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SUMMARY
Two-stage design has long been recognized to be a cost-effective way for conducting biomedical stud-
ies. In many trials, auxiliary covariate information may also be available, and it is of interest to exploit
these auxiliary data to improve the efficiency of inferences. In this paper, we propose a 2-stage design
with continuous outcome where the second-stage data is sampled with an “outcome-auxiliary-dependent
sampling” (OADS) scheme. We propose an estimator which is the maximizer for an estimated likelihood
function. We show that the proposed estimator is consistent and asymptotically normally distributed. The
simulation study indicates that greater study efficiency gains can be achieved under the proposed 2-stage
OADS design by utilizing the auxiliary covariate information when compared with other alternative sam-
pling schemes. We illustrate the proposed method by analyzing a data set from an environmental epidemi-
ologic study.
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1. INTRODUCTION

Biomedicalstudies are often designed to assess the relationship between some expadunterest

and the corresponding outconyeof individual adjusted by some confounding covariafesin many
situations, due to limited budget, the assessmedt isfnot feasible to be conducted on all subjects under
study. One useful approach to accommodating this issue is to use a 2-stage stratified sampling design,
originally introduced byNeyman(1938), to enhance the study efficiency while minimizing the costs. At

the first stage of a typical 2-stage design, a relatively large random sample is drawn and measurements are
conducted on outcomeé and Z, which are easier to measure, while at the second stage, ascertainments
on theX are made for a subsample drawn randomly, without replacement.

There is great literature on the variations of 2-stage sampling designs with binary outcomes. For
example,White (1982) proposed a stratified case—control design of a rare diseas¥)(e@d a rare
exposure (i.eX), where a large preliminary random sample is drawn at the first stage, from which strata
are identified on the basis of both the disease and the exposure. At the second stage, a subsample is drawn
from within the strata identified in the first stage and measurements of the potential confounding variables ¢ g
are made on the subsample. Compared with the simple random sampling at the second stage regardless éf
either the disease or the exposure status, great efficiency gains can be achieved by selecting the deswab&
number of cases and controls within each stratum identified in the first Ratgouzand otherg2002)
considered a matched case—control study with binary outcome using the conditional logistic regression
method. Recenth§childcrout and Rathou2010) extended this stratified case—control design to a more
general case where the response is a longitudinal binary variable.

On the other hand, when there exists an additional auxiliary variétiier the expensiveX, which is
easily obtained for all subjects under study at the first stage, it is necessary to incorporate the information
implied by W into the statistical analysis. For instance, in a lung cancer biomarker study, one of the
aims is to assess the epidermal growth factor receptor (EGFR) mutaX)ras (@ predictive biomarker
for whether a subject responds to a greater extent to EGFR inhibitor dv)g®(e to high cost of
genotyping EGFR genes, it is prohibitive to ascertain the genotype of EGFR genes on all samples at the
first stage. However, the likelihood score of EGFR mutatioffy ¢btained by a designed questionnaire
has been shown to relate to the EGFR mutations and can be easily observed for all paBaetzaim
others(2004).Wang and Zhoy2010) considered inference of the 2-stage outcome-auxiliary-dependent
sampling (OADS) design to increase the study efficiency by utilizing the auxiliary covariate information
when the outcome is categoricalhangand others(2008) andLu and Tsiatis(2008) also showed that
using the available baseline auxiliary covariate information can achieve more efficient estimators in the
analysis of randomized clinical trials and survival data, respectively.

As the scope of biomedical studies inquiry grows, it is important to investigate the relationships be-
tween continuous biological outcomes and exposure of interest adjusted by other covariates. It is cost-
effective to adopt a 2-stage design when the exposure is hard to obtain. However, most current 2-stage
designs have been developed for categorical outcomes, the statistical method for the 2-stage design with
continuous outcome is limited. When an auxiliafy does not existChatterjeeand others(2003) con-
sidered a pseudoscore estimator for regression parameter with a 2-stage sawipimgr and Zhou
(2005) proposed a 2-stage outcome-dependent sampling (ODS) design for continuous outcome regres-
sion models, wherein the subsample was drawn at the second stage within the stratum that was achieved
by subdividing the range of continuous outcome variable into class intervals.

In this paper, we proposed a 2-stage OADS design when outdoiseontinuous and there exists
auxiliary variableW at the first stage. Specifically, outcorreauxiliary variableW for exposureX, and
other covariateg are all observed for all patients at the first stage. Then we selected the subsample within
each stratum defined by the partition of the domairy ot W to ascertain the value of at the second
stage. An estimated likelihood function by estimating its infinite-dimensional nuisance parameter through
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the kernel smoother is proposed and the estimator maximizing the estimated likelihood is used to estimate
the regression parameter. The proposed 2-stage OADS design with continuous outcome is shown to be
more efficient than other alternative competing sampling schemes.

The rest of this paper is structured as follows. We describe the 2-stage OADS design, data structure,
and the model in Sectio?. The estimated likelihood function method and the asymptotic properties of
the resulting estimator are presented in SecBoiwe conduct a simulation study to assess the small
sample approximation under the 2-stage OADS design in SegtibnSectionb, a real data example is
analyzed to illustrate our proposed method. Some conclusions are provided in $eetnahthe proof of
the asymptotic properties of proposed estimator is investigated in the supplementary material available at
Biostatisticsonline.

