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Cure Rate Quantile Regression for Censored Data
With a Survival Fraction

Yuanshan WU and Guosheng YIN

Censored quantile regression offers a valuable complement to the traditional Cox proportional hazards model for survival analysis. Survival
times tend to be right-skewed, particularly when there exists a substantial fraction of long-term survivors who are either cured or immune to
the event of interest. For survival data with a cure possibility, we propose cure rate quantile regression under the common censoring scheme
that survival times and censoring times are conditionally independent given the covariates. In a mixture formulation, we apply censored
quantile regression to model the survival times of susceptible subjects and logistic regression to model the indicators of whether patients
are susceptible. We develop two estimation methods using martingale-based equations: One approach fully uses all regression quantiles by
iterating estimation between the cure rate and quantile regression parameters; and the other separates the two via a nonparametric kernel
smoothing estimator. We establish the uniform consistency and weak convergence properties for the estimators obtained from both methods.
The proposed model is evaluated through extensive simulation studies and illustrated with a bone marrow transplantation data example.
Technical proofs of key theorems are given in Appendices A, B, and C, while those of lemmas and additional simulation studies on model
misspecification and comparisons with other models are provided in the online Supplementary Materials A and B.

KEY WORDS: Cure rate model; Empirical process; Long-term survivor; Martingale; Random censoring; Regression quantile; Survival
analysis; Volterra integral equation.

1. INTRODUCTION

In oncology clinical trials, it is often observed that a substan-
tial proportion of subjects are cured and thus become risk-free of
disease relapse. On the other hand, patients may never respond
to the treatment under study due to drug resistance or disease
status, and these patients are considered insusceptible. To ac-
commodate the cured or insusceptible proportion of subjects, a
cure fraction can be explicitly incorporated into survival models
(Zeng, Yin, and Ibrahim 2006). A commonly used approach to
modeling such survival data is the two-component mixture cure
rate model, which assumes the underlying population is a mix-
ture of susceptible and insusceptible subjects. All susceptible
subjects would eventually experience the event of interest if the
follow-up is sufficiently long, while the insusceptible subjects
would never experience the event regardless of the length of the
follow-up. As a result, one can separately model the survival dis-
tribution of the susceptible subjects and the insusceptible frac-
tion of the population. Based on parametric models, Berkson and
Gage (1952) proposed the exponential–logistic mixture model,
and Farewell (1982, 1986) considered the Weibull–logistic mix-
ture model for survival data with a cure fraction. In semipara-
metric settings, Kuk and Chen (1992) proposed to use the Cox
proportional hazards (PH) model (Cox 1972) for the survival
times of susceptible subjects and the logistic regression model
for the cure indicator. The mixture Cox PH cure rate model was
further investigated by Peng and Dear (2000), Sy and Taylor
(2000), Fang, Li, and Sun (2005), and Lu (2008). Along similar
lines, extensive research has been conducted with other semi-
parametric cure rate models. For example, Lu and Ying (2004)
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and Mao and Wang (2010) proposed transformation cure rate
models based on transformed linear regression. Zhang and Peng
(2009) studied an accelerated hazards cure rate model, in which
the accelerated hazards model (Chen and Wang 2000) is adopted
to fit the survival times of susceptible subjects. Lu (2010) further
developed the accelerated failure time (AFT) mixture cure rate
model through sieve maximum likelihood estimation (Zeng and
Lin 2007).

All the aforementioned survival models with a cure fraction
are essentially mean-based regression models, which mainly
give an overall quantification for the central covariate effects. In
contrast, quantile regression can directly model a series of (from
lower to higher) quantiles of the survival times so as to provide
a more complete assessment of covariate effects (Koenker and
Bassett 1978; Koenker 2005). This distinctive feature of quantile
regression makes it very attractive for typically right-skewed
survival data, especially when a substantial cure fraction exists.

Extensive research has been carried out in censored quan-
tile regression. Powell (1984, 1986) proposed to minimize the
least absolute deviation to handle fixed censoring cases. For
random censoring, Ying, Jung, and Wei (1995) modified quan-
tile estimating equations by assuming independence between
survival and censoring times. For medical cost data with infor-
mative censoring, Bang and Tsiatis (2002) developed a median
regression method based on the inverse probability weighting
scheme. Honoré, Khan, and Powell (2002) studied quantile re-
gression with random censoring by assuming censoring times
independent of both survival times and covariates. Likewise,
under such completely random censorship, Yin, Zeng, and Li
(2008) proposed a class of transformation quantile regression
models for survival data.

Nevertheless, a more typical and realistic assumption is the
conditional independence of survival and censoring times given
the covariates. Yang (1999) proposed a median regression model
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based on the weighted empirical survival function, which, how-
ever, requires homogeneous errors or the error distributions con-
verging to a common one at a certain rate. Portnoy (2003) de-
veloped censored quantile regression by redistributing censored
data to the right, and Neocleous, Vanden Branden, and Port-
noy (2006) and Portnoy and Lin (2010) studied the asymptotic
properties of the estimation procedure. By using the martin-
gale structure of right-censored survival data, Peng and Huang
(2008) proposed a martingale-based estimating equation. To re-
lax the global linearity assumption for all regression quantiles,
Wang and Wang (2009) proposed a locally weighted quantile re-
gression approach for any particular quantile of interest, which
adopts the redistribution-of-mass idea and employs nonparamet-
ric functional estimation for the local Kaplan–Meier estimator.
For enhancing model flexibility, Qian and Peng (2010) stud-
ied the partially functional model with a mixture of quantile-
variant and -invariant covariate effects. Huang (2010) proposed
an estimating integral equation procedure for censored quantile
regression, which allows for zero-density intervals and discon-
tinuities in a distribution. The variances of regression quantiles
typically involve density functions. To circumvent nonparamet-
ric functional estimation, a variety of resampling methods have
been developed for variance estimation (Parzen, Wei, and Ying
1994; Buchinsky 1995; Hahn 1995; Buchinsky and Hahn 1998;
Horowitz 1998; Bilias, Chen, and Ying 2000; Jin, Ying, and Wei
2001).

In the presence of a cure fraction, quantile regression is par-
ticularly appealing, because the population contains a fraction
of insusceptible subjects with infinitely long survival times. The
survival probability of insusceptible subjects is one, which may
confound the real treatment effect if we directly fit the cen-
sored quantile regression model to all the subjects. To provide a
“clean” assessment of covariate effects on the survival times of
susceptible subjects, we propose mixture cure rate quantile re-
gression to accommodate a survival fraction in the population.
Under the usual conditional independent censoring, we adopt
the censored quantile regression model by Peng and Huang
(2008) to fit the survival times of susceptible subjects, and
use the logistic regression to model the cure fraction. Both re-
gression quantiles and cure rate parameters are estimated via
martingale equations (Fleming and Harrington 1991). We de-
velop two estimation methods for the cure rate parameters: one
relies on the iteration between the cure rate parameters and
the quantile regression coefficients, while the other separates
them by employing the nonparametric kernel smoothing tech-
nique. The uniform consistency and weak convergence proper-
ties of the resultant estimators are established using the empir-
ical process, kernel smoothing, and Volterra integral equation
theories.

The rest of the article is organized as follows. In Section 2,
we propose the cure rate quantile regression and two estimation
procedures for survival data with a cure fraction. In Section 3,
we establish the large-sample properties of the resultant estima-
tors. We conduct simulation studies to evaluate the finite-sample
performance of the proposed methods in Section 4 and illustrate
our model with application to a bone marrow transplantation
data example in Section 5. We conclude with some remarks in
Section 6 and delineate the proofs of the theorems in Appen-
dices A, B, and C. Additional simulation studies and technical

derivations of useful lemmas are provided in the online Supple-
mentary Materials A and B.

2. MODEL AND ESTIMATION

2.1 Cure Rate Quantile Regression

The mixture cure rate model assumes a decomposition of the
failure time as

T = ηT ∗ + (1 − η)∞,

where T ∗ < ∞ denotes the survival time of a susceptible sub-
ject, and the indicator η takes a value of 1 if a subject is sus-
ceptible, and 0 otherwise. Let C be the censoring time, let Z
be a (p + 1)-vector of covariates related to T ∗, and let W be a
(q + 1)-vector of covariates associated with η. Both Z and W
include 1 as an intercept, and they may share common com-
ponents. The observed time is X = T ∧ C, the minimum of T
and C, and let � = I (T ≤ C) be the censoring indicator. For
i = 1, . . . , n, (Xi,�i, Zi , Wi) are assumed to be independent
and identically distributed (iid), and (T ∗

i , ηi) and Ci are condi-
tionally independent given covariates Zi and Wi .

Based on the logistic regression (Farewell 1982), we can
model the susceptibility indicator η,

P (η = 1|W) = π (γ TW) = exp(γ TW)

1 + exp(γ TW)
. (2.1)

For survival times T ∗, we take the usual linear regression model

log T ∗ = βTZ + ε, (2.2)

where the error ε may depend on Z. If we consider the mean
regression with homogeneous errors, model (2.2) is known as
the accelerated failure time model. In contrast, if we model a
set of quantiles of the susceptible survival times, we can pro-
vide a more comprehensive assessment on the covariate ef-
fects, particularly when the errors are heteroscedastic. Given
τ ∈ (0, 1), QT ∗ (τ |Z) = inf{t : P (T ∗ ≤ t |Z) ≥ τ } is the τ th con-
ditional quantile function, and the quantile regression model is
given by

QT ∗ (τ |Z) = exp{ZTβ(τ )}, τ ∈ (0, 1), (2.3)

where β(τ ) is an unknown (p + 1)-vector of regression coeffi-
cients.

2.2 Estimation of β(τ)

We denote FT ∗ (t |Z) = P (T ∗ ≤ t |Z), and

�T,γ (t |Z, W) = − log{1 − P (T ≤ t |Z, W)}
= − log{1 − π (γ TW)FT ∗ (t |Z)}.

Let N (t) = �I (X ≤ t) and M(t ; γ , FT ∗ ) = N (t) − �T,γ (t ∧
X|Z, W). Following the martingale formulation of censored
quantile regression by Peng and Huang (2008), we replace t
by the true conditional quantile exp{ZTβ0(τ )} in M(t ; γ , FT ∗ ),

E
(
Z

[
N (exp{ZTβ0(τ )})

−�T,γ 0
(exp{ZTβ0(τ )} ∧ X|Z, W)

]) = 0,
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where β0(τ ) and γ 0 are the true parameter values. Under model
(2.3), some algebraic manipulations yield

�T,γ 0
(exp{ZTβ0(τ )} ∧ X|Z, W)

=
∫ τ

0
I [X ≥ exp{ZTβ0(u)}]Hγ 0

(du|W),

where Hγ (u|W) = − log{1 − π (γ TW)u}. Immediately, we
have

E

[
Z

{
N (exp{ZTβ0(τ )}) −

∫ τ

0
I [X

≥ exp{ZTβ0(u)}]Hγ 0
(du|W)

}]
= 0,

which leads to the estimating function

Un(β, τ ; γ ) = n−1
n∑

i=1

Zi

{
Ni

(
exp

{
ZT

i β(τ )
})

−
∫ τ

0
I
[
Xi ≥ exp

{
ZT

i β(u)
}]

Hγ (du|Wi)

}
,

(2.4)

with Ni(t) = �iI (Xi ≤ t) for i = 1, . . . , n.

