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We consider the additive hazards regression analysis by utilising auxiliary covariate information to improve
the efficiency of the statistical inference when the primary covariate is ascertained only for a randomly
selected subsample. We construct a martingale-based estimating equation for the regression parameter and
establish the asymptotic consistency and normality of the resultant estimator. Simulation study shows that
our proposed method can improve the efficiency compared with the estimator which discards the auxiliary
covariate information. A real example is also analysed as an illustration.
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1. Introduction

The Cox proportional hazards model (Cox 1972) has been widely used for the analysis of survival
data. In the case of violating the proportional hazards assumption, the additive hazards model is
a useful alternative (see, e.g. Breslow and Day 1980, 1987; Cox and Oakes 1984; Thomas 1986;
and Lin and Ying 1994). Both of these two models can assess the covariate effect on the hazard
function and their statistical interpretations can complement with each other in practice.

In many biomedical studies, it is often expensive to ascertain the primary exposure, due to
the reason of technical difficulty or budget limitations. One useful accommodating approach
is to measure some auxiliary covariate for primary exposure on all subjects, while conducting
ascertainments on the primary exposure only for a randomly selected subsample. The auxiliary
information can be obtained more easily or less expensively. Consequently, a natural and important
question is how to make use of the auxiliary information to improve the statistical inference. Some
proposed methods have been developed for this issue. For example, Pepe and Fleming (1991)
proposed an implemented method which is nonparametric with respect to the mismeasurement
process. Lin and Ying (1993) provided a general solution to survival data with missing covariate.
Zhou and Pepe (1995) proposed an estimated partial likelihood by using both validation and
nonvalidation observations to enhance efficiency. Greene and Cai (2004) proposed using the
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102 X. Shi et al.

simulation-extrapolation method to handle measurement errors for multivariate failure time data
when a validation set is not available. Liu, Zhou, and Cai (2009) and Liu, Wu, and Zhou (2010)
proposed the statistical inference procedures for multivariate survival data by utilising auxiliary
information for the case of discrete and continuous auxiliary covariates, respectively. Fan and
Wang (2009) also considered this issue under the framework of the common baseline hazard
function by adopting the kernel smoothing technique.

The aforementioned studies are all based on the framework of the proportional hazards model.
For additive hazards model, some researches on how to further utilise auxiliary information have
been conducted. For example, Kulich and Lin (2000) proposed a method based on correcting of
the pseudo-score function for additive hazards model, which produces asymptotically unbiased
estimation. However, the corrected pseudo-score method requires the conditional moments of
surrogate covariate given the true covariate to be correctly specified. Jiang and Zhou (2007)
proposed an updated pseudo-score method, which relaxed the moment conditions and thus avoided
the possibility of modelling miss-specifications. However, their updated pseudo-score method
involves extensive computation.

In this paper, we proposed a method by implementing the missing items in estimating equations
with their empirical estimators based on auxiliary information and then obtaining an estimated
estimating equation for the regression parameter. Our method does not need to specify the form
of baseline hazard function. The auxiliary covariate could be mismeasured surrogate to the true
covariate, or any covariate that is informative about the true covariate. The proposed method is
nonparametric with respect to the conditional distribution of the primary covariate given auxiliary.
Our proposed method can be used as a remedy for this kind of incomplete data and can also be
implemented easily in practice.

The rest of this paper is organised as follows. In Section 2, we propose an estimated equation
method for the additive hazards model by using auxiliary information. In Section 3, we establish
the large sample properties of the resultant estimators. We conduct simulation studies to evaluate
the finite sample performance of the proposed method in Section 4. The proposed method is
illustrated with application to a real data set in Section 5. Some concluding remarks are provided
in Section 6. We delineate the proofs of the asymptotic results in the appendix.

2. Inference procedure

Suppose that there is a random sample of n independent subjects from an underlying population.
For the ith subject (i = 1, . . . , n), let T̃i and Ci denote the failure time and the censoring time,
respectively. Due to censoring, we always observe Ti = min{T̃i, Ci}. Let �i = I(T̃i ≤ Ci) be the
failure indicator. Let Wi = (XT

i , ZT
i )T denote a set of covariates which could be time-dependent,

where Xi is the primary exposure subject to missing and Zi = (Zi1, . . . , Zip)
T is the remaining

covariate vector which is observed completely. Assume that the hazard function of T̃i associated
with Wi takes the additive form:

λ(t|Wi) = λ0(t) + βTXi(t) + γ TZi(t), (1)

where θ = (βT, γ T)T is the regression parameter to be estimated and λ0(t) is an unspecified
baseline hazard function.

We use the indicator variable ηi to indicate whether or not the ith subject has the primary
covariate Xi precisely ascertained. Denote V = {i : ηi = 1} and V̄ = {i : ηi = 0} as the validation
and nonvalidation sets, respectively. Note that the primary covariate Xi is only observed in the
validation set. Thus, the conventional method can be conducted based on the validation set (Lin
and Ying 1994). However, appropriately utilising auxiliary information could lead to remarkable
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efficiency enhancement. Let Ai denote the auxiliary covariate that is related and surrogate to the
primary covariate Xi. The auxiliary covariate is ascertained for all subjects under study. Assume
that conditional on Xi, Ai provides no additional information to regression model in the sense that
λ(t|Wi, Ai) = λ(t|Wi) for all t ≥ 0. Then, the observed data structure is {Ti, �i, Zi, Xi, Ai} if i ∈ V
and otherwise {Ti, �i, Zi, Ai}. We aim to provide the inference procedure by utilising the auxiliary
covariate information to improve the study efficiency.