2. DESIGN AND MODEL
2.1 Two-stage OADS design and data structure

To fix notation, letY denote a continuous outcome variallg, X} be a covariate vector, an/ be a
continuous auxiliary variable foX. We assume that the conditional distributionYofjiven Z and X is
known up to a finite vector of unknown parameters, that is,

f(Y|Z, X) = f(Y|Z, X; 8O, (2.1)

wheref? is the true value ofj-vector regression paramet@iof interest. Assume thaw offers no addi-
tional information regarding the outconYegiven covariatex.

Assume that the domain 6Y, W) is denoted by x W. Let ) be partitioned inta) mutually exclusive
and exhaustive strata by the known constants = ag < a3 < --- < aj_1 < ajy = oo, and let thejth
stratum be denoted b%; = (aj_1, aj], for j = 1,..., J. Similarly, letV be partitioned intd” mutually
exclusive and exhaustive strata by the known constants = bp < by < .-+ < br_1 < by = 0,
and let thetth stratum be denoted B = (bi—1, bt], fort =1, ..., T. For subsequential use, we define
Bo = (—o0, 00) whenT = 0, which indicates that there is no partition 8. Therefore, we hav@) x W
partitioned intoJ x T mutually exclusive and exhaustive rectanglgs x B, for j = 1,...,J and
t=1,...,T. For simplicity, we rewrite these rectanglesfsfork = 1,..., K. Hence{Aj x B | =
1., Jandt=1,... . T}={Ack=1...,Klandy x W= U}_; ULy Aj x Bt = Uiy Ax-

At the first stageN subjects are sampled at random from a population Wth Z;, Wi)iN=1 being

obsened. Suppose that there axg obsenations of(Y, W) falling into stratumAy, thenN = Zl*f:l Nk.
Thesecond stage, whebéis observed, are comprised of 2 components: (i) a simple random sample (SRS)
of sizeng and(ii) a supplemental OADS sample of sigg from thekth stratumAy fork =1, ..., K. Let

R bean indicator for theth subject whethek; is observed R = 1) or not(R, = 0). Let ngx denotethe

number of subjects in the SRS falling into tkita stratumA . Furthermore, leVy denoteall the subjects

in the SRS and defingx = {i: R = 1,(Y;, W) € Ax} andVk = {i: R = 0,(Y;, W) € Ay}, then

nk + Nok = |Vk| andNk = |Vk| + | Vk|, where and hereafter, we use notatjé to denote the cardinality

of asetA. Let Vi = Vk— Vo representinghe supplemental OADS samples in the stratigwhereA— B

is defined as the set consisting of elements that are iA bett not in setB. LetV = Ulf::l. Vi andV =

Uff:l Vi, representing the validation set (set wKipbserved, i.e. the second-stage set) and nonvalidation
set (i.e. the first stage set that are not sampled at the second stage), respectively. Hence, the observed data
structure for the proposed 2-stage OADS design with continuous outcome can be summarized as follows:
the first stage{Y;, Zij, Wi} fori = 1,..., N; the second stage: (i) the SRS samp¥; X, Zj, W;} for

i e Vo (i) the OADS samplef{X;|(Yi, W) € A, Zi} fori € Vi andk = 1,..., K; and (iii) the
nonvalidation samplgy;, Zi, W} fori € V.
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Fig. 1. lllustration for the proposed 2-stage OADS design with continuous outdtiaes denotes outcome variable

Y. X-axis denotes auxiliary variab\&.

To better illustrate the proposed OADS design with continuous outcome, we present Fighes
J = T = 3. At the second stage, except for the SRS samples, the supplemental OADS samples are
selected within strata at the 4 cornéys = A; x By, Ao = A1 x B3, A3 = Az x By, andAs = Az x B3
based on the consideration that these combinations of the extreme values ¥fdudhV contain more
information for the relationship of interest between outcofmend exposur&X. Hence, the advantage of
such 2-stage OADS design is that, while providing overall information about the population from the SRS
samples, it allows the investigator to oversample certain segments of the population that are believed to

be more informative.

The 2-stage ODS design proposedfgaver and Zho(R005) assumed that only the outcome variable
is observed in the first stage and the covariates are ascertained for a subsample drawn at the second sta
from strata defined by the outcome. Our proposed 2-stage OADS design includes this desighwBen
and the information iz andW is discarded. We call this design a 2-stage ODS design with only the

B, T g, T
by b,
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outcome observed at the first stage. However, in many studies, some covariates such age, gender, and race

so forth can be observed for all subjects in the cohort study. To this point, we extended the design by
Weaver and Zho(2005) to this more practical situation. When the auxiliary information is available for

all subjects, our proposed 2-stage OADS design can accommodate the 2-stage ODS design with outcome,

some covariates, and auxiliary observed at the first stage by Iéktirg 0. It is worth noting that the
subsequential methodology development on the 2-stage OADS design is still valid for the 2-stage ODS

design in several above mentioned scenarios.