Let L denote the duration of the study, and let τmax be
a constant in (0, 1), which is the upper bound of the quan-
tile levels that can be estimated. To ensure the identifiability
for all regression quantiles below τmax, we require τmax to be
smaller than infz FT ∗ (L|Z = z). If we consider the conditional
distribution of T given Z and W, we have FT,γ ,β(t |Z, W) =
π (γ TW)FT ∗,β(t |Z) for t ≤ L. Suppose there exists another pair
of γ † and β†(τ ) such that FT,γ ,β(t |Z, W) = FT,γ †,β† (t |Z, W);

that is, π (WTγ )/π (WTγ †) = FT ∗,β† (t |Z)/FT ∗,β(t |Z) ≡ C∗
Z,

where the constant C∗
Z does not depend on t (or τ ). Us-

ing FT ∗,β(t |Z) = FT ∗,β† (t |Z)/C∗
Z and model (2.3), we have

exp{ZTβ(τ )} = exp{ZTβ†(τC∗
Z)}. Under condition C1 in Ap-

pendix A, β(τ ) = β†(τC∗
Z) holds for τ ≤ τmax, which implies

C∗
Z ≡ C∗, a constant that is not dependent on Z. Furthermore,

π (WTγ )/π (WTγ †) = C∗ leads to C∗ = 1 (Li, Taylor, and Sy
2001). Therefore, we conclude β(τ ) = β†(τ ), and then γ = γ †

follows by conditions C1 and C2 in Appendix A. Hence, both
the cure rate parameter and regression quantiles below τmax are
identifiable.

For a fixed γ , let β̂(τ, γ ) denote the solution to Un(β, τ ; γ ) =
0 for 0 < τ ≤ τmax. The stochastic integration representation
of Un(β, τ ; γ ) suggests a grid-based estimation procedure for
β0(τ ) as follows. We denote a partition over the interval [0, τmax]
by Sqn

= {0 ≡ τ0 < τ1 < · · · < τqn
≡ τmax}, where the number

of grid points qn is allowed to depend on n. The estimator
of β0(τ ) is defined as a right-continuous piecewise constant
function that jumps only at grid points in Sqn

. For a fixed γ , the
estimates β̂(τj , γ ), j = 1, . . . , qn, can be obtained sequentially
by solving

n−1
n∑

i=1

Zi

[
Ni

(
exp

{
ZT

i β(τj , γ )
}) −

j−1∑
k=0

I
[
Xi

≥ exp
{
ZT

i β̂(τk, γ )
}]{Hγ (τk+1|Wi) − Hγ (τk|Wi)}

]
= 0,

where we set exp{ZTβ̂(τ0, γ )} = 0. Similar to the estimator
by Fygenson and Ritov (1994) and Peng and Huang (2008),
the proposed estimator β̂(τj , γ ) is equivalent to sequentially
locating the minimizer of the L1-type convex objective function:

Lj (b) =
n∑

i=1

|�i log Xi − �ibTZi | +
∣∣∣∣R∗ − bT

n∑
i=1

(−�iZi)

∣∣∣∣
+

∣∣∣∣R∗ − bT
n∑

i=1

[
2Zi

j−1∑
k=0

I
[
Xi ≥ exp

{
ZT

i β̂(τk, γ )
}]

× {Hγ (τk+1|Wi) − Hγ (τk|Wi)}
]∣∣∣∣ (2.5)

for j = 1, . . . , qn, where R∗ is a large number. In prac-
tice, we may set R∗ as a constant greater than 103(p + 1) ×
max{‖Zi‖: 1 ≤ i ≤ n}, where ‖a‖ denotes the Euclidean norm
for a vector a.

2.3 Estimation of γ : Iterative Approach

We extract the cure information to construct an estimating
equation for γ (Lu and Ying 2004). The conditional prob-
ability that a subject with covariates Z and W belongs to
the uncured group given that this subject is censored at X
is π (γ T

0 W){1 − F0T ∗ (X|Z)}/{1 − π (γ T
0 W)F0T ∗ (X|Z)}, where

F0T ∗ is the true FT ∗ . On the other hand, if a subject experiences
an event, he/she must belong to the uncured group, and thus

P (η = 1|�,X, Z, W)

= � + (1 − �)
π

(
γ T

0 W
){1 − F0T ∗ (X|Z)}

1 − π
(
γ T

0 W
)
F0T ∗ (X|Z)

.

By noting that π (γ T
0 W) is the probability of η = 1 given W, we

have

E [W {P (η = 1|�,X, Z, W) − P (η = 1|W)}] = 0,

which leads to

Sn(γ ; FT ∗ ) = n−1
n∑

i=1

Wi{1 − π (γ TWi)}
1 − π (γ TWi)FT ∗ (Xi |Zi)

× {
�i − π (γ TWi)FT ∗ (Xi |Zi)

}
= n−1

n∑
i=1

∫ L

0

Wi{1 − π (γ TWi)}
1 − π (γ TWi)FT ∗ (t |Zi)

× dMi(t ; γ , FT ∗ ). (2.6)

Similarly by replacing t with exp{ZT
i β(τ )} in (2.6), we can

construct an estimating function for γ ,

Rn(γ ; β(·))

= n−1
n∑

i=1

∫ τmax

0

Wi{1 − π (γ TWi)}
1 − π (γ TWi)u

×
[

dNi(exp{ZT
i β(u)}) − I [Xi ≥ exp{ZT

i β(u)}]Hγ (du|Wi)

]
.

To solve Rn(γ ; β(·)) = 0, we need to know β(·), thus leading to
an iterative algorithm:

1. Choose an initial value γ̂ (0) for γ .
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2. At the mth iteration, set exp{ZT
i β̂(τ0, γ̂

(m))} = 0 and ob-
tain β̂(τj , γ̂

(m)), j = 1, . . . , qn, by sequentially minimiz-
ing (2.5).

3. Obtain γ̂ (m+1) by solving

n−1
n∑

i=1

qn−1∑
k=0

Wi

[
1 − π (γ TWi)

1 − π (γ TWi)(τk + τk+1)/2
�i

× I
[

exp
{
ZT

i β̂(τk, γ̂
(m))

}≤Xi <exp
{
ZT

i β̂(τk+1, γ̂
(m))

}]
− I

[
Xi ≥ exp

{
ZT

i β̂(τk, γ̂
(m))

}] ∫ τk+1

τk

1 − π (γ TWi)

1 − π (γ TWi)u

× Hγ (du|Wi)

]
= 0

using the Newton–Raphson algorithm.
4. Repeat Steps 2 and 3 until a predetermined convergence

criterion is met.

The resultant estimators are denoted by γ̂ I and β̂I (·) ≡ β̂(·, γ̂ I ).
The initial value γ̂ (0) is obtained by treating all the censored
subjects as cured and fitting logistic regression of � on W.
However, not only does the entanglement of β̂I (·) and γ̂ I make
the derivations of their asymptotic properties challenging, but
it also makes the computation intensive and unstable, and even
causes nonconvergence sometimes. Mao and Wang (2010) dis-
cussed such nonconvergence issues in a class of proportional
odds cure rate models.

2.4 Estimation of γ : Nonparametric Approach

To avoid the difficulty arising from the entanglement of
β̂I (·) and γ̂ I , we propose an alternative nonparametric ap-
proach, which estimates γ 0 separately from β0(·). Obviously,
Sn(γ ; FT ∗ ) is an unbiased estimating function for γ provided
that the true F0T ∗ were known. Following the locally weighted
Kaplan–Meier estimator by Wang and Wang (2009), we take
a local Nelson–Aalen type estimator for the cumulative hazard
function �T ∗ (t |z) in the context of cure rate analysis,

�̂T ∗ (t |z) =
∫ t

0

∑n
i=1 Bni(z)dNi(u)∑n

k=1 I (Xk ≥ u)ωk(γ̂ , �̂T ∗ )Bnk(z)
, (2.7)

where

ωk(γ ,�T ∗ ) = �k + (1 − �k)

× π (γ TWk) exp{−�T ∗ (Xk|z)}
1 − π (γ TWk) + π (γ TWk) exp{−�T ∗ (Xk|z)}

(2.8)

and Bni(z) is a sequence of Nadaraya–Watson type weights,

Bni(z) = Kp{(z − Zi)/hn}∑n
k=1 Kp{(z − Zk)/hn} .

Here, Kp(·) is a p-variate kernel function and hn > 0 is the band-
width converging to zero as n → ∞. For ease of exposition, we
assume that, except for the intercept, the remaining p compo-
nents of Z are continuous and thus adopt a multivariate product
kernel Kp(u) = ∏p

i=1 K(ui), where K(·) is a univariate kernel
function and u ∈ Rp. As a result, we can obtain an estima-
tor of F0T ∗ (t |z), F̂T ∗ (t |z) = 1 − exp{−�̂T ∗ (t |z)}. Sy and Taylor
(2000) and Lu (2010) also considered an estimator similar to
(2.7), but without the local weights Bni(z).

In the numerical algorithm, we first obtain the initial value
γ̂ (0) as before, and then obtain �̂

(0)
T ∗ (t |z) from (2.7) by taking all

ωk’s to be one. Plugging γ̂ (0) and �̂
(0)
T ∗ (t |z) into (2.8) leads to

ω
(0)
k . At the mth iteration, our algorithm for estimating γ 0 and

β0(·) proceeds as follows.

1. Plug ω
(m)
k into (2.7) and obtain �̂

(m+1)
T ∗ (t |z).

2. Plug �̂
(m+1)
T ∗ (t |z) into (2.6) and solve the resultant equation

using the Newton–Raphson algorithm to obtain γ̂ (m+1).
3. Plug γ̂ (m+1) and �̂

(m+1)
T ∗ (t |z) into (2.8) and obtain ω

(m+1)
k .

4. Repeat Steps 1, 2, and 3 until a predetermined convergence
criterion is met.

The resultant estimator is denoted by γ̂ N , and we plug it into
(2.5) to obtain the estimator {β̂N (τ ) ≡ β̂(τ, γ̂ N ): τ ∈ Sqn

}. For
identifiability and computational stability, we set �̂T ∗ (t |z) = ∞
if t is greater than the largest uncensored observation. This
nonparametric approach separates the estimation for γ and β(·)
and, as a result, there would be no iterative step between (2.4)
and (2.6). As shown in the simulation study, this numerically
alleviates nonconvergence issues caused by the entanglement of
γ̂ I and β̂I (·) in the iterative approach.