If the ith subject belongs to the validation set V , then Zi and Xi are observed and the hazards
function of T̃i takes the form as Equation (1). Otherwise, using the argument of Prentice (1982)
and Zhou and Pepe (1995), it can be verified that the hazard function for λ(t|Zi, Ai) satisfies the
induced hazards regression model as follows:

λ(t|Zi, Ai) ≡ lim
�t↓0

[
1

�t
Pr{t ≤ T̃i < t + �t|T̃i ≥ t, Zi(t), Ai(t)}

]

= λ0(t) + γ TZi(t) + βTE{Xi(t)|T̃i ≥ t, Zi(t), Ai(t)}.

Under the independent censoring assumption that, conditioning on Wi, T̃i and Ci are
independent, we can rewrite the induced model as

λ(t|Zi, Ai) = λ0(t) + γ TZi(t) + βT E{Xi(t)|Yi(t) = 1, Zi(t), Ai(t)},
where Yi(t) = I(Ti ≥ t) is the at-risk process. For notational simplicity, let P{Xi(t) ≤ x|Ti ≥
t, Zi(t), Ai(t)} = P{Xi(t) ≤ x|Ti ≥ t, A∗

i (t)} for any x ∈ R. Thus, we further have

λ(t|Zi, Ai) = λ0(t) + γ TZi(t) + βTE{Xi(t)|Yi(t) = 1, A∗
i (t)}. (2)

Obviously, the induced hazard model (2) still maintains the structure of the additive haz-
ards regression. Denote W∗

i (t) = Wi(t)ηi + [E{Xi(t)|Yi(t) = 1, A∗
i (t)}T, Zi(t)T]T(1 − ηi) and the

counting process for the ith subject by Ni(t) = �iI(Ti ≤ t). Based on Equations (1) and (2), the
process

Mi(t) ≡ Ni(t) −
∫ t

0
Yi(u){d�0(u) + θTW∗

i (u) du}

is a local square integrable zero-mean martingale at the true parameter θ0 = (βT
0 , γ T

0 )T (Fleming
and Harrington 1991), where �0(t) = ∫ t

0 λ(u) du is the unknown cumulative baseline hazards
function. Consequently, it is natural to obtain the Breslow (1972) and Aalen (1989) type estimator
for �0(t) with given θ :

�̃0(t; θ) =
∫ t

0

∑n
i=1{dNi(u) − Yi(u)θTW∗

i (u) du}∑n
j=1 Yj(u)

.

The parameter θ can be estimated from the following estimating equation:

U(θ) ≡
n∑

i=1

∫ τ

0
W∗

i (t){dNi(t) − Yi(t) d�̃0(t; θ) − Yi(t)θ
TW∗

i (t) dt} = 0,

or equivalently,

U(θ) =
n∑

i=1

∫ τ

0
{W∗

i (t) − E(t)}{dNi(t) − Yi(t)θ
TW∗

i (t) dt} = 0,

where E(t) = ∑n
i=1 Yi(t)W∗

i (t)/
∑n

i=1 Yi(t) and τ is the end time of study.
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104 X. Shi et al.

Since U(θ) involves the unknown conditional expectation except the regression parameter, in
what follows we first seek an estimate for the conditional expectation and then construct an esti-
mated estimating function for U(θ). Assume that A∗

i is categorical variable with finitely possible
values am (m = 1, . . . , q) and has the identical distribution P(A∗

i = am) = pm, m = 1, . . . , q, such
that

∑q
m=1 pm = 1. If the ith subject lies in the nonvalidation set V̄ , we can estimate the condi-

tional expectation E{Xi(t)|Yi(t) = 1, A∗
i (t)} by using the method of Nadaraya (1964) and Watson

(1964),

X̂i(t) ≡
∑

j∈V Yj(t)I{A∗
j = A∗

i }Xj(t)∑
j∈V Yj(t)I{A∗

j = A∗
i }

.

Then, replacing the unknown conditional expectation by its estimated counterpart X̂i(t) in U(θ),
we obtained an estimated estimating equation, which is given by

Û(θ) ≡
n∑

i=1

∫ τ

0
{Ŵi(t) − Ê(t)}{dNi(t) − Yi(t)θ

TŴi(t) dt} = 0.

The proposed estimator, denoted by θ̂E , which solves Û(θ) = 0, can be explicitly obtained as
follows,

θ̂E =
[

n∑
i=1

∫ τ

0
Yi(t){Ŵi(t) − Ê(t)}⊗2 dt

]−1 [
n∑

i=1

∫ τ

0
{Ŵi(t) − Ê(t)} dNi(t)

]
,

where Ŵi(t) = Wi(t)ηi + [X̂i(t)T, Zi(t)T]T(1 − ηi), Ê(t) = ∑n
i=1 Yi(t)Ŵi(t)/

∑n
i=1 Yi(t), and

a⊗2 = aaT for a column vector a. Furthermore, �0(t) can be estimated by �̂0(t; θ̂E), where

�̂0(t; θ) =
∫ t

0

∑n
i=1{dNi(u) − Yi(u)θTŴi(u) du}∑n

j=1 Yj(u)
.