Let G(x]z, w) andg(x|z, w) be the conditional cumulative distribution function and the conditional prob-
ability function of X given (Z, W). We will construct the likelihood function based on all the observa-
tions under the 2-stage OADS design. First, the contribution from the SRS at the second stage to the full

2.2 Likelihood function
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likelihood is proportional to
Ls(®) = [] f(%1zi, Xi; ). (2.2)
eV
Second, the likelihood for the supplemental OADS sample at the second stage can be shown to be
proportional to (Zhowand others2002)

K
TTTTUf1Zi, Xis BHa(Xi1Zi, W) /Pr((Yi, W) € Aw)] - (2:3)
k:1i€\7k

Furthermore, the observations in the nonvalidation sample contribute the following term to the full-
information likelihood function:

K
[TITf¥1Zi, Wi B)/Pr(cY, W € AW, (2.4)

k=1j eV

wheref (Y|Z, W; ) = [, T(YIZ, x; £)dG(X|Z, W).

Finally, as shown byVeaver and Zho{005), conditional on the component size of the OADS being
fixed, thekth stratum size for the nonvalidation sample= Nk — ng — ngk follows a multinomial law
such that

K
N — np)!
K( 0 [ T{Pr(cvi, W) e AgyyNenow, (2.5)
[Tk=1(Nk = now)! 1
Conditional on the observed sigg, the observations in the nonvalidation sample are independent of
those in the validation sample. After combining and simplifying tertn2<2.5), we have derived the full
likelihood based on all the observations under the 2-stage OADS design, which is proportional to

Pr({nk}) =

K K
Le®) = | [T ] f%1zi, Xis Hacxilzi, wh) HH/Xf(Yi|Zi,x;[)’)dG(x|Zi,V\/i) . (2.6)

k:0i€\7k k=1j E\7k

The presence of the nuisance funct®(x|z, w) makes the inference fgt challenging. Obviously, direct
maximization ofLg(f) is not feasible since the functioB(x|z, w) cannot be factored out. A simple
method is to assume a parametric distribution ®&x|z, w), but this could lead to a biased conclu-
sion if the underlying model is misspecified in that, generally, the relationship betWeand X may

not be known to be specified through a parametric model. A more attractive approach is to model it
nonparametrically.
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3. AN ESTIMATED LIKELIHOOD METHOD

In the estimated likelihood method, an unspecified nuisance parameter, such as the conditional distribu-
tion functionG(x|z, w) in (2.6), is replaced by a consistent estimator. When the validation sample is a
simple random sample, one could estimate|z, w) using data from validation sample by an empirical
imputation method for discrete auxiliary (Pepe and Flemlf#§1) and by kernel smoothing (Carroll and
Wand 1991) for continuous auxiliarghou and Pep£l995),Zhou and Wang2000), and_iu and others
(2009) applied the estimated likelihood approach to time-to-event data subject to random censoring.

Due to the 2-stage OADS design, the validation sample is not a simple random sample so we cannot
use a simple global empirical distribution function to estim@tgx|z, w). Hence, one should account
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for the sampling mechanism under the 2-stage OADS design to est{ate, w) nonparametrically.

Let S denote the informative components &, W) in the sense thaG(X|Z, W) = G(X|S) almost

surely. Without loss of generality, assume tl$ais a continuous variable with dimensiah Note that

G(x]s) = 351 k(S)Gk(x|s), whererk(s) = Pr((Y, W) € Ak|s) andGk(x|s) = G(x]s, (Y, W) € Ay).
.N f 1 —_ o~

iz H(Yi, W) EeAK)¢ny (S —S) andGy(x|s) =

Thenwe estimatery(s) andGk(x|s), respectively, byrk(s) =

>SNy (S-9)
iew 1 (X < - . - . . . .
Z'E\’i. (V ¢hx)?§“i(j S), wherel (-) is an indicator function angn, (-) = qﬁ(m) is ad-dimensional kernel
eV N
function with the bandwidthy.. For simplicity, we suppress the subscriphef hereafterHence G(x|s)
can be subsequently estimated Byx|s) = fo:l 7k (S)Gk(x|s), which is a consistent estimator as
shown in the supplementary material availabl8iaistatisticsonline. R
The estimated likelihood function is obtained by substitut®ig|s) in (2.6) with G(x|s) and the
corresponding estimated log-likelihood function is denotetkb#), where

K K
TeB) =D D logf (Yi1Zi, Xi: )+ > > log T(Y}1Zj, Wj; §) + C,
k=1ieVk k=1 jeVy
with
< z F(Yi1Zj, Xis B)édn(S — )
foYi1zi, Wi; f(Yi|Zi, dG(x|S)) = r(S) s
(Y}1Zj, Wj; B) = / (¥i1Z5, % A)AG(IS) = ;”(J 2 (S =S)

andC =35, > cv, 109G(Xi|S), which is not dependent gf.
The solution to the estimated score equatiﬁﬁ(sﬁ) = 0, denoted bﬁ, is used to estimatg®, where
~ ale(B)
u = —
F(B) p
> F'OYGIZy, X Bén(S = )

K PMGIZL XA < K o
= 7 Al’ S r

leVy
K IZV f(Yj1Z5, Xi; B)pn(S — §p)
Ar S eVr ,
/ ;”(‘) PIICESY

with f'(ylz, x; ) = of (ylz, x; #)/0p. One can adopt the Newton—Raphson iteration method to obtain
the estlmato;B A simplead hocbandwidth selectiom = &, x(nk 4+ Nok) %/ canbe used ifS = W
almost surely, wherg,, x is the sample standard error i, i € Vi}.