3. ASYMPTOTIC THEORY

3.1 Iterative Approach

Let an = max1≤j≤qn
|τj − τj−1|, and thus q−1

n = O(an) since
τmax/an ≤ qn. Let ν be a constant, ν ∈ (0, τmax].

Theorem 1. Under conditions C1–C4 and C5′ in Ap-
pendix A, if an → 0, then γ̂ I → γ 0 in probability and
supτ∈[ν,τmax] ‖β̂I (τ ) − β0(τ )‖ → 0 in probability.

Theorem 2. Under conditions C1–C4 and C5′ in Appendix
A, if n1/2an → 0, then n1/2(γ̂ I − γ 0) is asymptotically normal
with mean zero and variance-covariance matrix �−1

I VI�
−1
I ,

and n1/2{β̂I (τ ) − β0(τ )} converges weakly to a zero-mean
Gaussian process with variance-covariance matrix �I (τ, τ ′) =
E[{ζ (1)(τ ) + ζ (2)(τ )}{ζ (1)(τ ′) + ζ (2)(τ ′)}T] for τ, τ ′ ∈ [ν, τmax],
where �I , VI , ζ (1)(τ ), and ζ (2)(τ ) are given in Appendix B.

The derivations of the asymptotic properties for the proposed
estimators are challenging due to the entanglement of β̂I (τ ) and
γ̂ I . The proofs of the theorems mainly rely upon the stochastic
integral representations and modern empirical process theory,
which are deferred to Appendix B.

3.2 Nonparametric Approach

Under the nonparametric approach, we can also derive the
uniform consistency and weak convergence properties for the
proposed estimators, while both the conditions and derivations
are different from those of the iterative approach.

Theorem 3. Under conditions C1–C8 in Appendix A, if an →
0, then γ̂ N → γ 0 in probability and supτ∈[ν,τmax] ‖β̂N (τ ) −
β0(τ )‖ → 0 in probability.

Theorem 4. Under conditions C1–C7 and C8′ in Appendix
A, if n1/2an → 0, then n1/2(γ̂ N − γ 0) is asymptotically normal
with mean zero and variance-covariance matrix �−1

N VN�−1
N ,

and n1/2{β̂N (τ ) − β0(τ )} converges weakly to a zero-mean
Gaussian process with variance-covariance matrix �N (τ, τ ′) =
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Wu and Yin: Cure Rate Quantile Regression 1521

E[{ζ (1)(τ ) + ζ (3)(τ )}{ζ (1)(τ ′) + ζ (3)(τ ′)}T] for τ, τ ′ ∈ [ν, τmax],
where �N , VN , and ζ (3)(τ ) are given in Appendix C.

We establish the asymptotic properties for γ̂ N by employing
the results of kernel smoothing and Chen, Linton, and Van
Keilegom (2003). Based on the expansion β̂N (τ ) − β0(τ ) = {β̂
(τ, γ 0) − β0(τ )} + {∂β̂(τ, γ 0)/∂γ T}(γ̂ N − γ 0) + oP (‖γ̂ N −
γ 0‖), we can derive the asymptotic properties for β̂N (τ ). The
proofs of Theorems 3 and 4 are deferred to Appendix C.

Bandwidth selection is often a critical part of nonparametric
regression. In practice, we recommend a d-fold cross-validation
method for choosing hn. We randomly divide the data into
d nonoverlapping and equal-sized subgroups. For the jth sub-
group, Dj , we fit the model using the data excluding subgroup
j, D(−j ), and calculate the martingale residuals

MCV
j (h) = 1

|{i: �i = 1 and i ∈ Dj }|
×

∑
k∈Dj

∫ L

0
{MCV

(−j )(t, Wk)}2dNk(t),

where |A| denotes the cardinality of a set A, and

MCV
(−j )(t, w) = 1

|{i: i ∈ D(−j )}|

×
∑

i∈D(−j )

∫ t

0

I (Wi ≤ w){1 − π (γ̂ T
(−j )Wi)}

1 − π (γ̂ T
(−j )Wi)F̂T ∗(−j )(u|Zi)

× dMi(u; γ̂ (−j ), F̂T ∗(−j )).

Here, both γ̂ (−j ) and F̂T ∗(−j ) are estimated using the data from
D(−j ). Finally, we choose the bandwidth that minimizes the total
martingale residuals

∑d
j=1 MCV

j (h).

4. SIMULATION STUDY

We conducted extensive simulation studies to examine the
finite-sample performance of our proposed methods. First, we
generated the survival times T ∗ of the susceptible subjects from
the log-transformed linear model with heteroscedastic errors,

log T ∗ = b0Z + (1 + Z)ε,

where (1 + Z)ε is the error term, and the true parameter value
b0 = −1. The corresponding quantile regression model (2.3)
given Z = (1, Z)T is

QT ∗ (τ |Z) = exp{β0(τ ) + β1(τ )Z},
where β0(τ ) = Qε(τ ), β1(τ ) = b0 + Qε(τ ), and Qε(τ ) is the
τ th quantile of ε. The susceptibility indicator η was generated
from the logistic regression model (2.1) with W = Z and the true
parameter values γ0 = 1, and γ1 = −0.5. We simulated Z from
Bernoulli(0.5), and took the censoring time C = C̃ ∧ L, where
C̃ was generated from Unif(0, L + 2) if Z < 0.5, and from
Unif(1, L + 2) otherwise. The study duration L was chosen to
yield a censoring rate of 40%, and the cure rate was approxi-
mately 32%. We considered three types of error distributions:
the standard normal distribution, the extreme value distribution
with Fε(x) = 1 − exp(−ex), and student’s t-distribution with 2

Table 1. Simulation results for the iterative method under the cure rate quantile regression model with τ = (0.1, . . . , 0.6), heteroscedastic
errors, and Z ∼ Bernoulli(0.5)

β0(τ ) and γ0 β1(τ ) and γ1

True Est SE MSE True Est SE MSE

β(τ ) Normal error
0.1 −1.282 −1.311 0.206 0.043 −2.282 −2.374 0.478 0.236
0.2 −0.842 −0.876 0.167 0.029 −1.842 −1.946 0.394 0.166
0.3 −0.524 −0.575 0.156 0.027 −1.524 −1.670 0.362 0.152
0.4 −0.253 −0.316 0.150 0.026 −1.253 −1.422 0.336 0.141
0.5 0.000 −0.080 0.143 0.027 −1.000 −1.208 0.340 0.159
0.6 0.253 0.161 0.146 0.030 −0.747 −0.975 0.348 0.173
γ 1.000 0.927 0.139 0.025 −0.500 −0.507 0.159 0.025

β(τ ) Extreme value error
0.1 −2.250 −2.335 0.401 0.167 −3.250 −3.318 0.962 0.928
0.2 −1.500 −1.598 0.270 0.082 −2.500 −2.573 0.678 0.463
0.3 −1.031 −1.143 0.227 0.064 −2.031 −2.108 0.536 0.292
0.4 −0.672 −0.789 0.195 0.052 −1.672 −1.772 0.478 0.238
0.5 −0.367 −0.502 0.170 0.047 −1.367 −1.491 0.425 0.195
0.6 −0.087 −0.222 0.158 0.043 −1.087 −1.211 0.396 0.172
γ 1.000 0.908 0.143 0.029 −0.500 −0.435 0.152 0.027

β(τ ) Student’s t(2) error
0.1 −1.886 −1.991 0.515 0.276 −2.886 −3.268 1.355 1.977
0.2 −1.061 −1.147 0.261 0.075 −2.061 −2.303 0.679 0.519
0.3 −0.617 −0.683 0.207 0.047 −1.617 −1.839 0.492 0.291
0.4 −0.289 −0.358 0.178 0.036 −1.289 −1.491 0.403 0.203
0.5 0.000 −0.086 0.164 0.034 −1.000 −1.242 0.382 0.204
0.6 0.289 0.194 0.167 0.037 −0.711 −0.994 0.390 0.231
γ 1.000 0.942 0.145 0.024 −0.500 −0.531 0.149 0.023

NOTE: “Est” is the average value of the parameter estimates, “SE” is the sample standard error of the estimates, and “MSE” is the mean squared errors of the parameter estimates.
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Table 2. Simulation results for the nonparametric method under the cure rate quantile regression model with τ = (0.1, . . . , 0.6),
heteroscedastic errors, and Z ∼ Bernoulli(0.5)

β0(τ ) and γ0 β1(τ ) and γ1

True Est SE ESE CP MSE True Est SE ESE CP MSE

β(τ ) Normal error
0.1 −1.282 −1.286 0.200 0.210 0.939 0.040 −2.282 −2.316 0.468 0.520 0.952 0.220
0.2 −0.842 −0.852 0.174 0.176 0.949 0.030 −1.842 −1.890 0.402 0.420 0.940 0.164
0.3 −0.524 −0.528 0.158 0.161 0.936 0.025 −1.524 −1.584 0.378 0.383 0.939 0.146
0.4 −0.253 −0.258 0.155 0.153 0.928 0.024 −1.253 −1.332 0.358 0.365 0.939 0.134
0.5 0.000 −0.002 0.159 0.153 0.921 0.025 −1.000 −1.081 0.360 0.362 0.942 0.136
0.6 0.253 0.261 0.166 0.155 0.913 0.028 −0.747 −0.843 0.370 0.367 0.918 0.146
γ 1.000 0.992 0.267 0.302 0.968 0.071 −0.500 −0.588 0.362 0.399 0.967 0.139

β(τ ) Extreme value error
0.1 −2.250 −2.268 0.369 0.402 0.938 0.136 −3.250 −3.307 0.884 0.899 0.952 0.783
0.2 −1.500 −1.523 0.272 0.280 0.946 0.075 −2.500 −2.548 0.629 0.677 0.945 0.397
0.3 −1.031 −1.039 0.219 0.225 0.934 0.048 −2.031 −2.094 0.517 0.544 0.952 0.271
0.4 −0.672 −0.681 0.195 0.193 0.927 0.038 −1.672 −1.740 0.452 0.468 0.952 0.209
0.5 −0.366 −0.372 0.182 0.175 0.920 0.033 −1.367 −1.429 0.412 0.424 0.951 0.174
0.6 −0.087 −0.084 0.172 0.162 0.912 0.030 −1.087 −1.146 0.380 0.384 0.933 0.148
γ 1.000 0.992 0.269 0.290 0.970 0.072 −0.500 −0.553 0.356 0.373 0.965 0.129

