρ

ρ
Q(θ)

]⊗2

.

Proof Using Taylor expansion, we have

n−1/2
̂U(θ0) =

{

−n−1 ∂ ̂U(θ)
∂θ

|θ=θ0

}

n1/2(̂θE − θ0) + oP (1).

It follows from Lemma 3.3, (11), and the consistency of ̂θE that
√

n(̂θE−θ0) is asymptotically
normal with mean zero and covariance matrix Σ(θ0)−1{(1 − ρ)Σ1(θ0) + ρΣ2(θ0)}{Σ(θ0)−1}T.
Thus, we complete the proof of Theorem 3.5.

4 Simulation Studies

In this section, we examined the finite sample properties of ̂θE via simulation studies. We
compared ̂θE with two estimators. The first one is the validation set estimator, denoted by ̂θV ,
which is obtained by using method (see [14]) based only on the validation data. The other one
is the naive estimator, denoted by ̂θN , which is the estimator by using the auxiliary covariate to
replace the true primary covariate which is subject to missing. We compared these estimators
under different levels of censoring proportions, validation fractions, and correlations between
auxiliary and primary.

We generated the survival times ˜T from the hazard model λ(t|Z, X) = 2 + β0X + γ0Z,

where both X and Z were independently simulated from Unif(0, 2). We construct the auxiliary
covariate through A = X + e, where e ∼ N(0, σ2). Here σ2 is the parameter which controls the
strength of the association between X and A. We generated η from the Bernoulli distribution
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with success probability ρ and the censoring time from Unif(0, c). We set θT
0 = (βT

0 , γT
0 ) = (2, 2)

and considered two different strength of association σ = 0.2 or 1, coupled with ρ = 0.8 and
0.5. The constant c was chosen to yield a censoring rate of 30% or 60%. Each configuration
was replicated 1000 times under the sample size n = 200. We use the Epanechnikov kernel
function[28] with bandwidth b = 2σ̂An−1/3 and σ̂A is the sample standard deviation of A, which
satisfies the bandwidth conditions. The corresponding results were summarized in Table 1.
The column “Cen.” is the censoring rate. “ρ” is the validation fraction. “σ” is the strength
of association between primary and auxiliary. The column “Est” is the average value of the
estimates. The sample standard derivation of the estimates is given in the column “SD”. The
column “SE” gives the average of the estimated standard errors and the column “95% CP”
is the nominal 95% confidence interval coverage of the true parameter using the estimated
standard errors.

Table 1 Simulation results based on the hazard model λ(t|Z, X) = 2 + βT
0 X + γT

0 Z

Cen. β0 = 2 γ0 = 2

rate ρ σ Method Est SD SE 95%CP Est SD SE 95%CP

30% 0.8 Validation 2.083 0.991 0.972 0.945 2.053 0.967 0.971 0.953

0.2 Naive 2.057 0.866 0.865 0.949 2.043 0.852 0.865 0.961

Proposed 2.065 0.869 0.865 0.945 2.043 0.852 0.854 0.954

1 Naive 1.305 0.697 0.683 0.791 2.043 0.850 0.865 0.959

Proposed 2.030 0.940 0.922 0.944 2.047 0.853 0.855 0.955

0.5 Validation 2.090 1.278 1.239 0.946 2.021 1.232 1.235 0.956

0.2 Naive 2.054 0.866 0.864 0.950 2.042 0.852 0.865 0.961

Proposed 2.074 0.876 0.898 0.948 2.042 0.852 0.876 0.955

1 Naive 0.830 0.558 0.546 0.420 2.046 0.852 0.865 0.960

Proposed 1.857 1.062 1.066 0.949 2.049 0.851 0.878 0.962

60% 0.8 Validation 2.164 1.316 1.273 0.945 2.111 1.244 1.266 0.957

0.2 Naive 2.133 1.136 1.132 0.942 2.115 1.117 1.130 0.955

Proposed 2.142 1.141 1.132 0.948 2.115 1.116 1.124 0.958

1 Naive 1.348 0.900 0.893 0.853 2.113 1.111 1.129 0.955

Proposed 2.120 1.243 1.213 0.940 2.120 1.116 1.124 0.960

0.5 Validation 2.220 1.690 1.616 0.954 2.082 1.583 1.611 0.962

0.2 Naive 2.129 1.133 1.131 0.944 2.114 1.117 1.130 0.957

Proposed 2.152 1.147 1.180 0.950 2.114 1.116 1.170 0.959

1 Naive 0.847 0.709 0.716 0.603 2.113 1.113 1.129 0.952

Proposed 1.991 1.409 1.442 0.948 2.118 1.116 1.175 0.970
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From Table 1, we make the following observations: (i) All the estimates for γ0 are essentially
unbiased. For β0, both ̂βV and ̂βE are virtually unbiased. However, ̂βN is biased; (ii) It is
natural that ̂θE is more efficient than ̂θV , since ̂θE use more information; (iii) When σ is large
which means that A is less informative about X , ̂βE is less accurate in estimating β0. This
bias, however, decreases as we increase the sample size to n = 500 (results not shown); (iv) The
coverage rates are around the nominal level of 95%.