Thetrue value of parameters are indicated by superscript “0.Hyadenotea conditional expectation
given(Y, W) € A, under the true parameters. Assume thMg¢YN — py > 0andng/|V| — pk = Ofor
k=0,...,K,asN — oo. Let yx = Pr{(Y, W) € Ag}. The regularity conditions needed to derive the
asymptotic properties are given in the supplementary material availaBiesttisticsonline. Then the
asymptotic properties of the proposed estimﬁare summarized in the following theorem.

THEOREM 1. Under the regularity conditiong§ converges in probability tg¢°, while v'N(B — )
corverges weakly to a normal distribution with mean zero and covaria{gé), where

0\2
0 =1 + S — Iy o1,
= prpv + 10popy
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o2log(f (Y|Z, X; ﬁ))} < [azlog(fmz, X; 8))
1 (B) = —popvE [ = D pkpv Ex
BT ké oPopT
K 22 log(f (Y|Z, W:
- gi[w?(l — popv) — pkpv]Ek [ 29 6,(b’a|,BT ﬂ))] ,

K
Zk(p) = Vark [Z[mo(l — popv) — pipv]Ti (9 E (Mx,s(Y, Z, W; B)|S)
=1
of (Y12, X; p)/op _ of (YIZ, W; f)/op
f(Y1Z, W; B) [f(Y1Z, W; §))?

Mx s(Y, Z,W; p) =

The proof of Theorem 1 is provided in the separate supplementary material availd&itestattistics

online. The consistent variance estimator is stated in the following theorem.

THEOREM 2. Under the regularity conditions, a consistent estimator for the asymptotic covariance matrix

(8Os
P g S
S =1" — X B
By =T"1h) + Ng} T AATP)
—~ (7 K \/
whereT~(g) = — &0 ew [Izl% 71(S)E (M, 5 (Y, Z, W; §)IS)

Ei(Mx,.5 (Y, Z,W; B)IS) = { > Mx,.s (), Zj, Wis B)n(S) —a)]/{ > on(S

jeM jevi
4. SIMULATION STUDY

data were generated from a linear regression model of the form:

Y = fo+ p1X + f2Z + 2,

whereX, Z, and¢ were generated independently from standard normal distribution. Thus, the conditional

f(Y|Z, X; p).

_3)]_

We conducted a simulation study to assess the small sample performance of our proposed estimator. Th

527

} with

distribution ofY given X and Z is normal with meay + 1 X + f2Z andvariance 4. LeWW = X + ¢,
wheree was generated from a zero-mean normal distribution with variadclote that the value of 2

indicatesthe strength of information containedW for X. We sets = 1 in simulation, which represents

a moderate association between Wend X. Here, we takeS = W.

Suppose there afd subjects available at the first stage. Beandb; denotethei /3 percentile ofY

andW, respectively, foi = 1, 2. First, we use the method depicted in Figlite obtain the second stage

4

samples for the 2-stage OADS design. Then the size of the validation|sgtis > ny. Second, while

k=0
selecting the same SRS sample of sigewe also select the 2 supplemental ODS samples in the stratum
A; of sizeni + ny andstratumAg of sizens + n4, respectively, to mimic the design proposedWgaver

and Zhou2005). Note that the sizes of validation $&bbtained at the second stage through the above 2

sampling designs are the same.

1102 ‘T AInC uo saugRI Buoy BuoH Jo Ausiaaiun e H10°S[euINolpIojxo°soNsieISolq Wolj papeojumoq

R Having obtained the data under the 2-stage OADS design, we denote the proposed estimator by
fp,. We also denote the reduced proposed estimatgidyfor the 2-stage ODS design witlY, Z, W)
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obsered at the first stage. We compare estlma,th:rsand ﬁpz with some competing estimators. The first
estimator, denoted b)gw, is the inverse probability weighted estimatéfofvitz and Thompsonl952)

based on the 2- -stage OADS design. The second estimators to be compared, as discussed in the Section
2.1, are the estlmatqﬁry2 for the 2-stage ODS design witlY, Z) observed at the first stage and, similarly,

the estlmato;b’yl for the 2-stage ODS de5|gn with on¥yobserved at the first stage af, Z) observed

at the second stage. The bandwitts: 1 50w,k(Nk +Nok) ™ 1/3 s used for these estimators involving kernel
smoothing, wheré,, i is the sample standard errorh, i € Vi}. Finally, as a benchmark, we also con-

sider the efficient linear regression estimator, denoteﬁé)wvhich is a hypothetical situation in which

all subjects at the first stage haXeobserved, and the ordinary linear regression estimator, denoted by
Br, from a simple random sample of the same size as the validation set at the second stage. Note that the
efficiency difference for method,,, fv,. fp,, andfp, shouldbe attributed to the study design instead of
estimating procedure. Howevegtp, and fw aredifferent estimating procedures under the same 2-stage
OADS design.