β(τ ) Student’s t(2) error
0.1 −1.886 −1.919 0.480 0.619 0.947 0.231 −2.886 −3.059 1.259 1.701 0.972 1.615
0.2 −1.061 −1.088 0.272 0.290 0.935 0.075 −2.061 −2.202 0.682 0.734 0.953 0.484
0.3 −0.617 −0.644 0.201 0.211 0.952 0.041 −1.617 −1.744 0.500 0.525 0.947 0.266
0.4 −0.289 −0.316 0.181 0.182 0.936 0.034 −1.289 −1.420 0.438 0.436 0.932 0.209
0.5 0.000 −0.028 0.172 0.172 0.943 0.030 −1.000 −1.165 0.430 0.405 0.907 0.212
0.6 0.289 0.257 0.176 0.176 0.922 0.032 −0.711 −0.915 0.430 0.406 0.898 0.226
γ 1.000 0.883 0.251 0.289 0.916 0.077 −0.500 −0.579 0.332 0.387 0.967 0.117

NOTE: “Est” is the average value of the parameter estimates, “SE” is the sample standard error of the estimates, “ESE” is the average of the bootstrap estimated standard errors, “CP” is
the coverage probability of the 95% confidence intervals using the bootstrap, and “MSE” is the mean squared errors of the parameter estimates.

degrees of freedom. For estimation of regression quantiles, we
set τmax = 0.6 and adopted an equally spaced grid over inter-
val [0.02, 0.6] with a step size of 0.02. A general guidance on
choosing τmax is to first estimate infz FT ∗ (L|Z = z) using the
nonparametric local kernel smoothing estimator F̂T ∗ (t |z). We
initially set τmax to be close to mini=1,...,n F̂T ∗ (L|Z = zi), and
then select the final τmax in an adaptive manner as follows. If
all the regression quantiles over [0, τmax] can be estimated, we
increase τmax by some small step size, for example, 0.05 or 0.1;
otherwise, we decrease τmax slightly. By this trial-and-error way,
we can push τmax to the largest value at which the model pa-
rameters can be identified. We examined both the iterative and
nonparametric approaches, and we set the sample size n = 200
and replicated 1000 simulations.

Our simulation showed that the iterative approach was rel-
atively unstable and sensitive to the initial values, which on
average resulted in 28% nonconvergence cases among 1000
simulations (also see Mao and Wang 2010, p. 307). For estima-
tion of γ , Rn(γ ; β(·)) = 0 would be automatically satisfied if
π (γ TWi) = 0 or 1 (when the estimate of γ converges to a very
small or very large value, for example, close to the boundaries
of the parameter searching space). To facilitate the comparison,
Table 1 summarizes the estimation results for those converged
cases, which shows that after discarding those nonconvergence
replications, the performance of the iterative approach is rea-
sonable under the three different error distributions.

By contrast, the nonparametric approach separates the esti-
mation of γ and β(·), which is shown to result in better con-
vergence. Under the three error distributions, only for the t(2)

heteroscedastic error, there were about 0.5% nonconvergence
cases among 1000 simulations. As to variance estimation, we
generated 200 bootstrap samples for each simulated dataset. In
particular, we generated n independent variates from Exp(1),
and multiplied each term i in the estimating equations by the ith
Exp(1) variate. Table 2 presents the simulation results using the
nonparametric approach. Clearly, the biases are essentially neg-
ligible, the estimated standard errors (ESE) using the bootstrap
method agree well with the sample standard errors (SE), and the
coverage probabilities (CP) of the bootstrap confidence inter-
vals are around the nominal level 95%. Comparing Tables 1 and
2, the MSEs are close between the iterative and nonparametric
methods.

Second, we generated covariate Z from Unif(0, 1), while
keeping the rest of the data generation scheme the same as
before. The kernel smoothing procedure was used to esti-
mate the nonparametric function F0T ∗ (·|Z). As there was only
one continuous covariate, we adopted the biquadratic kernel
K(u) = (15/16)(1 − u2)2I (|u| < 1); for the bivariate case (as
in online Supplementary Material A), we employed a fourth-
order product kernel, K2(u1, u2) = K(u1)K(u2). We took the
sample size n = 400 and selected the bandwidth hn through
the eight-fold cross-validation procedure. We conducted 500
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Table 3. Simulation results for the nonparametric method under the cure rate quantile regression model with τ = (0.1, . . . , 0.6),
heteroscedastic errors, and Z ∼ Unif(0, 1)

β0(τ ) and γ0 β1(τ ) and γ1

True Est SE ESE CP MSE True Est SE ESE CP MSE

β(τ ) Normal error
0.1 −1.282 −1.276 0.251 0.257 0.932 0.063 −2.282 −2.268 0.525 0.558 0.942 0.275
0.2 −0.842 −0.828 0.208 0.216 0.948 0.044 −1.842 −1.867 0.446 0.461 0.952 0.199
0.3 −0.524 −0.511 0.199 0.196 0.938 0.040 −1.524 −1.559 0.411 0.420 0.950 0.170
0.4 −0.253 −0.228 0.185 0.192 0.946 0.035 −1.253 −1.315 0.394 0.406 0.946 0.159
0.5 0.000 0.039 0.185 0.189 0.940 0.036 −1.000 −1.093 0.390 0.398 0.940 0.161
0.6 0.253 0.295 0.189 0.186 0.924 0.037 −0.747 −0.862 0.411 0.395 0.914 0.182
γ 1.000 0.987 0.258 0.295 0.976 0.067 −0.500 −0.573 0.430 0.489 0.970 0.190

β(τ ) Extreme value error
0.1 −2.250 −2.279 0.476 0.480 0.938 0.227 −3.250 −3.191 0.980 1.046 0.948 0.962
0.2 −1.500 −1.517 0.333 0.342 0.936 0.111 −2.500 −2.503 0.706 0.730 0.950 0.497
0.3 −1.031 −1.044 0.278 0.273 0.944 0.077 −2.031 −2.057 0.570 0.588 0.952 0.324
0.4 −0.672 −0.669 0.234 0.242 0.958 0.055 −1.672 −1.732 0.493 0.515 0.946 0.246
0.5 −0.366 −0.356 0.215 0.215 0.952 0.046 −1.367 −1.448 0.445 0.460 0.946 0.204
0.6 −0.087 −0.078 0.203 0.193 0.908 0.041 −1.087 −1.183 0.434 0.414 0.930 0.197
γ 1.000 0.922 0.246 0.269 0.968 0.067 −0.500 −0.505 0.410 0.437 0.964 0.168

β(τ ) Student’s t(2) error
0.1 −1.886 −1.935 0.598 0.651 0.944 0.360 −2.886 −3.014 1.333 1.439 0.960 1.790
0.2 −1.061 −1.082 0.332 0.349 0.956 0.110 −2.061 −2.167 0.714 0.749 0.952 0.520
0.3 −0.617 −0.635 0.253 0.261 0.958 0.064 −1.617 −1.733 0.540 0.559 0.946 0.305
0.4 −0.289 −0.290 0.220 0.227 0.952 0.048 −1.289 −1.450 0.480 0.488 0.936 0.256
0.5 0.000 −0.006 0.211 0.213 0.938 0.044 −1.000 −1.176 0.453 0.456 0.934 0.236
0.6 0.289 0.279 0.217 0.216 0.940 0.047 −0.711 −0.930 0.478 0.464 0.908 0.276
γ 1.000 0.875 0.253 0.308 0.930 0.079 −0.500 −0.568 0.411 0.511 0.974 0.173

NOTE: “Est” is the average value of the parameter estimates, “SE” is the sample standard error of the estimates, “ESE” is the average of the bootstrap estimated standard errors, “CP” is
the coverage probability of the 95% confidence intervals using the bootstrap, and “MSE” is the mean squared errors of the parameter estimates.

replications, and for each simulated dataset 200 bootstrap sam-
ples were generated as before to estimate the variance. For τ

from 0.1 to 0.6 in Table 3, the point estimates of β0(τ ) and β1(τ )
are close to the true values, and the variance estimation also
performs well. The same is true for the cure rate parameters
γ0 and γ1. Thus, we conclude that the proposed nonparametric
method generally works well with continuous covariates and the
bandwidth selection procedure is also viable.

We further investigated the performance of the proposed non-
parametric method under the misspecification of the logistic
model for the cure indicator or that of the quantile regression
model for survival times of the susceptible subjects. Meanwhile,
we made comparisons with the AFT cure rate method and the
Cox PH cure rate method, and also explored a hypothetical situ-
ation where the distribution function F0T ∗ (·|Z) were known. In
addition, we assessed the behavior of the proposed nonparamet-
ric method when two continuous covariates were involved, for
which we adopted a bivariate product kernel for nonparametric
kernel smoothing. The detailed simulation results are presented
in online Supplementary Material A.

5. BONE MARROW TRANSPLANTATION STUDY

As an illustration, we applied the cure rate quantile regression
model to a bone marrow transplantation (BMT) study (Szydlo
et al. 1997). This study was conducted between the years 1985
and 1991 and involved 1715 leukemia patients. To minimize

potential side effects, the transplanted stem cells should match
the patient’s own stem cells as closely as possible. The match-
ing is usually based on the proteins on the surface of the cells,
namely human leukemia-associated antigens (HLA). Patients
were treated with the BMT from either HLA-identical siblings,
HLA-matched, or mismatched unrelated donors. The primary
endpoint was the time to cancer relapse or death while in remis-
sion, recorded in months. From the clinical perspective, patients
may be considered as “cured” if they could survive the risk of
the graft-versus-host disease (GVHD), which is a reaction of
donated stem cells against patients’ own tissues. If there is a
strong immune reaction of GVHD, patients are likely to die
soon after the transplantation. The censoring rate in this BMT
study was 49.4%, and Figure 1 shows the Kaplan–Meier sur-
vival curves for the three donor groups. After approximately
five years follow-up, there appears to be a stable plateau for
each arm, which indicates a possible cure fraction in this patient
population.