3. Asymptotic properties

For simplicity, we introduce some notations. For a vector a, define a⊗0 = 1, a⊗1 =
a, ‖a‖ = supi |ai|. For a matrix A = (aij), define ‖A‖ = supi,j |aij|. For k = 0, 1, define

Ŝ(k)(t) = n−1 ∑n
i=1 Yi(t)Ŵ

⊗k
i (t), S(k)(t) = n−1 ∑n

i=1 Yi(t)W∗
i

⊗k(t), s(k)(t) = E{Y(t)W∗⊗k(t)}.
Denote Ham(t) = P(Y(t) = 1|A∗ = am) and ρ = limn→∞ v/n, where v is the cardinality of the
validation set V . For j ∈ V , let

Qj(θ) =
∫ τ

0

[
E{Wj(t)|Yj(t) = 1, A∗

j } − s(1)(t)

s(0)(t)

]
Yj(t)[Wj(t) − E{Wj(t)|Yj(t) = 1, A∗

j }]Tθ dt,

Qv̄
j (θ) = 1

v̄

∑
i∈V̄

∫ τ

0

{
W∗

i (t) − s(1)(t)

s(0)(t)

}
Yi(t)Yj(t)I{A∗

i = A∗
j }

pA∗
i
HA∗

i
(t)

{Wj(t) − W∗
i (t)}Tθ dt,

where v̄ = n − v.
We impose the following conditions through our derivations:

C1.
∫ τ

0 λ0(t) dt < ∞.
C2. P{Y(t) = 1|A∗ = am} > 0 for m = 1, . . . , q.
C3. E{supt∈[0,τ ] ‖Y(t)W∗⊗k(t)‖} < ∞ for k = 0, 1.
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C4. supt∈[0,τ ] ‖Wv(t)‖ = OP(1), where

Wv(t) = √
v

{
1

v

∑
i∈V

I{Yi(t) = 1, A∗
i = am}Wi(t) − E[I{Y(t) = 1, A∗ = am}W(t)]

}

for m = 1, . . . , q.

Conditions C1–C3 are standard assumptions in survival analysis. Condition C4 is imposed
to simplify the derivations of the asymptotic properties, which can be satisfied if the class of
functions {I{Yi(t) = 1, A∗

i = am}Wi(t) : i = 1, . . . , n; t ∈ [0, τ ]} is Donsker. We summarise the
asymptotic results of the proposed estimator in the following theorems.

Theorem 3.1 Under conditions C1–C4, θ̂E converges to θ0 in probability.

Theorem 3.2 Under conditions C1–C4,
√

n(θ̂E − θ0) is asymptotically normal with mean zero
and covariance matrix �(θ0)

−1{(1 − ρ)�1(θ0) + ρ�2(θ0)}{�(θ0)
−1}T, where

�(θ) = E

[∫ τ

0

{
W∗(t) − s(1)(t)

s(0)(t)

}⊗2

Y(t) dt

]
,

�1(θ) = E

[∫ τ

0

{
W∗(t) − s(1)(t)

s(0)(t)

}⊗2

Y(t) d�0(t)

]

+ E

[∫ τ

0

{
W∗(t) − s(1)(t)

s(0)(t)

}⊗2

Y(t)θTW∗(t) dt

]
,

�2(θ) = E

[∫ τ

0

{
W(t) − s(1)(t)

s(0)(t)

}
dM(t) − 1 − ρ

ρ
Q(θ)

]⊗2

.

The consistency of θ̂E follows by verifying conditions in Theorem 1 in Foutz (1977). Using the
Taylor expansion and martingale representation theory, we can show that the estimated estimating
equation is asymptotically equivalent to a sum of two independent terms. Each of the items is also
shown to be asymptotically equivalent to a sum of independent vectors. Thus, the central limit
theorem can be employed to obtain the asymptotic normality of θ̂E . The outline of the proofs of
theorems and some related lemma are provided in the appendix.

4. Simulation studies

In this section, we examined the finite sample properties of θ̂E via simulation studies. We compared
θ̂E with two estimators. The first one is the validation set estimator, denoted by θ̂V , which is
obtained by using Lin and Ying (1994)’s method based only on the validation data. The other
one is the naive estimator, denoted by θ̂N , which is the estimator by using the auxiliary covariate
to replace the true primary covariate which is subject to missing. We compared these estimators
under different levels of censoring proportions, validation fractions, and correlations between
auxiliary and primary.

We generated the survival times T̃ from the hazard model λ(t|Z , X) = 2 + β0X + γ0Z , where
both X and Z were independently simulated from Unif(0, 2). We constructed the auxiliary covari-
ate through A∗ = I(X + e > Q0.5), where e ∼ N(0, σ 2) and Q0.5 denotes the sample median of the
variable X + e. Here σ 2 is the parameter which controls the strength of the association between X
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106 X. Shi et al.