Table 2 compares the relative efficiency of ̂θE versus ̂θV under different censoring propor-
tions, which are calculated through {SD(̂θV )/SD(̂θE)}2, where SD(̂θ) is the sample standard
derivation of estimate ̂θ. The column “σ” is the strength of association between primary and
auxiliary covariates. “Cen.” is the censoring rate. “ρ” is the validation fraction. “SD” is the
sample standard derivation of the estimate. “RE” is relative efficiency of the proposed method
over the validation set method. We observed that based on Table 2 when the validation frac-
tion decreases, the efficiency gain of ̂θE relative to ̂θV increases. This suggests that when the
validation fraction is small, using our proposed method is even more beneficial compared to the
estimator based on the validation set only.

Table 2 The efficiency comparison between the proposed estimator
̂θE and the validation set estimator ̂θV with σ = 0.2

Cen. SD (β0 = 2) SD (γ0 = 2)

rate ρ Validation Proposed RE Validation Proposed RE

30% 0.8 0.991 0.869 1.301 0.967 0.852 1.288

0.5 1.278 0.876 2.128 1.232 0.852 2.091

0.2 2.111 0.878 5.780 2.048 0.852 5.780

60% 0.8 1.316 1.141 1.330 1.244 1.116 1.243

0.5 1.690 1.147 2.171 1.583 1.116 2.012

0.2 2.767 1.146 5.828 2.673 1.116 5.738

5 The Primary Biliary Cirrhosis Data

We apply the proposed method to the data from the Mayo Clinic trial in the primary bil-
iary cirrhosis (PBC) of the liver. The PBC is a chronic and fatal liver disease characterised by
inflammatory destruction of the small bile ducts within the liver, which finally leads to cirrhosis
of the liver. The cause of PBC is unknown, but it is generally thought to be an autoimmune dis-
ease because of the presence of autoantibodies. About 90% of patients with PBC are women.
Patients often present abnormalities in their blood tests, such as elevated and gradually in-
creasing serum bilirubin. In this randomised clinical trial, a total of 312 PBC patients met the
eligibility criteria. The days from registration to the earlier of death, transplantation, or study
analysis time were recorded. The covariates of interest include serum cholesterol level (Chol),
treatment (Trt), and patients’ sex (Sex). We fit the data using the following model:

λ(t|Z, X) = λ0(t) + βXlog(Chol) + γ01ZTrt + γ02ZSex,
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where β, γ01, and γ02 are the unknown parameters.
A clinical background description and a more extend discussion for the trial and the covari-

ates recorded can be found in [29] and [30].
About 9% outcomes of cholesterol were missing in this data set. Removing those obser-

vations could lead to efficiency loss. Our exploratory data analysis shows strong correlation
between cholesterol and bilirubin (Bili), which is observed completely. Therefore, we use the
serum bilirubin as the auxiliary covariate for cholesterol. We follow the literature clinical study
and take the logarithmic transformation of cholesterol and bilirubin, respectively.

Table 3 displays the analysis results from the proposed method and the validation set
method. We did not find any significant difference across the treatment group. In addition, it
can be seen that patients associated with lower serum cholesterol level or the female could be
expected to live longer. These findings coincide with previous analysis in the literature. On
the other hand, the proposed method produced more precise assessment of the covariate effect
of the serum cholesterol level, compared with the validation set method, which discarding the
incomplete data could lead to the loss of efficiency.

Table 3 Analysis results for the PBC data

Method Covariate Est SE 95%CI p-value

Validation Trt 0.001 0.013 (−0.024, 0.025) 0.955

Sex −0.052 0.025 (−0.102, −0.004) 0.036

log(Chol) 0.049 0.021 (0.008, 0.090) 0.019

Proposed Trt −0.003 0.012 (−0.026, 0.020) 0.803

Sex −0.055 0.030 (−0.113, 0.003) 0.063

log(Chol) 0.061 0.019 (0.023, 0.099) 0.002

6 Concluding Remarks

In this article, under the framework of the additive hazards model, we proposed an esti-
mated estimating equation method for the survival data with continuous auxiliary information
to further improve study efficiency. A key feature of this method is that it does not require
to specify the association between the missing covariate and the auxiliary covariate. The re-
sultant estimates were shown to be consistent and asymptotically normal. Simulation studies
demonstrated that the proposed method works well with moderate sample size and that the
resulting estimator outperforms the validation set estimator. The proposed variance estimator
is also viable in practice. When the auxiliary covariate is more informative about the primary
exposure, the proposed estimator is more efficient.

Our additional simulation study in shows that the proposed method is feasible when the
dimension of A∗ is two. However, the nonparametric kernel smoothing would suffer from the
curse of dimensionality when the dimension is larger. The unstability of the nonparametric
kernel smoothing estimation may further deteriorate the behaviors of the proposed method.
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For higher dimension d, the techniques such as dimension reduction or parametric modeling
could be considered (see [31]).
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