In our analysis, the covariates of interest included three donor
types: HLA-identical siblings (71.4%), HLA-matched unrelated
(22.3%), and mismatched unrelated donors (6.3%); three dis-
ease types: acute lymphoblastic leukemia (ALL, 31.3%), acute
myelogenous leukemia (AML, 19.8%), and chronic myeloge-
nous leukemia (CML, 48.9%); and the Karnofsky score (tak-
ing a value of 1 if the Karnofsky score ≥ 90 and 0 otherwise;
80.6% patients with the Karnofsky score = 1). For the two three-
level categorical variables, we created two indicator variables by
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Table 4. Analysis results of the BMT data fitted by the Cox proportional hazards cure rate model, the accelerated failure time (AFT) cure rate
model, and the cure rate quantile regression (QR) model

Survival model parameters Cure rate parameters

Cure model Covariate Est SE p-value Est SE p-value

Cox Intercept – – – 1.925 0.365 < 0.001
HLA-match 0.424 0.091 < 0.001 1.535 0.320 < 0.001
Mismatched 0.610 0.127 < 0.001 1.547 0.759 0.041
AML 0.087 0.095 0.364 0.393 0.258 0.128
CML −0.110 0.090 0.217 −0.067 0.203 0.740
Karnofsky −0.441 0.087 < 0.001 −1.287 0.302 < 0.001

AFT Intercept – – – 0.939 0.177 < 0.001
HLA-match −0.162 0.080 0.042 1.304 0.169 < 0.001
Mismatched −0.258 0.123 0.036 1.840 0.359 < 0.001
AML 0.067 0.101 0.508 0.437 0.168 0.009
CML 0.057 0.091 0.532 −0.216 0.151 0.154
Karnofsky 0.286 0.092 0.002 −0.981 0.174 < 0.001

QR Intercept – – – 0.827 0.376 0.028
HLA-match – – – 1.249 0.297 < 0.001
Mismatched – – – 1.425 0.507 0.005
AML – – – 0.376 0.217 0.084
CML – – – −0.163 0.182 0.371
Karnofsky – – – −0.967 0.357 0.007

taking the HLA-identical sibling and ALL as the baseline, re-
spectively. We took Z = W, and 200 bootstrap samples for
variance estimation. Figure 2 displays the quantile regression
estimates of covariate effects and the corresponding 95% point-
wise confidence intervals for τ ∈ [0.1, 0.7] with a step size of
0.01. As expected, patients treated with the BMT from HLA-
matched unrelated donors and mismatched unrelated donors
had significantly worse survival than those with HLA-sibling
donors, particularly for higher quantiles of survival times. Pa-
tients with higher Karnosky scores survived longer across all the
quantiles. There was no significant difference in survival across

Figure 1. Kaplan–Meier survival curves stratified by the donor type
in the BMT data.

the three disease types. Table 4 presents the estimates for the
cure rate parameters in the logistic regression, from which one
can see that patients treated with the BMT from HLA-identical
siblings or with higher Karnofsky scores were more likely to
be long-term survivors. For comparison, we also analyzed the
BMT data using the Cox PH cure rate model and the AFT
cure rate model, for which the results are also shown in Table
4. Similar conclusions can be drawn, while these traditional
hazard-based and mean-based methods can only provide over-
all quantification of covariate effects. In contrast, our proposed
cure rate quantile regression method can provide global trends
of covariate effects along different quantiles of survival times.
For example, for lower quantiles there appeared to be no sur-
vival difference between different donor types, while for higher
quantiles the survival difference became larger, especially for
the mismatched unrelated donor group.

6. CONCLUDING REMARKS

We have proposed cure rate quantile regression for censored
data with a survival fraction under the usual censoring assump-
tion, that is, survival times and censoring times are condition-
ally independent given covariates. Under the global linearity
assumption, the estimate for the regression quantile at a partic-
ular τ requires the availability of the estimates for all regression
quantiles below τ . If such linearity only holds at one specific
quantile level τ , the work by Wang and Wang (2009) may be
extended along this direction. Identifiability is an inherent and
subtle issue in censored quantile regression. Regression quan-
tiles with τ close to 1 may not be identifiable due to a lack of
event information in the upper tail. Thus, we confine the esti-
mation of regression quantiles to the quantile levels below τmax.
In principle, τmax should satisfy the identifiability condition C4
in Appendix A, while in practice the selection of τmax needs to
be settled in an adaptive manner as described in Section 4.
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Figure 2. Estimated covariate effects for the BMT data and the corresponding 95% pointwise confidence intervals using the nonparametric
method under the cure rate quantile regression model. The online version of this figure is in color.

Our additional simulation studies in online Supplementary
Material A shows that the proposed nonparametric approach is
still feasible when two continuous covariates are involved in
Z. However, the nonparametric estimation for F0T ∗ (·|Z) would
deteriorate as the dimension of Z increases. If there exist many
(continuous) covariates, we suggest to first perform dimension
reduction as in the article by Wang, Zhou, and Li (2013), and
then take more cautious exploration and analysis of the data,
for example, initially fit the model with each covariate one by
one, and then add important covariates one at a time into the
model. In survival analysis, model fitting and checking are often
based on martingale residuals (Barlow and Prentice 1988; Lin,
Wei, and Ying 1993). The forms of the limiting processes of
the cumulative martingale residuals constructed from the esti-
mating Equations (2.4) and (2.6) are complicated because the
nonparametric estimation for F0T ∗ (·|Z) is involved, for which
further research is warranted. It is also possible to extend the
proposed method to partially linear models and a mixture of
quantile-variant and -invariant effects to enhance the flexibility

and efficiency (Neocleous and Portnoy 2009; Qian and Peng
2010).

APPENDIX A: CONDITIONS AND LEMMAS

We first introduce the notation: FX,γ (t |Z, W) = P (X ≤ t |Z, W),
F̄X,γ (t |Z, W) = 1 − FX,γ (t |Z, W), F̃X,γ (t |Z, W) = P (X ≤ t,� =
1|Z, W), f̄X,γ (t |Z, W) = −fX,γ (t |Z, W) = −dFX,γ (t |Z, W)/dt,

f̃X,γ (t |Z, W) = dF̃X,γ (t |Z, W)/dt , FC(t |Z, W) = P (C ≤ t |Z, W),
and F̄C(t |Z, W) = 1 − FC(t |Z, W), and then impose the conditions as
follows.

C1. Let K be a compact subset of Rq+1 that contains γ 0 as its
interior point. With probability 1, both Z and W are bounded,
and E(ZZT) > 0 and E(WWT) > 0.

C2. Each component of E[ZF̄X,γ (exp{ZTβ0(τ )}|Z, W)π (γ TW)
{1 − π (γ TW)τ }−1] and E{ZN (exp{ZTβ0(τ )})} is a Lipschitz
function of τ ∈ (0, τmax] for every γ ∈ K. Both fX,γ (t |z, w)
and f̃X,γ (t |z, w) are uniformly bounded away from zero for
γ ∈ K, t ∈ (0, L], z ∈ Z , and w ∈ W , where Z and W are
the domains of covariates Z and W, respectively. In addition,
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π (γ Tw) is uniformly bounded away from 0 and 1 for w ∈ W
and γ ∈ K.

C3. Each component of

E

[
ZZTf̄X,γ (exp(ZTb)|Z, W)exp(ZTb)π (γ TW)

× {1 − π (γ TW)τ }−1

][
E{ZZT

× f̃X,γ (exp(ZTb)|Z, W) exp(ZTb)}
]−1

is uniformly bounded in b ∈ B(d0) and γ ∈ K, where

B(d ) =
{

b ∈ Rp+1: inf
τ∈(0,τmax],γ∈K

∥∥E[ZN (exp(ZTb))

− ZN (exp{ZTβ0(τ )})]∥∥ ≤ d

}
and d0 is chosen such that B(d0) contains {β0(τ ): τ ∈
(0, τmax]}.

C4. Assume that infτ∈[ν,τmax] Eigmin
{
E[ZZTf̃X,γ 0

(exp{ZTβ(τ )}
|Z, W) exp{ZTβ(τ )}]} > 0 for any ν ∈ (0, τmax] and β(τ ) ∈
B(d0), where Eigmin{·} denotes the minimum eigenvalue of a
matrix.

C5. For γ in the neighborhood of γ 0, the matrix 1(γ , F0T ∗ ) de-
fined in Appendix C is negative definite.

C5′. For γ in the neighborhood of γ 0, the matrix �(β0(·), τmax; γ )
defined in Appendix B is negative definite.

C6. The kernel function K(·) has a compact support in R,
and it is an �th order kernel satisfying that

∫
R K(u)du =

1,
∫

R K2(u)du < ∞,
∫

R ujK(u)du = 0 for 1 ≤ j < �, and∫
R |u|�K(u)du < ∞. Moreover, it is Lipschitz continuous of

order �, with � ≥ 2.
C7. The first � partial derivatives of the density function of Z,

fZ(z), with respect to z are uniformly bounded for z ∈ Z , and
f0T ∗ (t |z) and fC(t |z, w) are bounded (uniformly in t, z, and
w) away from infinity, and the first � partial derivatives of
f0T ∗ (t |z) and fC(t |z, w) with respect to z or w are uniformly
bounded in t ∈ (0, L], z ∈ Z , and w ∈ W , where f0T ∗ (t |z) =
dF0T ∗ (t |z)/dt and fC(t |z, w) = dFC(t |z, w)/dt .

C8. The bandwidth hn = O(n−v), where 0 < v < min(1/p, 1/�).
C8′. The bandwidth hn = O(n−v), where 1/(2�) < v < 1/(3p) and

� > 3p/2.

Conditions C1–C3 impose the boundedness assumptions of covari-
ates and the density functions associated with the observed data, which
are common in censored quantile regression; condition C4 is the pos-
itive definite assumption for the inference of the quantile regression
parameter. Conditions C5 and C5′ are the positive definite assumptions
of the “Hessian” matrices of the cure rate parameters for the nonpara-
metric and iterative approaches, respectively. Condition C7 allows to
apply the Taylor expansion to determine the order of convergence of
the estimators. For ease of exposition, we assume continuous Z, while
if discrete covariates are involved, all proofs are essentially the same
except for replacing probability density functions by probability mass
functions and integration by summation. Condition C8 on the band-
width is needed to obtain the consistency of the proposed estimators
and C8′ is a strengthened version for establishing their weak conver-
gence properties. Due to the dependency of � on p, a higher-order kernel
function is needed to control the bias for a larger p (Wang, Zhou, and
Li 2013).

Lemma A.1. Under conditions C1–C4, if an → 0,

sup
τ∈[ν,τmax],γ∈K

‖β̂(τ, γ ) − β∗(τ, γ )‖ P−→ 0,

where β∗(τ, γ ) is the zero-crossing of E{Un(β, τ ; γ )}.

Lemma A.2. Under conditions C1–C4, for any se-
quence {β̃n(τ ): τ ∈ (0, τmax]}, if supτ∈(0,τmax] ‖ μ(β̃n(τ ), γ 0) −
μ(β0(τ ), γ 0)‖ P−→ 0, where

μ(β(τ ), γ )=E
[
ZN (exp{ZTβ(τ )})]=E

[
ZF̃X,γ (exp{ZTβ(τ )}|Z, W)

]
,

then we have

sup
τ∈(0,τmax]

∥∥∥∥n−1/2
n∑

i=1

Zi

[
Ni(exp{ZT

i β̃n(τ )}) − Ni(exp{ZT
i β0(τ )})]

−n1/2{μ(β̃n(τ ), γ 0) − μ(β0(τ ), γ 0)}
∥∥∥∥ P−→ 0; (A.1)

if supτ∈(0,τmax] ‖μ̃(β̃n(τ ), γ 0) − μ̃(β0(τ ), γ 0)‖ P−→ 0, where

μ̃(β(τ ), γ )

= E
[
ZI (X ≥ exp{ZTβ(τ )})π (γ TW)/{1 − π (γ TW)τ }]

= E
[
ZF̄X,γ (exp{ZTβ(τ )}|Z, W)π (γ TW)/{1−π (γ TW)τ }] ,

then we have

sup
τ∈(0,τmax]

∥∥∥∥n−1/2
n∑

i=1

Zi

{
I [Xi ≥exp{ZT

i β̃n(τ )}]−I [Xi ≥ exp{ZT
i β0(τ )}]}

× π (γ T
0 Wi)

1 − π (γ T
0 Wi)τ

− n1/2{μ̃(β̃n(τ ), γ 0) − μ̃(β0(τ ), γ 0)}
∥∥∥∥ P−→ 0.