Table 1. Simulation results based on the hazard model λ(t|Z , X) = 2 + β0X + γ0Z with the censoring rate of 30%.

β0 = 2 γ0 = 2

n ρ σ Method Est SD SE 95%CP Est SD SE 95%CP

100 0.8 Validation 2.042 1.453 1.403 0.957 2.034 1.425 1.403 0.951
0.2 Naive 1.807 1.212 1.196 0.944 2.050 1.267 1.249 0.957

Proposed 2.057 1.316 1.273 0.951 2.048 1.260 1.204 0.939
1 Naive 1.636 1.175 1.170 0.944 2.056 1.269 1.249 0.955

Proposed 2.042 1.387 1.328 0.949 2.052 1.265 1.206 0.943
0.5 Validation 2.013 1.784 1.823 0.961 2.047 1.845 1.801 0.960

0.2 Naive 1.665 1.223 1.200 0.943 2.055 1.283 1.249 0.954
Proposed 2.075 1.396 1.418 0.966 2.047 1.268 1.245 0.956

1 Naive 1.261 1.201 1.159 0.887 2.062 1.283 1.250 0.955
Proposed 2.020 1.659 1.692 0.959 2.053 1.280 1.260 0.948

200 0.8 Validation 2.084 0.991 0.972 0.945 2.053 0.967 0.971 0.953
0.2 Naive 1.791 0.818 0.823 0.944 2.043 0.855 0.865 0.958

Proposed 2.069 0.892 0.893 0.953 2.043 0.852 0.848 0.952
1 Naive 1.628 0.813 0.808 0.918 2.046 0.856 0.865 0.958

Proposed 2.075 0.958 0.938 0.948 2.047 0.854 0.849 0.953
0.5 Validation 2.090 1.278 1.239 0.946 2.021 1.232 1.235 0.956

0.2 Naive 1.662 0.819 0.822 0.936 2.043 0.858 0.865 0.959
Proposed 2.085 0.946 0.981 0.961 2.043 0.852 0.873 0.958

1 Naive 1.260 0.818 0.793 0.838 2.049 0.859 0.865 0.955
Proposed 2.060 1.164 1.190 0.955 2.046 0.853 0.884 0.957

500 0.8 Validation 2.001 0.614 0.601 0.950 1.989 0.596 0.606 0.953
0.2 Naive 1.750 0.531 0.517 0.915 1.986 0.530 0.542 0.961

Proposed 1.995 0.570 0.562 0.951 1.985 0.532 0.535 0.952
1 Naive 1.588 0.525 0.507 0.867 1.987 0.531 0.542 0.962

Proposed 1.998 0.605 0.589 0.936 1.986 0.533 0.536 0.951
0.5 Validation 2.029 0.759 0.769 0.953 1.946 0.760 0.767 0.950

0.2 Naive 1.622 0.519 0.515 0.880 1.986 0.531 0.542 0.960
Proposed 2.004 0.593 0.617 0.958 1.985 0.533 0.548 0.959

1 Naive 1.239 0.507 0.497 0.667 1.988 0.530 0.542 0.962
Proposed 2.005 0.707 0.746 0.949 1.986 0.531 0.557 0.963

Notes: The column ‘ρ’ is the validation fraction. ‘σ ’ is the strength of association between primary and auxiliary. The column ‘Est’ is the
average value of the estimates. The sample standard derivation of the estimates is given in the column ‘SD’. The column ‘SE’ gives the
average of the estimated standard errors and the column ‘95%CP’ is the nominal 95% confidence interval coverage of the true parameter
using the estimated standard errors.

and A∗. We generated η from the Bernoulli distribution with success probability ρ and the censor-
ing times from Unif(0, c), where ρ is the fraction of the size of validation set over all the samples
and c was chosen to yield a censoring rate of 30%. We set θT

0 = (βT
0 , γ T

0 ) = (2, 2) and considered
two different strength of association σ = 0.2 or 1, coupled with ρ = 0.8 and 0.5. Each configu-
ration was replicated 1000 times under the sample sizes n = 100, 200, and 500, respectively. The
corresponding results are summarised in Table 1. The column “Est"is the average value of the esti-
mates. The sample standard derivation of the estimates is given in the column ‘SD’. The column
‘SE’ gives the average of the estimated standard errors and the column ‘95%CP’ is the nominal
95% confidence interval coverage of the true parameter using the estimated standard errors.

From Table 1, we made the following observations: (i) All the estimates for γ0 are essentially
unbiased. For β0, both β̂V and β̂E are virtually unbiased with reasonable coverage probabilities.
However, β̂N is biased; (ii) The proposed estimator θ̂E is more efficient than θ̂V ; (iii) β̂E works
well even σ is large (σ = 1), in other words, A∗ is less informative about X as the sample size n
is increased to 500.

To investigate the effect of the censoring rate on the performance of the proposed method,
we chose c to yield a censoring rate of 60% while keeping the remaining set-ups the same as
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Table 2. Simulation results based on the hazard model λ(t|Z , X) = 2 + β0X + γ0Z with the censoring rate of 60%.