For narrative simplicity, we define an allocation function denoted by allocation to allocate the
validation set of size: + 4v at the second stage, which means that ¢ andny =ha =nz3=ng=v
underthe 2-stage OADS design as illustrated in Figur&nder the 2-stage ODS design, allocatioyv)
means SRS sample of sizeand 2 supplemental ODS samples in the straymof size 2 and in
stratumA; of size 2 are allocated. We also investigate the impact on the parameter estimation of different
allocations of total validation sample size between the SRS sample and the supplemental OADS (ODS)
samples at the second stage, With /o, 51, f2) = (1500,0.5,0.3,0.5) fixed.

For each simulation configuration, 1000 replicated samples were generated and the results were pre
sented in Tabld. Under the model studied, we make the following observations on the estifatbe
parameter of interest. Note that the estimg&oworks quite well in all scenarios. First, all the methods in
all the scenarios yield consistent estimators, the variance estimators accurately reflect the true variations
and the confidence intervals have proper coverage probabilities. Second, the proposed eﬁt;bmamds
ﬂp21 aremore efficient than the esumatqﬁsll andﬁyzl, which indicates that takmg auxiliary informa-
tion into consideration indeed gains substantial estimation efficiency. Further,&p:gfes more efficient
thanﬁpll This fits our expectation smc;faazl notonly utilizes the auxiliary in the stratification (i.e. study
design) but also incorporates it into the estimation procedure, ng usesit just in the estimation
procedure. On the other hand, although the preC|S|on of estlryi’agprandthat Ofﬂyll arealmost the
same in the scenarios considered, the eff|C|ency gamﬁ’s/zgfover ,Bylz areapparent due to the fact that
the covariateZ is observed for all subjects WVZ The estlmatoﬁWl is less efficient tham?pzl smceﬂw1
just utilizes the second-stage sample and sampling probability under the 2-stage OADS design. Third,
when we increase the size of the validation set fidth= 240 to|V| = 360, more accurate estimators
(includingﬁpll, ﬁpzl, ﬁyll, Eyzl, ﬁAWl, andﬁRl) are obtained as expected. Here, we consider 3 different
ways to add the additional 120 samples to the validatiof\get 240. It can be seen that more efficiency
gains are achievable through the way from allocgti@d,30) to allocation80,45), that is, putting half
of the additional 120 samples to the SRS part and the other half to the OADS part averagely, than that
from allocatior{120,30) to allocatior{240,30), that is, putting the additional 120 samples to the SRS
part. Efficiency gains are also achieved through the way from alloga2@)30) to allocation(20,60),
which puts the additional 120 samples to the OADS part evenly. These different allocation patterns in-
dicate that adding the additional sample to both the SRS part and the supplemental OADS part or the
supplemental OADS part is better than to the SRS part only. Finally, under the allgt2t080), when
the cutpoints vary from thé;, %) to (711 %) that is, when the product sample spate W is stratified by
more extreme cutpoints, more precise estimators (incluing fv,1, Bp,1, andBp,1) are obtained, and
the efficiency advantage qﬁpzl over ﬁpll becomesnore obvious. We also investigate the effect of the
strength ofW for X, represented by, on the efficiency of estlmatqﬂ‘l, under the methods considered.
Please see Figure A.1 in the supplementary material availaBlestatisticsonline.
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Table 1. Simulation study for the proposed estimators. Results are based on 1000 replicated data sets
with 1500 subjects at the first stage for each datd set

= =

Cutpoints |V| Method f1 So
Mean SE SE cl Mean SE SE ClI

— — BE 0.299 0.050 0.052 0.966 0.497 0.052 0.052 0.946

— 240 BR 0.298 0.124 0.130 0.962 0.500 0.126 0.130 0.958

— 360 PR 0.297 0.107 0.106 0.943 0.496 0.105 0.106 0.943
allocation(120,30)

(% %) 240  Bw 0.303 0.113 0.123 0.978 0.502 0.138 0.134 0.931
By, 0.304 0.113 0.112 0.955 0.505 0.121 0.102 0.906
Y, 0.305 0.116 0.116 0.953 0.499 0.050 0.052 0.960
Ppy 0.305 0.072 0.068 0.941 0.500 0.050 0.052 0.957
Ap, 0.301 0.070 0.068 0.948 0.500 0.050 0.052 0.953
allocation(180,45)
(% %) 360 Bw 0.302 0.095 0.100 0.967 0.494 0.110 0.109 0.951
Py, 0.299 0.094 0.093 0.951 0.502 0.092 0.087 0.941
BY, 0.300 0.096 0.096 0.952 0.500 0.053 0.052 0.943
Pp, 0.307 0.068 0.066 0.940 0.500 0.053 0.052 0.947
Ap, 0.303 0.064 0.065 0.954 0.500 0.053 0.052 0.945
allocation(240,30)
(% %) 360 Bw 0.303 0.091 0.099 0.971 0.496 0.103 0.105 0.952

by, 0.301 0.099 0.095 0.936 0.498 0.096 0.089 0.936
BY, 0.305 0.098 0.098 0.947 0.500 0.053 0.052 0.939
Bpy 0.308 0.070 0.066 0.933 0.500 0.053 0.052 0.948
Ap, 0.302 0.069 0.066 0.932 0.503 0.053 0.052 0.939
allocation(120,60)