(A.2)

Lemma A.3. Under conditions C1 and C6–C8,

sup
t∈[0,L],z∈Z

|�̃T ∗ (t |z) − �0T ∗ (t |z)| = OP (rn)

and

sup
t∈[0,L],z∈Z

|F̃T ∗ (t |z) − F0T ∗ (t |z)| = OP (rn),

where

�̃T ∗ (t |z) =
∫ t

0

∑n
i=1 Bni(z)dNi(u)∑n

k=1 I (Xk ≥ u)ωk(γ 0, �0T ∗ )Bnk(z)
,

rn = max{(log n/(nhp
n ))1/2, h�

n}, F̃T ∗ (t |z) = 1 − exp{−�̃T ∗ (t |z)}, and
�0T ∗ (t |z) = − log{1 − F0T ∗ (t |z)}.

Furthermore, for any γ † ∈ K, we can define F̃
†
T ∗ (t |z) and F

†
0T ∗ (t |z)

by replacing γ 0 with γ † in their counterparts, respectively. Note that
F

†
0T ∗ (t |z) is the conditional distribution function of T ∗ at γ = γ †. Then,

we have supγ †∈K,t∈[0,L],z∈Z |F̃ †
T ∗ (t |z) − F

†
0T ∗ (t |z)| = OP (rn).

The detailed proofs of the three lemmas are given in online Supple-
mentary Material B.

APPENDIX B: PROOFS OF THEOREMS 1 AND 2

Proof of Theorem 1.

We first prove the consistency of γ̂ I . Denote U(β, τ ; γ ) =
E{Un(β, τ ; γ )}, then U(β0, τ ; γ 0) = 0. For a given γ ∈ K, β∗(τ, γ )
is the solution of equation U(β, τ ; γ ) = 0. Following theorem 2.7.5,
the preservation of the Donsker property by van der Vaart and Wellner
(1996), and the boundedness of W under condition C1, the class of
functions{ ∫ τmax

0

{1 − π (γ TW)}
1 − π (γ TW)u

[
dN (exp{ZTβ(u)})

− I [X ≥ exp{ZTβ(u)}]Hγ (du|W)

]
: γ ∈ K, β(τ )

∈ B(d ), τ ∈ [ν, τmax]

}
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is Donsker. Thus, together with Lemma A.1, we have
supγ∈K ‖Rn(γ ; β̂(·, γ )) − R(γ ; β∗(·, γ ))‖ → 0 almost surely, where
R(γ ; β∗(·, γ )) = E{Rn(γ ; β∗(·, γ ))}. It follows immediately that
R(γ 0; β∗(·, γ 0)) = 0. Condition C5′ ensures that γ 0 is the unique zero-
crossing of R(γ ; β∗(·, γ )) in the neighborhood of γ 0. Thus, γ̂ I , which
solves Rn(γ ; β̂(·, γ )) = 0, converges to γ 0 in probability, as n → ∞.

We prove the uniform consistency of β̂I (τ ) ≡ β̂(τ, γ̂ I )
over τ ∈ [ν, τmax]. Note that β0(τ ) = β∗(τ, γ 0) and
‖β̂I (τ ) − β0(τ )‖ ≤ ‖β̂(τ, γ̂ I ) − β∗(τ, γ̂ I )‖ + ‖β∗(τ, γ̂ I )
− β∗(τ, γ 0)‖. For a large n, we have supτ∈[ν,τmax] ‖β̂(τ, γ̂ I ) −
β∗(τ, γ̂ I )‖ P−→ 0 from the consistency of γ̂ I and Lemma A.1. Hence,

it suffices to show that supτ∈[ν,τmax] ‖β∗(τ, γ̂ I ) − β∗(τ, γ 0)‖ P−→ 0. By
the definition of β∗(τ, γ ), we have for every τ and γ ,

E
[
ZZTf̃X,γ (exp{ZTβ∗(τ, γ )}|Z, W) exp{ZTβ∗(τ, γ )}]

× ∂β∗(τ, γ )

∂γ T

=
∫ τ

0
E

[
ZZTf̄X,γ (exp{ZTβ∗(u, γ )}|Z, W)

× exp{ZTβ∗(u, γ )} π (γ TW)

1 − π (γ TW)u

]
∂β∗(u, γ )

∂γ T
du

+
∫ τ

0
E

[
ZWT

[
F̄X,γ (exp{ZTβ∗(u, γ )}|Z, W)

× {2 − π (γ TW)u} + F̄C(exp{ZTβ∗(u, γ )}|Z, W)

×{π (γ TW)u − 1}]π (γ TW){1 − π (γ TW)}
{1 − π (γ TW)u}2

]
du.

Observing that F̄X,γ (t |Z, W) = {1 − π (γ TW)FT ∗ (t |Z)}
F̄C(t |Z, W), we have

∂β∗(τ, γ )

∂γ T

∣∣
γ=γ 0

= B(β0(τ ), γ 0)−1

∫ τ

0
D(β0(u), γ 0)

{
∂β∗(u, γ )

∂γ T

∣∣
γ=γ 0

}
du

+ B(β0(τ ), γ 0)−1

∫ τ

0
C(β0(u), γ 0)du, (B.1)

where

B(β(τ ), γ )

= E
[
ZZTf̃X,γ (exp{ZTβ(τ )}|Z, W) exp{ZTβ(τ )}],

C(β(τ ), γ )

= E
[
ZWTF̄C(exp{ZTβ(τ )}|Z, W)π (γ TW)

× {1 − π (γ TW)}],
D(β(τ ), γ )

= E

[
ZZTf̄X,γ (exp{ZTβ(τ )}|Z, W) exp{ZTβ(τ )}

× π (γ TW)

1 − π (γ TW)τ

]
.

Note that (B.1) is the Volterra integral equation of the second type and
one solution of (B.1) can be expressed as

∂β∗(τ, γ )

∂γ T

∣∣
γ=γ 0

=
∫ τ

0
A(τ, u)B(β0(u), γ 0)−1

∫ u

0
C(β0(s), γ 0)dsdu

+ B(β0(τ ), γ 0)−1

∫ τ

0
C(β0(u), γ 0)du,

where

A(τ, u)

= B(β0(τ ), γ 0)−1

∫ u

0
C(β0(s), γ 0)ds

× exp

{∫ τ

u

B(β0(s), γ 0)−1

∫ s

0
C(β0(v), γ 0)dvds

}
.

Under conditions C2–C4, we have that ∂β∗(τ, γ )/∂γ T|γ=γ 0
is bounded

uniformly in τ ∈ [ν, τmax]. Together with the consistency of γ̂ I , and
via the Taylor expansion, we obtain that supτ∈[ν,τmax] ‖β∗(τ, γ̂ I ) −
β∗(τ, γ 0)‖ P−→ 0, which completes the proof of the uniform consis-

tency that supτ∈[ν,τmax] ‖β̂I (τ ) − β0(τ )‖ P−→ 0.

Proof of Theorem 2.

We first establish the weak convergence of β̂(·, γ 0). Note
that ∂μ(β(τ ), γ )/∂β(τ )T = B(β(τ ), γ ) and ∂μ̃(β(τ ), γ )/∂β(τ )T =
D(β(τ ), γ ). Let oI (1) denote a term that converges uniformly in
τ ∈ I to zero in probability. Because Un(β̂(·, γ ), τj ; γ ) = 0 for j =
1, . . . , qn,

sup
τ∈[τj ,τj+1],γ∈K

n1/2‖Un(β̂(·, γ ), τ ; γ )‖

= sup
τ∈[τj ,τj+1],γ∈K

n1/2‖Un(β̂(·, γ ), τ ; γ )

− Un(β̂(·, γ ), τj ; γ )‖

= sup
τ∈[τj ,τj+1],γ∈K

n1/2

∥∥∥∥ ∫ τ

τj

n−1
n∑

i=1

Zi I [Xi

≥ exp{ZT
i β̂(u, γ )}]Hγ (du|Wi)

∥∥∥∥
≤ n1/2anc0 → 0, (B.2)

under n1/2an → 0, where c0 is a constant such that
supi ‖Zi‖ supi,γ exp(γ TWi) < c0. Lemma A.1 and condition C2
immediately imply that μ(β̂(τ, γ 0), γ 0) and μ̃(β̂(τ, γ 0), γ 0) converge
uniformly to μ(β0(τ ), γ 0) and μ̃(β0(τ ), γ 0), respectively. By (A.1),
(A.2), and (B.2), we have

−n1/2Un(β0, τ ; γ 0)

= −
∫ τ

0
n1/2{μ̃(β̂(u, γ 0), γ 0) − μ̃(β0(u), γ 0)}du

+ n1/2{μ(β̂(τ, γ 0), γ 0) − μ(β0(τ ), γ 0)} + o[ν,τmax](1)

= −
∫ τ

0
D(β0(u), γ 0)B(β0(u), γ 0)−1n1/2{μ(β̂(u, γ 0), γ 0)

− μ(β0(u), γ 0)}du + n1/2{μ(β̂(τ, γ 0), γ 0)

− μ(β0(τ ), γ 0)} + o[ν,τmax](1).

It follows from the production integration theory (Gill and Johansen
1990; Andersen et al. 1993) that

n1/2{β̂(τ, γ 0) − β0(τ )}
= B(β0(τ ), γ 0)−1φ

{−n1/2Un(β0, τ ; γ 0)
} + o[ν,τmax](1)

= B(β0(τ ), γ 0)−1n−1/2
n∑

i=1

φ{−ξi(β0(·), τ ; γ 0)}

+ o[ν,τmax](1), (B.3)

where φ is a linear map from F to F such that for g ∈ F ,

φ(g)(·) =
∫ ·

0
I(s, ·)g(ds),

I(s, t) = ∏
u∈(s,t][Ip+1 + D(β0(u), γ 0)B(β0(u), γ 0)−1du], Ip+1 is the

identity matrix of size p + 1, F = {g: [0, τmax] → Rp+1, g is a
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left-continuous function with right limit and g(0) = 0}, and

ξi(β(·), τ ; γ ) = Zi

[
Ni(exp{ZT

i β(τ )})

−
∫ τ

0
I [Xi ≥ exp{ZT

i β(u)}]Hγ (du|Wi)

]
.