β0 = 2 γ0 = 2

n ρ σ Method Est SD SE 95%CP Est SD SE 95%CP

100 0.8 Validation 2.162 1.871 1.844 0.949 2.262 1.826 1.836 0.958
0.2 Naive 1.917 1.585 1.568 0.954 2.263 1.592 1.633 0.963

Proposed 2.169 1.688 1.662 0.948 2.260 1.584 1.601 0.958
1 Naive 1.767 1.561 1.546 0.946 2.266 1.589 1.633 0.963

Proposed 2.161 1.796 1.757 0.947 2.262 1.584 1.603 0.956
0.5 Validation 2.140 2.335 2.375 0.955 2.315 2.363 2.353 0.964

0.2 Naive 1.780 1.578 1.570 0.950 2.269 1.613 1.634 0.961
Proposed 2.192 1.785 1.813 0.951 2.261 1.599 1.640 0.962

1 Naive 1.394 1.557 1.532 0.926 2.270 1.595 1.634 0.960
Proposed 2.160 2.118 2.217 0.956 2.261 1.594 1.657 0.964

200 0.8 Validation 2.164 1.316 1.273 0.945 2.111 1.244 1.266 0.957
0.2 Naive 1.861 1.096 1.079 0.940 2.115 1.123 1.130 0.955

Proposed 2.134 1.172 1.159 0.945 2.115 1.120 1.118 0.956
1 Naive 1.714 1.086 1.065 0.936 2.120 1.123 1.130 0.952

Proposed 2.150 1.271 1.228 0.945 2.122 1.119 1.120 0.954
0.5 Validation 2.220 1.690 1.616 0.954 2.082 1.583 1.611 0.962

0.2 Naive 1.722 1.101 1.075 0.941 2.113 1.122 1.130 0.950
Proposed 2.146 1.229 1.246 0.955 2.114 1.117 1.139 0.961

1 Naive 1.319 1.072 1.047 0.893 2.119 1.120 1.130 0.952
Proposed 2.141 1.529 1.524 0.951 2.119 1.116 1.149 0.962

500 0.8 Validation 2.058 0.813 0.812 0.952 2.069 0.800 0.811 0.951
0.2 Naive 1.819 0.710 0.693 0.937 2.062 0.706 0.723 0.955

Proposed 2.055 0.757 0.747 0.950 2.063 0.707 0.721 0.956
1 Naive 1.662 0.687 0.683 0.917 2.063 0.705 0.723 0.955

Proposed 2.056 0.793 0.792 0.955 2.063 0.708 0.722 0.955
0.5 Validation 2.075 1.002 1.028 0.960 2.041 1.002 1.027 0.950

0.2 Naive 1.696 0.702 0.692 0.927 2.061 0.707 0.723 0.955
Proposed 2.076 0.780 0.800 0.953 2.062 0.709 0.732 0.960

1 Naive 1.294 0.666 0.674 0.817 2.062 0.705 0.723 0.956
Proposed 2.056 0.918 0.981 0.957 2.061 0.706 0.737 0.966

Notes: The column ‘ρ’ is the validation fraction. ‘σ ’ is the strength of association between primary and auxiliary. The column ‘Est’ is the
average value of the estimates. The sample standard derivation of the estimates is given in the column ‘SD’. The column ‘SE’ gives the
average of the estimated standard errors and the column ‘95%CP’ is the nominal 95% confidence interval coverage of the true parameter
using the estimated standard errors.

before. The simulation results are presented in Table 2, from which we can conclude the similar
conclusions as that in Table 1.

The relative efficiency of θ̂E versus θ̂V along the validation fraction ρ under different cen-
soring rates is summarised in Table 3. We define the relative efficiency of θ̂E versus θ̂V as
{SD(θ̂V )/SD(θ̂E)}2, where SD(θ̂) is the sample standard derivation of estimate θ̂ . Based on Table 3,
we observed that the efficiency gain of the proposed method is becoming more significant as the
validation fraction ρ is decreasing. This suggests that, when the validation fraction is small, using
our proposed method is even more beneficial compared to the estimator based on the validation
set only.

Furthermore, we considered the situation where it is more informative discretisation of the
auxiliary covariate. The auxiliary covariate A∗ is assigned the values of 1,…, or 8 if the observation
X + e lies in the interval (−∞, Q1], (Qi, Qi+1], and (Q7, +∞), respectively, where Qi are the
sample i/8 (i = 1, . . . , 7) quantiles of X + e. The remaining simulation set-ups were kept the
same as before. The corresponding simulation results for β0 are summarised in Table 4. It can
be seen that the proposed method results in smaller MSEs with more informative discretisation.
However, if it discretises the auxiliary as too many stratums, a larger sample size is needed to
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Table 3. The efficiency comparison between the proposed estimator θ̂E and the validation set
estimator θ̂V with σ = 0.2 and n = 200.

