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Summary. The two-stage case–control design has been widely used in epidemiology studies for its cost-effectiveness and
improvement of the study efficiency (White, 1982, American Journal of Epidemiology 115, 119–128; Breslow and Cain, 1988,
Biometrika 75, 11–20). The evolution of modern biomedical studies has called for cost-effective designs with a continuous
outcome and exposure variables. In this article, we propose a new two-stage outcome-dependent sampling (ODS) scheme
with a continuous outcome variable, where both the first-stage data and the second-stage data are from ODS schemes. We
develop a semiparametric empirical likelihood estimation for inference about the regression parameters in the proposed design.
Simulation studies were conducted to investigate the small-sample behavior of the proposed estimator. We demonstrate that,
for a given statistical power, the proposed design will require a substantially smaller sample size than the alternative designs.
The proposed method is illustrated with an environmental health study conducted at National Institutes of Health.
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1. Introduction
Retrospective sampling scheme where one observes the covari-
ates with a probability that depends on the outcome variable
has long been used to enhance the study efficiency. The case–
control design is the most well known such design for a binary
outcome and a rare disease situation (Cornfield, 1951; Pren-
tice and Pyke, 1979). Using the double sampling strategy, the
two-stage case–control design has been shown to further im-
prove efficiency and reduce study costs in epidemiology stud-
ies. In a typical two-stage design, disease variable Y is usually
observed in the first-stage of sampling, while the covariate is
observed in the second-stage of the sampling, and the sam-
pling probability of the second-stage data is dependent on Y.
White (1982) proposed a stratified two-stage case–control de-
sign for a rare disease and exposure scenario, where a large
preliminary random sample is drawn in the first stage, from
which strata are identified based on the disease status and
the exposure. Further subsamples are then drawn in stage two
from the strata identified in stage one and potential confound-
ing variables are then assembled only for those subjects in
the stage two subsamples. Greater efficiency may be achieved
through the double sampling for stratification, which balances
the number of exposed and nonexposed individuals within the

case and control samples for whom covariate information is as-
certained. The nice features of the two-stage sampling design
have generated a great deal of interest in the statistical litera-
ture (Zhao and Lipsitz, 1992; Breslow, McNeney, and Wellner,
2003; Wang and Zhou, 2006, 2010; etc). Variations of two-
stage sampling based on exposure-and-outcome dependent
sampling design have been proposed. Breslow and Cain (1988)
extended the design by considering the preliminary sample it-
self to be separate samples from subpopulations of diseased
and nondiseased subjects. They demonstrated that large effi-
ciency can be gained when both the disease and exposure are
rare. Similar ideas were also seen in nested case–control sam-
ples using the counter-matching method (Langholz and Bor-
gan, 1995) and the “partial-questionnaire design” (Wacholder
and Weinberg, 1994) where investigators try to reduce the
burden to study subjects (and consequent reduction in data
quality) by ascertaining complete or partial questionnaires on
different subjects.

Statistical estimation procedures that efficiently combine
the information in the first and second stage are generally
challenging. It should be noted that most current designs
have been developed for binary outcomes with a logistic re-
gression. As the scope of biomedical studies inquiry grows, so
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does the need for efficient study designs and inference pro-
cedures to study the determinants of a continuous outcome’s
level. This need is especially clear when the measurement of
primary exposure (X) is expensive, as evidenced with more
and more biomedical and genetics studies measuring expen-
sive biomarkers. For example, Gray et al. (2005) studied back-
ground level in utero exposure to the neurodevelopmental tox-
icant polychlorinated biphenyls (PCBs) in relation to perfor-
mance on the Bayley Scale of Infant Development (BSID).
Maternal pregnancy serum was available from a previously
completed cohort study in which BSID had been measured,
and PCB concentration in the maternal serum could provide a
good surrogate measure of in utero exposure. Biased sampling
problems with a continuous outcome variable has been stud-
ied recently (Lawless, Kalbfleisch, and Wild, 1999; Zhou et al.,
2002, 2007; Chatterjee, Chen, and Breslow, 2003; Weaver and
Zhou, 2005; Song, Zhou, and Kosorok, 2009, etc.). The de-
sign with a continuous outcome variable is called an outcome-
dependent sampling (ODS) design. The principal idea of an
ODS design is to concentrate resources on where there is the
greatest amount of information.

In this article, we discuss a new and general two-stage ODS
design with a continuous outcome. We allow both prospec-
tive data and outcome-dependent data in both stages of the
sampling process. We assume that there exists an auxiliary
covariate W for primary exposure variable X that is sampled
in the first stage. We handle the marginal distribution of W
using the empirical likelihood method. Our proposed method
is semiparametric in the sense that the marginal distribution
of the covariate W is left unspecified. The proposed method
is a likelihood-based approach that profiles out the nui-
sance distribution via maximization on a restricted likelihood
function.

The rest of the article is organized as follows. We describe
the two-stage ODS design for a continuous outcome and de-
rive the corresponding likelihood in Section 2. In Section 3, we
propose a semiparametric empirical likelihood estimator and
establish its asymptotic properties. Extension of the proposed
method to allow the strata to depend on both response and
covariate is outlined as well. We conduct a simulation study
to evaluate the finite-sample behavior and the robustness to
model misspecification of the proposed method and to com-
pare its efficiency with some alternative methods in Section 4.
We also use the simulation study to show that the proposed
design only requires a fraction of the cost to conduct com-
pared with the alternative designs. In Section 5, we illustrate
the proposed method with a real data set, followed by brief
remarks in Section 6.