Under conditions C1 and C2, {ξ (β0(·), τ ; γ 0): τ ∈ [ν, τmax]} is a
Donsker class and thus −n1/2Un(β0, τ ; γ 0) converges weakly to a zero-
mean Gaussian process. Since φ is a linear operator, the limiting process
of n1/2{β̂(τ, γ 0) − β0(τ )} is also a zero-mean Gaussian process. The
continuous mapping theorem (van der Vaart and Wellner 1996) implies
that n1/2 supτ∈[ν,τmax] ‖β̂(τ, γ 0) − β0(τ )‖ = OP (1).

We prove the asymptotic normality of γ̂ I . Via integration by parts,
we have

Rn(γ ; β(·))

= n−1
n∑

i=1

[
Ni(exp{ZT

i β(τmax)}) Wi{1 − π (γ TWi)}
1 − π (γ TWi)τmax

−
∫ τmax

0
{Ni(exp{ZT

i β(u)}) + I [Xi ≥ exp{ZT
i β(u)}]}

× Wi{1 − π (γ TWi)}π (γ TWi)

{1 − π (γ TWi)u}2
du

]
.

Using the similar arguments in the proofs of Lemma A.2, the consis-
tency of γ̂ I , the uniform consistency of β̂(τ, γ 0) over τ ∈ [ν, τmax], and
the Taylor expansion, we have

n1/2Rn(γ 0; β̂(·, γ 0))

= n1/2Rn(γ 0; β0(·)) + B̃(β0(τmax), γ 0)n1/2{β̂(τmax, γ 0)

− β0(τmax)} −
∫ τmax

0
D̃(β0(u), γ 0)n1/2{β̂(u, γ 0)

− β0(u)}du + o[ν,τmax](1), (B.4)

where

B̃(β(τ ), γ )

= E

[
WZTf̃X,γ (exp{ZTβ(τ )}|Z, W) exp{ZTβ(τ )}

× 1 − π (γ TW)

1 − π (γ TW)τ

]
,

D̃(β(τ ), γ )

= E

[
WZT[f̃X,γ (exp{ZTβ(τ )}|Z, W)

+f̄X,γ (exp{ZTβ(τ )}|Z, W)]

× exp{ZTβ(τ )} {1 − π (γ TW)}π (γ TW)

{1 − π (γ TW)τ }2

]
.

If we plug (B.3) into Equation (B.4), we have

n1/2Rn(γ 0; β̂(·, γ 0))

= n−1/2
n∑

i=1

�i(β0(·), τmax; γ 0) + o[ν,τmax](1), (B.5)

where

�i(β(·), τ ; γ )

=
∫ τ

0

Wi{1 − π (γ TWi)}
1 − π (γ TWi)u

[
dNi(exp{ZT

i β(u)})

−I [Xi ≥ exp{ZT
i β(u)}]Hγ (du|Wi)

]
+ B̃(β(τ ), γ )B(β(τ ), γ )−1φ{−ξi(β(·), τ ; γ )}
−

∫ τ

0
D̃(β(u), γ )B(β(u), γ )−1φ{−ξi(β(·), u; γ )}du.

Using the definition of β̂(τ, γ ), we also have that

∂β̂(τ, γ )

∂γ T

∣∣
γ=γ 0

= B(β0(τ ), γ 0)−1

∫ τ

0
D(β0(u), γ 0)

{
∂β̂(u, γ )

∂γ T

∣∣
γ=γ 0

}
du

+ B(β0(τ ), γ 0)−1

∫ τ

0
C(β0(u), γ 0)du + o[ν,τmax](1).

In view of this integral equation, its solution takes one form as

∂β̂(τ, γ )

∂γ T

∣∣
γ=γ 0

= B(β0(τ ), γ 0)−1ψ

{∫ τ

0
C(β0(u), γ 0)du

}
+o[ν,τmax](1),

(B.6)

where ψ is a linear map from G to G such that for g ∈ G,

ψ(g)(·) =
∫ ·

0
J (s, ·)g(ds),

J (s, t) =
∏

u∈(s,t]

[Ip+1 + D(β0(u), γ 0)du],

G = {g: [0, τmax] → R(p+1)×(q+1), g is a left-continuous function with
right limit and g(0) = 0(p+1)×(q+1)}, and R(p+1)×(q+1) denotes the set of
all matrices with p + 1 rows and q + 1 columns.

Using the chain rule and (B.6), we have

∂R(γ ; β̂(·, γ ))

∂γ

∣∣
γ=γ 0

= B̃(β0(τmax), γ 0)
∂β̂(τmax, γ )

∂γ

∣∣
γ=γ 0

−
∫ τmax

0
C̃(β0(u), γ 0)du −

∫ τmax

0
D̃(β0(u), γ 0)

×
{

∂β̂(u, γ )

∂γ

∣∣
γ=γ 0

}
du + o[ν,τmax](1)

= �(β0(·), τmax; γ 0) + o[ν,τmax](1), (B.7)

where

C̃(β(τ ), γ )

= E

[ (
W{1 − π (γ TW)}

1 − π (γ TW)u

)⊗2

× F̄C(exp{ZTβ(u)}|Z, W)π (γ TW)

]
,

�(β(·), τ ; γ )

= B̃(β(τ ), γ )B(β(τ ), γ )−1ψ

{∫ τ

0
C(β(u), γ )du

}
−

∫ τ

0
C̃(β(u), γ )du −

∫ τ

0
D̃(β(u), γ )B(β(u), γ )−1

× ψ

{∫ u

0
C(β(s), γ )ds

}
du,

and a⊗2 = aaT for a column vector a.
It follows from the consistency of γ̂ I , (B.5), (B.7), condition C5′,

and the Taylor expansion that

n1/2(γ̂ I − γ 0)

= −
{

∂R(γ ; β̂(·, γ ))

∂γ

∣∣
γ=γ 0

}−1

n1/2Rn(γ 0; β̂(·, γ 0))

+ o[ν,τmax](1)

= −n−1/2
n∑

i=1

�(β0(·), τmax; γ 0)−1�i(β0(·), τmax; γ 0)

+ o[ν,τmax](1), (B.8)
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which is approximated by the scaled summation of iid random vectors.
It can then be shown to converge in distribution to a Gaussian random
vector with mean zero and variance-covariance matrix �−1

I VI�
−1
I ,

where

�I =�(β0(·), τmax; γ 0) and VI =E{�i(β0(·), τmax; γ 0)}⊗2.

We establish the weak convergence of β̂I (·) ≡ β̂(·, γ̂ I ). It follows
from (B.3), (B.6), and (B.8) that

n1/2{β̂I (τ ) − β0(τ )}
= n1/2{β̂(τ, γ 0) − β0(τ )} + n1/2{β̂(τ, γ̂ I ) − β̂(τ, γ 0)}

= n−1/2
n∑

i=1

{ζ (1)
i (τ ) + ζ

(2)
i (τ )} + o[ν,τmax](1), (B.9)

where

ζ
(1)
i (τ ) = B(β0(τ ), γ 0)−1φ{−ξi(β0(·), τ ; γ 0)},

ζ
(2)
i (τ ) = −B(β0(τ ), γ 0)−1ψ

{∫ τ

0
C(β0(u), γ 0)du

}
× �−1

I �i(β0(·), τmax; γ 0).

The class of {φ{−ξ (β0(·), τ ; γ 0)}: τ ∈ [ν, τmax]} is Donsker, and
the class of {ζ (1)(τ ): τ ∈ [ν, τmax]} is also Donsker under condi-
tion C3 by using the preservation property of Donsker class (van
der Vaart and Wellner 1996). Similarly, the Lipschitz property of
function

∫ ·
0 C(β0(u), γ 0)du from [ν, τmax] to R(p+1)×(q+1), the lin-

earity of operator ψ , and together with condition C3 yield that
{ζ (2)(τ ): τ ∈ [ν, τmax]} is a Donsker class. It follows from the preser-
vation property of Donsker class again that {ζ (1)(τ ) + ζ (2)(τ ): τ ∈
[ν, τmax]} is a Donsker class. Hence, n−1/2

∑n
i=1{ζ (1)

i (τ ) + ζ
(2)
i (τ )} con-

verges weakly to a Gaussian process over τ ∈ [ν, τmax] with mean
zero and variance-covariance matrix function �I (τ, τ ′) = E[{ζ (1)(τ ) +
ζ (2)(τ )}{ζ (1)(τ ′) + ζ (2)(τ ′)}T] for τ, τ ′ ∈ [ν, τmax]. The weak conver-
gence of n1/2{β̂I (τ ) − β0(τ )} over τ ∈ [ν, τmax] follows immediately
using equation (B.9), which completes the proof of Theorem 2.

APPENDIX C: PROOFS OF THEOREMS 3 AND 4

Proof of Theorem 3.

We first prove the consistency of γ̂ N by verifying each conditions
in Theorem 1 by Chen, Linton, and Van Keilegom (2003). Rewrite
Sn(γ , FT ∗ ) = n−1

∑n
i=1 si(γ , FT ∗ ), where for i = 1, . . . , n,

si(γ , FT ∗ )

= Wi{1 − π (γ TWi)}
1 − π (γ TWi)FT ∗ (Xi |Zi)

× {
�i − π (γ TWi)FT ∗ (Xi |Zi)

}
=

∫ L

0

Wi{1 − π (γ TWi)}
1 − π (γ TWi)FT ∗ (t |Zi)

dMi(t ; γ , FT ∗ ).

Let S(γ , FT ∗ ) = E{si(γ , FT ∗ )}. As Mi(t ; γ , FT ∗ ) is a martingale,
S(γ 0, F0T ∗ ) = 0. Because γ̂ N solves Sn(γ , F̂T ∗ ) = 0, we have
‖Sn(γ̂ N, F̂T ∗ )‖ = oP (1), which leads to condition (1.1) by Chen, Lin-
ton, and Van Keilegom (2003).

For any δ > 0 and γ ∈ K, we have inf‖γ−γ 0‖>δ

‖S(γ , F0T ∗ )‖ = inf‖γ−γ 0‖>δ ‖1(γ ∗, F0T ∗ ) (γ − γ 0)‖, which is

positive under condition C5. Here, γ ∗ is between γ and γ 0, and

�1(γ , FT ∗ )

≡ ∂S(γ , FT ∗ )

∂γ

= −E

[ ∫ L

0

W⊗2π (γ TW){1 − π (γ TW)}{1 − FT ∗ (t |Z)}
{1 − π (γ TW)FT ∗ (t |Z)}2

× dM(t ; γ , FT ∗ )

]
− E

[ ∫ L

0

(
W{1 − π (γ TW)}

1 − π (γ TW)FT ∗ (t |Z)

)⊗2

I (X ≥ t)

× d�T,γ (t |Z, W)

]
. (C.1)

Thus, condition (1.2) by Chen, Linton, and Van Keilegom (2003) is
verified.