(l %) 360 Pw 0.302 0.100 0.107 0.967 0.504 0.118 0.120 0.952
by, 0.295 0.093 0.091 0.950 0.502 0.093 0.086 0.935
By, 0.304 0.097 0.093 0.931 0.500 0.053 0.052 0.943
Ay 0.308 0.069 0.065 0.928 0.502 0.053 0.052 0.943
Bp, 0.299 0.067 0.065 0.938 0.502 0.053 0.052 0.944
%) 360 Bw 0.303 0.114 0.114 0.942 0.510 0.135 0.131 0.940
by, 0.303 0.085 0.085 0.954 0.505 0.086 0.082 0.942
By, 0.300 0.084 0.086 0.949 0.500 0.053 0.052 0.942
Sr, 0.304 0.067 0.064 0.936 0.499 0.051 0.052 0.956

Ap, 0.293 0.061 0.063 0.963 0.499 0.051 0.05D.958

TResultsare based on the modél= Lo+ B1 X+ f2Z+2¢ with true valuegg = 0.5, 1 = 0.3,andf» = 0.5,
whereX, Z, and¢ are mutually independently standard normal variables. The auxiliary vaifelidedefined

to be equal taX plus a standard normal error terﬁE: the regression estimator whetis observed for all
subjects at the first stagfir: the regression estimator from a simple random sample of the same size as the
validation set at the second sta@w: the inverse probability weighted estimator using the validation set under
the 2-stage OADS desigﬁ;yl: the estimator for the 2-stage ODS design with ovilgbserved at the first stage

and (X, Z) observed for the second-stage samﬁpz': the estimator for the 2-stage ODS design with Z)
observed at the first stagﬁpl: the estimator for the 2-stage ODS design with Z, W) observed at the first
stage;[?pz: the estimator for the proposed 2-stage OADS design @tZ, W) observed at the first stage.

It should be noted that in above simulation results, the covaXiat@s generated independently from
Z. Therefore, we tools = W and then adopted a univariate kernel smoothing method to estimate the
functiong(X|Z, W) = g(X|W) nonparametrically. As suggested by one of the referees, here we intend
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Table 2. Simulation study for the proposed estimators. Results are based on 1000 replicated data sets
with 1500 subjects at the first stage and allocation pattern allocatl@,60) at the second stage under
the cutpointg1, 2) for each data sét

g(X|W) Method A Bo

—

Mean SE SE cl Mean SE SE cl

Specified Pw 0.302 0.100 0.107 0.967 0.504 0.118 0.120 0.952
By, 0.295 0.093 0.091 0.950 0.502 0.093 0.086 0.935
By, 0.304 0.097 0.093 0.931 0.500 0.053 0.052 0.943
ey 0.308 0.069 0.065 0.928 0.502 0.053 0.052 0.943
e, 0.299 0.067 0.065 0.938 0.502 0.053 0.052 0.944
Bsp 0.302 0.060 0.059 0.951 0.504 0.052 0.052 0.947

Misspecified  pw 0.307 0.104 0.108 0.969 0.505 0.121 0.121 0.955
By, 0.307 0.098 0.095 0.932 0.504 0.096 0.090 0.931
Y, 0.310 0.099 0.096 0.925 0.508 0.059 0.057 0.941
Bey 0.309 0.075 0.074 0.926 0.503 0.058 0.057 0.947
Bp, 0.306 0.071 0.068 0.934 0.505 0.057 0.056 0.941
Psp 0.269 0.066 0.063 0.903 0.512 0.059 0.0510.929

TSeenote for Tablel.

toinvestigate our proposed estimators wigéX |W) is specified parametrically instead of being estimated
by kernel smoothing. Note that in our above simulation seg(p§W) is a normal density function with
meanW and variance 2. The resultant estimate is denoteg’ﬁpy Furthermore, we also consider this
estimate in the misspecified situation in which ¥evas generated from the modél= W*/3 + ¢ but the
working model remains to b¥ = W + €. The related results are formulated in TaBlébviously, when
g(X|W) is correctly specified, the estimatep outperformshe nonparametric methods. However, when
g(X|W) is misspecified, the estimafiep is biased with low coverage probability while the nonparametric
smoothing estimates, including our proposed estimégesndp,, still work well.

On the other hand, as suggested by another referee, in some prdgtioe dimension ofV, could
be greater than one, and then multivariate kernel smoothing method would be involved. Hence, it is of
practical importance to see how sensitive the resulting inference on the parameters of interest is with =
regard to the dimensiod of kernel smoothing. We explore this issue with some modifications of the
simulation models, where we generatdrom modelZ = W2 + ¢, whereW ande; areboth generated
independently from a standard normal distribution. We keep the remaining parametric simulation settings
unchanged. We use 2 dimensional product standard normal kernels to egfidgte W) with bandwidth
matrix diaghy, h2), whereh; = %’o‘z,k(nk + now)~1/3, hy is defined in a similar pattern, ang  is the
sample standard error ¢Z;i,i € Vk}. The corresponding estimates are listed in T&hlé can be seen
that when the dimension of kernel smooththgquals 2, the resultant estimatesfgfof main interest are
slightly biased with low coverage probability except for the inverse probability estlﬂwIEven then,
our proposed estlmatopﬁ‘p1 andﬂp2 outperformﬂyl andﬁ’y2