SD (β0 = 2) SD (γ0 = 2)

Cen. rate ρ Validation Proposed RE Validation Proposed RE

30% 0.8 0.991 0.913 1.178 0.967 0.854 1.282
0.5 1.278 0.983 1.690 1.232 0.853 2.086
0.2 2.111 1.087 3.781 2.048 0.861 5.659

60% 0.8 1.316 1.199 1.205 1.244 1.120 1.238
0.5 1.690 1.277 1.751 1.583 1.116 2.012
0.2 2.767 1.371 4.070 2.673 1.122 5.675

Notes: The column ‘σ ’ is the strength of association between primary and auxiliary covariates. ‘Cen.’ is the cen-
soring rate. ‘ρ’ is the validation fraction. ‘SD’ is the sample standard derivation of the estimate. ‘RE’ is relative
efficiency of the proposed method over the validation set method, which is calculated by {SD(θ̂V )/SD(θ̂E)}2.

Table 4. Simulation results for β0 = 2 based on the hazard model λ(t|Z , X) = 2 + β0X + 2Z with n = 200 and A∗
taking two or eight possible values.

Two categories Eight categories

Cen. rate ρ σ Est SD SE MSE 95%CP Est SD SE MSE 95%CP

30% 0.8 0.2 2.069 0.892 0.893 0.800 0.953 2.059 0.865 0.866 0.752 0.948
1 2.075 0.958 0.938 0.923 0.948 2.027 0.936 0.918 0.877 0.944

0.5 0.2 2.085 0.946 0.981 0.902 0.961 2.058 0.871 0.893 0.762 0.951
1 2.060 1.164 1.190 1.358 0.955 1.830 1.050 1.060 1.131 0.945

60% 0.8 0.2 2.134 1.172 1.159 1.392 0.945 2.131 1.141 1.131 1.319 0.944
1 2.150 1.271 1.228 1.638 0.945 2.107 1.267 1.210 1.617 0.940

0.5 0.2 2.146 1.229 1.246 1.532 0.955 2.127 1.143 1.155 1.323 0.946
1 2.141 1.529 1.524 2.358 0.951 1.935 1.412 1.395 1.998 0.945

Note: ‘MSE’ is the mean square error.

ensure that we can utilise the observations in the validation set to ‘replace’ the counterpart with
missing in the nonvalidation set.

5. The primary biliary cirrhosis data

We applied the proposed method to the data from the Mayo Clinic trial in the primary biliary
cirrhosis (PBC) of the liver. The PBC is a chronic and fatal liver disease characterised by inflam-
matory destruction of the small bile ducts within the liver, which finally leads to cirrhosis of the
liver. The cause of PBC is unknown, but it is generally thought to be an autoimmune disease
because of the presence of autoantibodies. About 90% of patients with PBC are women. Patients
often present abnormalities in their blood tests, such as elevated and gradually increasing serum
bilirubin. In this randomised clinical trial, a total of 312 PBC patients met the eligibility criteria.
The days from registration to the earlier of death, transplantation, or study analysis time were
recorded. The covariates of interest include the treatment (Trt), patients’ sex (Sex), and serum
cholesterol level (Chol). A clinical background description and a more extend discussion for
the trial and the covariates recorded can be found in Dickson, Grambsch, Fleming, Fisher, and
Langworthy (1989) and Markus et al. (1989).

About 9% outcomes of cholesterol were missing in this data set. Removing those observations
could lead to efficiency loss. Our exploratory data analysis shows strong correlation between
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Table 5. Basic descriptions of the covariates in PBC data.

Covariate Type Missing rate

Trt categorical 0
Sex categorical 0
Chol continuous 9%

Note: Trt = 1 or 0, whether the patient was treated with D-
penicillamine or placebo; Sex = 1 or 0, whether the patient is female
or male.

Table 6. Analysis results for the real example with the missing rate of 9%.

Method Covariate Est SE SE95%CI p-Value

Validation Trt 0.0007 0.0125 (−0.0238, 0.0252) 0.9551
Sex −0.0525 0.0250 (−0.1015, −0.0035) 0.0355
log(Chol) 0.0490 0.0208 (0.0082, 0.0898) 0.0185

Proposed Trt −0.0031 0.0117 (−0.0260, 0.0198) 0.7936
Sex −0.0555 0.0295 (−0.1133, 0.0023) 0.0597
log(Chol) 0.0543 0.0193 (0.0165 , 0.0921) 0.0049

Table 7. Analysis results for the real example with the artificially constructed
missing rate of 50%.

Method Covariate Est SE 95%CI p-Value

Validation Trt 0.0089 0.0154 (−0.0214, 0.0390) 0.5691
Sex −0.0482 0.0307 (−0.1083, 0.0119) 0.1159

log(Chol) 0.0390 0.0237 (−0.0074, 0.0854) 0.1002

Proposed Trt −0.0022 0.0126 (−0.0269, 0.0226) 0.8645
Sex −0.0523 0.0284 (−0.1080, 0.0034) 0.0657

log(Chol) 0.0906 0.0261 (0.0394, 0.1418) 0.0005

cholesterol and bilirubin (Bili), which is observed completely. Therefore, we use the serum biliru-
bin as the auxiliary covariate for cholesterol. We follow the literature clinical study and take the
logarithmic transformation of cholesterol and bilirubin, respectively. The auxiliary covariate is
then assigned the value 0 or 1 based on whether or not the logarithm of bilirubin is less than its
empirical median 0.2994. The basic descriptions of the covariates are presented in Table 5.