Under conditions C1 and C2, there exists a constant c∗ such that

∣∣∣∣ 1 − π (γ Tw)

1 − π (γ Tw)FT ∗ (t |z)
− 1 − π (γ̃ Tw)

1 − π (γ̃ Tw)F̃T ∗ (t |z)

∣∣∣∣
≤ 2

|π (γ Tw) − π (γ̃ Tw)| + |FT ∗ (t |z) − F̃T ∗ (t |z)|
{1 − π (γ Tw)FT ∗ (t |z)}{1 − π (γ̃ Tw)F̃T ∗ (t |z)}

≤ 2
‖w‖‖γ − γ̃ ‖ + supt,z |FT ∗ (t |z) − F̃T ∗ (t |z)|

{1 − π (γ Tw)FT ∗ (t |z)}{1 − π (γ̃ Tw)F̃T ∗ (t |z)}
≤ c∗‖γ − γ̃ ‖ + c∗ sup

t,z
|FT ∗ (t |z) − F̃T ∗ (t |z)|

for any γ , γ̃ ∈ K, and FT ∗ (·|z) and F̃T ∗ (·|z) in the class of nonparamet-
ric conditional distribution functions. Thus, under condition C1, ev-
ery element of the first part of si(γ , FT ∗ ), Wi{1 − π (γ TWi)}�i/{1 −
π (γ TWi)FT ∗ (Xi |Zi)}, is a Lipschitz function of (γ , FT ∗ ). Similar ar-
gument can be used to show that every element of the remaining part of
si(γ , FT ∗ ) is also Lipschitz. Thus, condition (1.3) is satisfied immedi-
ately. Furthermore, it follows from theorem 2.7.11 by van der Vaart and
Wellner (1996) that the class of si(γ , FT ∗ ) over the parametric space
is a Glivenko–Cantelli class. Thus, condition (1.5′) follows directly. In
addition, condition (1.4) is also satisfied by Lemma A.3. Therefore, it
follows from theorem 1 by Chen, Linton, and Van Keilegom (2003)

that γ̂ N

P−→ γ 0.

The uniform consistency of β̂N (τ ) ≡ β̂(τ, γ̂ N ) over τ ∈ [ν, τmax]
follows directly from the proof of Theorem 1 by replacing γ̂ I with γ̂ N .

Proof of Theorem 4.

We first prove the asymptotic normality of γ̂ N by verifying condi-
tions (2.1)–(2.4), (2.5′), and (2.6) in theorem 2 by Chen, Linton, and
Van Keilegom (2003). It is clear that condition (2.1) is satisfied by the
definition of γ̂ N .

It can be seen from (C.1) that �1(γ , F0T ∗ ) is continuous with
respect to γ and

�N ≡ �1(γ 0, F0T ∗ )

= −E

(∫ L

0

W{1 − π (γ T
0 W)}

1 − π (γ T
0 W)F0T ∗ (t |Z)

dM(t ; γ 0, F0T ∗ )

)⊗2

,

which is negative definite under condition C5. Thus, condition (2.2) is
satisfied.
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For all γ ∈ K, the functional derivative of S(γ , FT ∗ ) at F0T ∗ along
the direction FT ∗ − F0T ∗ is

�2(γ , F0T ∗ )[FT ∗ − F0T ∗ ]

= E

[ ∫ L

0
Wπ (γ TW){1 − π (γ TW)}

×
{

FT ∗ (u|Z) − F0T ∗ (u|Z)

{1 − π (γ TW)F0T ∗ (u|Z)}2
dN (u)

−I (X ≥ u)d

(
FT ∗ (u|Z) − F0T ∗ (u|Z)

{1 − π (γ TW)F0T ∗ (u|Z)}2

)}]
=

∫
Rp

∫ L

0
wπ (γ Tw){1 − π (γ Tw)}

×
[

FT ∗ (u|z) − F0T ∗ (u|z)

{1 − π (γ Tw)F0T ∗ (u|z)}2
E{dN (u)|Z = z}

− E{I (X ≥ u)|Z = z}d
(

FT ∗ (u|z) − F0T ∗ (u|z)

{1 − π (γ Tw)F0T ∗ (u|z)}2

)]
× fZ(z)dz. (C.2)

It follows from the Taylor expansion that condition (2.3) holds under
conditions C1 and C5 and Lemma A.1. Condition (2.4) is also satisfied
directly from Lemma A.3.

By the Lipschitz continuity of si(γ , FT ∗ ) as shown in the proof of
Theorem 3, si(γ , FT ∗ ) satisfies the Hölder continuity condition (3.1) in
theorem 3 by Chen, Linton, and Van Keilegom (2003). Obviously, con-
dition (3.2) is satisfied due to the continuity of si(γ , FT ∗ ) and condition
(3.3) is satisfied by remark 3 (ii) of their article. Therefore, condition
(2.5′) holds by applying theorem 3 by Chen, Linton, and Van Keilegom
(2003).

It follows from theorem 2.3 by Liang, Una-Alvarez, and Iglesias-
Perez (2012) that under conditions C1, C2, C5–C7, and C8′ that

F̂T ∗ (t |z) − F0T ∗ (t |z)

= 1

nh
p
nfZ(z)

n∑
i=1

Kp

(
z − Zi

hn

)
ξ (Xi,�i, t, z, w)

+ OP (αn), (C.3)

where

ξ (Xi,�i, t, z, w)

= {1−F0T ∗ (t |z)}
[∫ t

0

1

π (γ T
0 w){1 − F0T ∗ (u|z)}F̄C(u|z, w)

×
{

dNi(u) − I (Xi ≥ u)ω0idF0T ∗ (u|z)

1 − F0T ∗ (u|z)

}]
and αn = h�

n + {log n/(nhp
n )}3/4. Note that for i = 1, . . . , n,

E

{
Kp

(
z − Zi

hn

)
ξ (Xi, �i, t, z, w)

}
=

∫
Rp

E

{
Kp

(
z − Zi

hn

)
ξ (Xi, �i, t, z, w)|Zi = x

}
× fZ(x)dx

=
∫

Rp

Kp

(
z−x
hn

)∫ t

0

1 − F0T ∗ (t |z)

π (γ T
0 w){1 − F0T ∗ (u|z)}F̄C(u|z, w)

×E

{
dNi(u) − I (Xi ≥ u)ω0idF0T ∗ (u|z)

1 − F0T ∗ (u|z)

∣∣∣∣ Zi = x
}

× fZ(x)dx

= 0,

where ω0i = ωi(γ 0, �0T ∗ ). Plugging (C.3) into (C.2) and then using
the standard change of variables and the Taylor expansion argument,

we obtain that

�2(γ 0, F0T ∗ )[F̂T ∗ − F0T ∗ ]

=
∫

Rp

∫ L

0
wπ

(
γ T

0 w
){1 − π (γ T

0 w)}

×
[

F̂T ∗ (u|z) − F0T ∗ (u|z)

{1 − π (γ T
0 w)F0T ∗ (u|z)}2

E{dN (u)|Z = z}

− E{I (X ≥ u)|Z = z}d
(

F̂T ∗ (u|z) − F0T ∗ (u|z)

{1 − π (γ T
0 w)F0T ∗ (u|z)}2

) ]
×fZ(z)dz

= n−1
n∑

i=1

η(Xi,�i, Zi , Wi) + OP (αn),

where

η(Xi,�i, Zi , Wi)

=
∫ L

0
Wiπ

(
γ T

0 Wi

){1 − π (γ T
0 Wi)}

×
[

ξ (Xi, �i, u, Zi , Wi)π (γ T
0 Wi)F̄C(u|Zi , Wi)

{1 − π (γ T
0 Wi)F0T ∗ (u|Zi)}2

× dF0T ∗ (u|Zi)

−{1 − π (γ T
0 Wi)F0T ∗ (u|Zi)}F̄C(u|Zi , Wi)

× d

(
ξ (Xi, �i, u, Zi , Wi)

{1 − π (γ T
0 Wi)F0T ∗ (u|Zi)}2

) ]
is a random vector with mean zero due to
E{dξ (Xi, �i, u, Zi , Wi)|Zi , Wi} = 0. We further note that
E‖η(Xi, �i, Zi , Wi)‖2 < ∞ under conditions C1 and C2 and
OP (αn)n1/2 = oP (1) under condition C8′. Hence, we have

n1/2{Sn(γ 0, F0T ∗ ) + 2(γ 0, F0T ∗ )[F̂T ∗ − F0T ∗ ]}

= n−1/2
n∑

i=1

{si(γ 0, F0T ∗ ) + η(Xi, �i, Zi , Wi)}

+ oP (1),

which converges in distribution to a zero-mean normal random vector
with variance-covariance matrix

VN ≡ E{s1(γ 0, F0T ∗ ) + η(X1, �1, Z1, W1)}⊗2.

Thus, condition (2.6) is verified. Therefore, it follows from theorem 2 by
Chen, Linton, and Van Keilegom (2003) that n1/2(γ̂ N − γ 0) converges
in distribution to a normal random vector with mean zero and variance-
covariance matrix �−1

N VN�−1
N . In other words, we have

n1/2(γ̂ N − γ 0)

= −n−1/2
n∑

i=1

�−1
N {si(γ 0, F0T ∗ ) + η(Xi, �i, Zi , Wi)}

+ oP (1). (C.4)

We prove the weak convergence of β̂N (·) ≡ β̂(·, γ̂ N ). It follows from
(B.3), (B.6), and (C.4) that

n1/2{β̂N (τ ) − β0(τ )}
= n1/2{β̂(τ, γ 0) − β0(τ )} + n1/2{β̂(τ, γ̂ N ) − β̂(τ, γ 0)}

= n−1/2
n∑

i=1

{ζ (1)
i (τ ) + ζ

(3)
i (τ )} + o[ν,τmax](1), (C.5)

where

ζ
(3)
i (τ ) = −B(β0(τ ), γ 0)−1ψ

{∫ τ

0
C(β0(u), γ 0)du

}
× �−1

N {si(γ 0, F0T ∗ ) + η(Xi, �i, Zi , Wi)}.

Likewise, we have that n−1/2
∑n

i=1{ζ (1)
i (τ ) + ζ

(3)
i (τ )} converges

weakly to a Gaussian process over τ ∈ [ν, τmax] with mean zero
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and variance-covariance matrix function �N (τ, τ ′) = E[{ζ (1)(τ ) +
ζ (3)(τ )}{ζ (1)(τ ′) + ζ (3)(τ ′)}T] for τ, τ ′ ∈ [ν, τmax]. The weak conver-
gence of n1/2{β̂N (τ ) − β0(τ )} over τ ∈ [ν, τmax] follows immediately
using equation (C.5), which completes the proof of Theorem 4.

SUPPLEMENTARY MATERIALS

The supplementary materials contain additional simulation
results and the proofs of the lemmas.

[Received September 2011. Revised August 2013.]
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