5. ANALYSIS OF THE COLLABORATIVE PERINATAL PROJECT DATA

As an illustration, we applied our proposed method to a data set from the Collaborative Perinatal Project
(CPP) to evaluate the effect of maternal pregnancy serum level of polychlorinated biphenyls (PCB) of
a mother on her children’s intelligence quotient (IQ) test performance. Pregnant mothers were enrolled
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Table 3. Simulation study for the proposed estimators. Results are based on 1000 replicated data sets
with 1500 subjects at the first stage and allocation pattern allocatlaf,60) at the second stage under
the cutpointg 3, 2) for each data set with S (Z, W)'

=

Method p1 ﬁz

Mean SE SE cl Mean SE SE CI
PE 0.302 0.053 0.054 0.957 0.506 0.057 0.056 0.949
PR 0.294 0.113 0.110 0.941 0.498 0.107 0.109 0.949
Pw 0.297 0.109 0.109 0.953 0.506 0.115 0.117 0.956
ﬂyl 0.315 0.101 0.100 0.929 0.512 0.098 0.092 0.930
By, 0.317 0.099 0.096 0.926 0.503 0.059 0.058 0.949
Bpy 0.315 0.076 0.074 0.927 0.505 0.059 0.058 0.946
ﬂpz 0.287 0.072 0.071 0.929 0.506 0.059 0.05D.941
TSeenote for Tablel.

throughuniversity-affiliated medical clinics and data were collected on the mothers each prenatal visit.
The children born during the study were also followed for various outcomes for up to 8 years. One hy-
pothesis is that PCB levels are related to the performance on the Weschler Intelligence Scale for children
at 7 years of age (Longneckand others1997). To investigate thie uteroexposure of PCB in relation

to neurodevelopmental abnormality, the PCB levels were measured by analyzing the third trimester bloodg
serum specimens that had been preserved from mothers in the CPP study. Due to the expense of condudi-
ing the blood serum assay to measure the PCB level, the study investigators decided to assess the PCB
levels for an overall simple random sample of 849 subjects from the underlying population. In addition to
the PCB level as the exposure variable of interest, other confounding variables available for all subjects
under study include socioeconomic status of the child’s family (SES), gender (SEX) and race (RACE) of
the child indicating for female and black, respectively, the mother’s education (EDU) and age (AGE).

To illustrate our methods, we use the simple random sample of 849 subjects as our underlying popu-
lation. We then construct a 2-stage OADS design for this base population as an illustration. The first stage
sample is the 849 subjects, that i$, = 849. We first explore the relationship between SES and PCB
based on the first-stage sample data. A linear model fit for PCB given SES yields the estimate of slope
0.154(p < 0.0001),which indicates a linear association between SES and PCB. On the other hand, in
terms of practical consideration in environmental epidemiology, higher SES usually leads to higher PCB ~
level. Hence, we use SES as the auxiliary variable for PCB.

The 1,3 and 23 sample quantiles of IQ are 3.7 and 5.3, and th@ dnd 23 sample quantiles of
SES are 90 and 101, respectively. Hence, we candake 3.7,a> = 5.3,b; = 90,andb, = 101.With
respect to the second-stage samples, assume that 60 SRS samples and 30 supplemental OADS samples in
each corner are selected under the allocation pattern allo@@id80). We use the chi-square statistics
to test the independence between 1Q and SES, given PCB. In particular, we discretize PCB by dPCB
(PCB>median(PCB)). Under condition dPCBO, we can also define dIQ and dSES in a similar pattern,
and then use the chi-square test yieldmgalue 0.6038. Similarly, under condition dPGB1, the chi-
square test yieldg-value 0.4386. Hence, we think conditioning on PCB level, IQ does not further depend
on SES. The fitted model is

0JX0"SONSIEISOIq WO Papeojumod
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IQ = fint + f1PCB+ S2EDU + p3SES+ S4AGE + fsRACE 4 SeSEX + &,

wheree is a zero-mean normal variable with unknown variance.
The results for the CPP data analysis are summarized in Zablete that since the other confounding
covariates such EDU, SES, AGE, and so on are observed for all subjects, the rfgtiddch assumes
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Table 4. Analysis results for the CPP stuly

TTheoutcome is the 1Q scores for children at 7 years of age. PCB is the level measured from the third-trimester blood serum
specimens, EDU is the mother’s education level, SES is the socioeconomic status of the child’s family, AGE is the mother’s
age, and RACE and SEX are the race and gender of the child, respectively. The fitted modet igj}R+ f1PCB +

P2EDU + S3SESH S4AGE + fsRACE + S6SEX+ ¢, wheree is zero-mean normal variable with unknown variance. The
auxiliary variable is SES, the cutpoints a(r% %) and the allocation pattern is allocation(@®). “Est.” is the estimation

of the covariate’s effect, SE” is the estimated standard error, “LCI” is the lower bound of the 95% confidence interval, and
“UCI" is the upper bound of the 95% confidence interval. The symBbltieans the corresponding parameter estimate is
significant at 5% level.