Table 6 displays the analysis results from the proposed method and the validation set method.
We did not find any significant difference across the treatment group. In addition, it can be seen
that patients associated with lower serum cholesterol level or the female could be expected to
live longer. These findings coincide with previous analysis in the literature. On the other hand,
the proposed method produced more precise assessment of the covariate effect of the serum
cholesterol level, compared with the validation set method, which discarding the incomplete data
could lead to the loss of efficiency.

To demonstrate the effectiveness of the proposed method for moderate missing rate (50%),
we artificially constructed the missing serum cholesterol levels through simple random sampling
approach. The analysis results are summarised in Table 7. Under the moderate missing rate of
50%, the covariate log(Chol) is still significant at the level of 5% in the proposed method while
it is insignificant in the validation set method.
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110 X. Shi et al.

6. Concluding remarks

In this article, we proposed an estimated estimating equation method for the survival data with
auxiliary information to further improve study efficiency.A key feature of this method is that it does
not require to specify the association between the missing covariate and the auxiliary covariate. The
resultant estimates were shown to be consistent and asymptotically normal. Simulation studies
demonstrated that the proposed method works well with different sample sizes and that the
resulting estimator outperforms the validation set estimator. The proposed variance estimator also
performs well. When the auxiliary covariate A∗ is more informative about the primary exposure
X, the proposed estimator is more efficient.

When the auxiliary covariate is continuous, one way is to discretise it into categories and then
apply the proposed method, as we did in real data analysis. A more efficient method is to develop
a nonparametric kernel smoothing version for unspecified conditional expectation in estimation
equation. The related work is currently underway.

We consider that only one missing covariate in our proposal, nevertheless, the proposed method
could be extended to the case where multiple covariates are subject to missing. In application,
much larger sample size is needed in such scenario to ensure that we can utilise the observations
in the validation set to ‘replace’ the counterpart with missing in the nonvalidation set. When
the censoring mechanism is not independent, that is, the censoring mechanism is informative,
the statistical inference for the additive hazards regression with auxiliary information becomes a
challenge because the censoring variable also implies the information of the regression parameter
of interested. New statistical method is needed to be developed along this research direction.
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Appendix

In what follows, we use notation →p, →a.s., and →d to denote the convergence in probability, convergence in probability
1, and convergence in distribution, respectively.

Since Y(t)I{A∗ = am}X(t) and Y(t)I{A∗ = am} as functions of t ∈ [0, τ ] are left continuous with right-hand limit.
According to the arguments in Andersen and Gill (1982, Theorem III.1) and noting that condition C3 implies
that E[supt∈[0,τ ] Y(t)I{A∗ = am}X(t)] < ∞, we have supt∈[0,τ ] ‖Xi(t) − X̂i(t)‖ →a.s. 0 for i ∈ V̄ . Furthermore, we can
conclude that

sup
t∈[0,τ ]

‖Ŵi(t) − W∗
i (t)‖ →a.s. 0, i = 1, . . . , n. (A1)

According to the definition of Ŝ(k)(t), S(k)(t), and s(k), we also have that

sup
t∈[0,τ ]

‖Ŝ(k)(t) − S(k)(t)‖ →a.s. 0 for k = 0, 1.

On the other hand, it follows from the uniformly strong law of large numbers that

sup
t∈[0,τ ]

‖S(k)(t) − s(k)(t)‖ →a.s. 0 for k = 0, 1.

Immediately, we have that

sup
t∈[0,τ ]

‖Ŝ(k)(t) − s(k)(t)‖ →a.s. 0 for k = 0, 1. (A2)

Lemma A.1 Under conditions C1–C4,

n−1/2Û(θ0) −→d N{0, (1 − ρ)�1(θ0) + ρ�2(θ0)}.

Proof The main idea is that we decompose n−1/2Û(θ0) as two independent parts and use the martingale central limit
theorem. Rewrite

n−1/2Û(θ0) = n−1/2
n∑

i=1

∫ τ

0

{
Ŵi(t) − Ŝ(1)(t)

Ŝ(0)(t)

}
dMi(t)

+ n−1/2
n∑

i=1

∫ τ

0

{
Ŵi(t) − Ŝ(1)(t)

Ŝ(0)(t)

}
Yi(t) d�0(t)

+ n−1/2
n∑

i=1

∫ τ

0

{
Ŵi(t) − Ŝ(1)(t)

Ŝ(0)(t)

}
Yi(t){W∗

i (t) − Ŵi(t)}Tθ0 dt

≡ B1n + B2n + B3n. (A3)
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Furthermore, we rewrite

B1n = n−1/2
n∑

i=1

∫ τ

0

{
Ŵi(t) − W∗

i (t) + W∗
i (t) − s(1)(t)

s(0)(t)
+ s(1)(t)

s(0)(t)
− Ŝ(1)(t)

Ŝ(0)(t)

}
dMi(t).

Note that n−1/2 ∑n
i=1

∫ τ

0 {Ŵi(t) − W∗
i (t)} dMi(t) is a square integrable martingale, which converges in probability to

zero by the Lenglart inequality (Andersen and Gill, 1982). Analogously, n−1/2 ∑n
i=1

∫ τ

0 { s(1)(t)
s(0)(t)

− Ŝ(1)(t)

Ŝ(0)(t)
} dMi(t) also

converges in probability to zero. Hence,

B1n = n−1/2
n∑

i=1

∫ τ

0

{
W∗

i (t) − s(1)(t)

s(0)(t)

}
dMi(t) + oP(1). (A4)

We also rewrite

B3n = n−1/2
n∑

i=1

∫ τ

0

{
Ŵi(t) − W∗

i (t) + W∗
i (t) − Ŝ(1)(t)

Ŝ(0)(t)

}
Yi(t){W∗

i (t) − Ŵi(t)}Tθ0 dt.

Using Equation (A1) and condition C4, we have that

n−1/2
n∑

i=1

∫ τ

0
{Ŵi(t) − W∗

i (t)}Yi(t){W∗
i (t) − Ŵi(t)}Tθ0 dt = oP(1).

Combining Equation (A2) and the definitions of Ŵi(t) and Qv̄
j (θ), we have that

B3n = −n−1/2 v̄

v

∑
j∈V

Qv̄
j (θ0) + oP(1).

Similarly, using the definition of Qj(θ0) and condition C4, we also have that

n−1/2 v̄

v

∑
j∈V

{Qv̄
j (θ0) − Qj(θ0)} −→p 0.

Thus,

B3n = −n−1/2 v̄

v

∑
j∈V

Qj(θ0) + oP(1). (A5)

Obviously, noting B2n = 0 and combining Equations (A4) and (A5), we derive Equation (A3) as follows:

n−1/2Û(θ0) = n−1/2
n∑

i=1

∫ τ

0

{
W∗

i (t) − s(1)(t)

s(0)(t)

}
dMi(t) − n−1/2 v̄

v

∑
j∈V

Qj(θ0) + oP(1)

= n−1/2
∑
i∈V̄

∫ τ

0

{
W∗

i (t) − s(1)(t)

s(0)(t)

}
dMi(t)

+ n−1/2
∑
j∈V

[∫ τ

0

{
W∗

j (t) − s(1)(t)

s(0)(t)

}
dMj(t) − v̄

v
Qj(θ0)

]
+ oP(1).

Note that the first term is a martingale, which converges to a mean-zero normal distribution with covariance (1 −
ρ)�1(θ0). Similarly, the second one also converges to a mean-zero normal distribution with covariance ρ�2(θ0) by
noting that E{(v̄/v)Qj(θ0)} = 0. The lemma follows immediately from that two terms are independent because they are
summations over the nonvalidation and validation sets, respectively. �

Proof of Theorem 3.1 We use Theorem 1 in Foutz (1977) to prove the consistency of θ̂E by verifying the following
conditions.

(i) n−1∂Û(θ)/∂θ exists and is continuous in an open neighbourhood of θ0;
(ii) n−1∂Û(θ)/∂θ converges in probability to �(θ), uniformly in an open neighbourhood of θ0; Furthermore, every

element of �(θ) is a continuous function of θ in the neighbourhood of θ0 and �−1(θ0) exists;
(iii) n−1∂Û(θ0)/∂θ is negative-definite with probability going to one;
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(iv) n−1Û(θ0) −→p 0.

First, we have

−n−1 ∂Û(θ)

∂θ
= n−1

n∑
i=1

∫ τ

0

{
Ŵi(t) − Ŝ(1)(t)

Ŝ(0)(t)

}
Ŵi(t)

TYi(t) dt

Thus, (i) is satisfied. Second, rewrite

−n−1 ∂Û(θ)

∂θ
= n−1

n∑
i=1

∫ τ

0

{
Ŵi(t) − W∗

i (t) + s(1)(t)

s(0)(t)
− Ŝ(1)(t)

Ŝ(0)(t)
+ W∗

i (t) − s(1)(t)

s(0)(t)

}⊗2

Yi(t) dt.

Combining Equations (A1), (A2), and condition C3, after some algebraic manipulations, we can further conclude that

−n−1 ∂Û(θ)

∂θ
= n−1

n∑
i=1

∫ τ

0

{
W∗

i (t) − s(1)(t)

s(0)(t)

}⊗2

Yi(t) dt + oP(1).

It follows from the strong law of large numbers that

−n−1 ∂Û(θ)

∂θ
−→p E

[∫ τ

0

{
W∗(t) − s(1)(t)

s(0)(t)

}⊗2

Y(t) dt

]
= �(θ). (A6)

Thus, (ii) and (iii) are verified. Finally, (iv) also holds by Lemma A.1. Hence, θ̂E converges in probability to θ0. �

Proof of Theorem 3.2 Using the Taylor expansion, we have

n−1/2Û(θ0) =
{

−n−1 ∂Û(θ)

∂θ
|θ=θ0

}
n1/2(θ̂E − θ0) + oP(1).

It follows from Lemma A.1, Equation (A6), and the consistency of θ̂E that
√

n(θ̂E − θ0) is asymptotically normal
with mean zero and covariance matrix �(θ0)

−1{(1 − ρ)�1(θ0) + ρ�2(θ0)}{�(θ0)
−1}T. Thus, we complete the proof of

Theorem 3.2. �
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