Method Intercept PCB EDU SES AGE RACE SEX
PE Est. 80.025 0.256 1.258 1.078 0.018 —7.94Z —0.590
SE 2.795 0.228 0.223 0.266 0.070 0.927 0.842
LCI 74.546 —0.190 0.822 0.558 -0.118 —-9.759 —2.240
UCl 85.504 0.702 1.694 1.599 0.155 —-6.125 1.060
AR Est. 77.897 0.711 1.12Z 0.847 0.131 —7.355 —0.423
SE 6.912 0.496 0.534 0.619 0.167 2.071 1.934
LCI 64.349 —0.262 0.076  —-0.367 —0.195 —11.414 —4.214
UCl 91.446 1.683 2.168 2.061 0.458 —3.296 3.368
pw Est. 78.39T 0.414 1.322 0.592 0.199 —7.752 —-1.085
SE 2.732 0.428 0.207 0.245 0.061 0.876 0.779
LCI 73.036 —0.425 0.916 0.112 0.079 —9.469 —2.612 o
ucCl 83.746 1.253 1.728 1.072 0.319 —-6.036 0.442 z
By, Est. 79.154 0.386 1.264 1.102 0.028 —7.841 -0.611 g
SE 3.015 0.468 0.222 0.263 0.068 0.917 0.839 =
LCI 73.245 —0.531 0.830 0.586 —0.106 —9.638 —2.255 g
ucCl 85.063 1.303 1.699 1.617 0.162 —6.044 1.034 §
Bpy Est. 79.759 0.179 1.268 1.088 0.031 —7.825 —0.597 §
SE 2.947 0.495 0.222 0.273 0.068 0.917 0.839 g
LCI 73.982 —-0.791 0.833 0.553 —-0.103 —-9.623 —2.242 g
UCl 85.536 1.149 1.702 1.623 0.165 —6.027 1.048 %
Bp, Est. 80.722 0.285 1.269 1174 0.034 —7.732 —0.588 H
SE 2.894 0.366 0.222 0.273 0.068 0.921 0.839 s
LCI 75.049 —0.432 0.834 0.639 -0.100 —9.538 —2.232 é
UClI 86.395 1.002 1.703 1.709 0.168 —5.926 1.055 2

that only the outcome is observed at the the first stage is not considered in the data analysis. First, we
are interested in the estimate for PCB under various methods. It is evident that all the analyses confirm
that the PCB level of mother’s third-trimester blood serum specimen is not significantly related to the 1Q
scores for children at 7 years of age. Second, a more precise 95% confidence {rt6rd¢8P,1.002)is
achieved for the estimate of PCB using methiad. For example, the 95% confidence intervals for the
estimates of PCB are-0.425,1.253) (—0.531,1.303) and(—0.791,1.149)using method@w, fy,, and

Bp,, respectively. Meanwhile, the estimated standard error for the estimate of PCB in the hypothetical case
Be is the smallest one among all the methods considered. Also, the mgthgikldsthe most accurate

95% confidence intervgl-0.190,0.702)for the estimate of PCB. Third, the estimators for the remaining
covariates under various methods considered are all almost the same as confirmed in the simulation study.
Finally, despite that slightly different conclusions are obtained under mejfwasd Sy, the methods

BE. By, Pp,, andfp, all confirm that SES, EDU, and RACE have a positive impact on the 1Q scores of
children while there is no evidence that both the AGE and SEX have any effect on the 1Q scores.
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6. CONCLUDING REMARKS

We proposed a new 2-stage OADS design in which the selected supplemental samples at the second stage
are allowed to depend on both a continuous outcome variable and a continuous auxiliary variable. This
2-stage OADS design can be easily reduced to the 2-stage ODS design with auxiliary covariate infor-
mation. An estimated likelihood function based on nonparametric kernel smoothing method is developed
to accommodate the 2-stage OADS design with continuous outcome variable. The proposed estimator is
shown to be consistent and asymptotically normal. The simulation study suggests that greater efficiency
can be gained in estimating the effect of the exposure variable on the outcome using the proposed 2-stage
OADS design over the existing or other competing 2-stage ODS designs. Additionally, using the available
auxiliary data information can also substantially improve the efficiency of the study. A real data analysis
is provided to illustrate our proposed method.

When the dimensiod of Sis moderately large (e.g>= 3), the proposed method will not work well
due to the curse of high dimensionality. One possible way is to spgCKyS) parametrically. However,
this parametric method could lead to some biased results @té(5) is misspecified. In practice, we
suggested using our proposed method wikess 2 and using the parametric method whien= 2.

The proposed 2-stage OADS design allows the investigators to focus their attention on the subjects
who are more informative for study aims. Generally, the issue of how to appropriately divide the domain
of Y x W to obtain the strata\, s may affect the efficiency of estimators. Taking the CPP data as an
example, we want to select those subjects with very high or low IQ scores and SES values as much as:
possible. On the other hand, the number of those subjects that we can sample is decreasing along Wit@"
higher or lower values of both the IQ scores and SES. Hence, one needs to balance between the 2 abO\f:E
points when using a 2-stage OADS design. Our experience shows that the cutpoints consistih@of 1 g
1/4) and 23 (or 3/4) quantiles of both the outcome and auxiliary are usually feasible in practice.
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