2. Data Structure and the Likelihood
2.1 Two-Stage ODS Design with a Continuous Outcome
To fix notation, let Y be a continuous outcome, X be the expo-
sure variable of interest, and W be an auxiliary covariate for
X. X and W can be either continuous or discrete variables. By
auxiliary, we mean that for a given X, W does not provide any
additional information on the relationship between X and Y,
that is, f (Y |X, W ) = f (Y |X). We assume that the relation-
ship between X and Y follows a parametric model f (Y |X ; β),
where β is the regression parameter of interest, and that X is
linked with W through a model f (X |W ) = f (X |W ; ξ). We

assume that W has a probability distribution function fW (·)
and a cumulative distribution function FW (·), where both fW

and FW are unspecified.
Assume that the domain of Y is a union of K mutually ex-

clusive intervals: Ck = (ck−1, ck ], k = 1, . . . , K , with ck being
some known constants satisfying −∞ = c0 < c1 < c2 < · · · <
ck = ∞. Thus, these constants partition the study population
into K strata. We assume that the first-stage sample con-
sists of a total of n individuals, and the sampling of these
individuals follows a two-component ODS scheme of Zhou et
al. (2002). Specifically, we assume that, from the underlying
population of interests, n0 individuals are obtained in a sim-
ple random sample (SRS) and nk are from the kth stratum
in an ODS scheme, where k = 1, . . . , K , respectively. That is,
the total first-stage sample size is n =

∑K

k=0 nk . It is assumed
that Y and W are observed for the n individuals in the first
stage. In the second stage, X is observed on a subsample of
the first stage that consists of m individuals. Among the m
individuals, m0 are obtained from the SRS sample in the first
stage and mk are from the kth stratum, where k = 1, . . . , K ,
respectively. Thus, m =

∑K

k=0 mk .
The generality of the proposed two-stage ODS scheme can

be seen from the following special situations where it en-
compasses several commonly encountered designs. For exam-
ple, when n0 �= 0, m0 �= 0 but nk = mk = 0, k = 1, . . . , K , then
the proposed design reduces to the commonly used valida-
tion study design. When Y is the discrete and n0 = m0 = 0,
then the design reduces to the setting of Breslow and Cain
(1988). Similarly, for a discrete Y, if n0 �= 0, m0 = 0 and
nk �= 0, k = 1, 2, then it reduces to the two-stage design of
White (1982).

Without loss of generality, we reorder the sample such that
the X values are obtained for the first mk of nk samples,
where k = 0, . . . , K . Hence, the observed data structure for
our two-stage ODS design can be summarized as:

• The first stage: {yi , wi} for i = 1, . . . , n0, n0 + 1, . . . , n0 +
n1, . . . , n.

• The second stage: {xi | yi ∈ Ck } for i = 1, . . . , m0, n0 +
1, . . . , n0 + m1, . . . , m.

A general setting where the second-stage sample depends
on both outcome Y and other covariate but not X, which is
denoted by Z, is given in Section 3.3.

2.2 The Likelihood Function
Let F (u |x; β) ≡ P (Y ≤ u |x; β). Define ψ(y, w; β, ξ) ≡∫

f (y |x; β)f (x |w; ξ) dx and φk (w; β, ξ) ≡ ∫ (F (ck |x; β) −
F (ck−1 |x; β))f (x |w; ξ) dx, for k = 1, . . . , K . We denote the
observed data as

(yik , xik , wik ), i = 1, 2, . . . , mk , k = 1, . . . , K,

(yik , wik ), i = mk + 1, . . . , nk , k = 1, . . . , K.

The likelihood for the SRS component can be written as{
m 0∏
i=1

f (yi0 |xi0, β)f (xi0 |wi0, ξ)f (wi0)

}

×
{

n 0∏
i=m 0+1

ψ(yi0, wi0; β, ξ)f (wi0)

}
. (1)
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For the ODS component, using the Bayes formula, the condi-
tional probability distribution function for those with X ob-
served is

f (y, x, w | y ∈ Ck ) =
f (y |x; β)f (x |w; ξ)f (w)I(y ∈ Ck )∫

φk (w; β, ξ) dF (w)
, (2)

for k = 1, . . . , K , where I(·) is the indicator function. Simi-
larly, it can be shown that the conditional probability distri-
bution function for those with X unobserved is,

f (y, w | y ∈ Ck ) =
ψ(y, w; β, ξ)f (w)I(y ∈ Ck )∫

φk (w; β, ξ) dF (w)
, (3)

for k = 1, . . . , K . It follows from (1)–(3) that the likelihood
from the our proposed two-stage ODS design is

Ln =

{
m 0∏
i=1

f (yi0 |xi0; β)f (xi0 |wi0; ξ)f (wi0)

}

×
{

n 0∏
i=m 0+1

ψ(yi0, wi0; β, ξ)f (wi0)

}

×
K∏

k=1

⎧⎪⎪⎨⎪⎪⎩
m k∏
i=1

f (yik |xik ; β)f (xik |wik ; ξ)f (wik )∫
φk (w; β, ξ) dF (w)

×
n k∏

i=m k +1

ψ(yik , wik ; β, ξ)f (wik )∫
φk (w; β, ξ) dF (w)

⎫⎪⎪⎬⎪⎪⎭ .

Clearly, inference of β based on the above likelihood func-
tion requires some methods of handling f or F. A simple way is
to assume a parametric distribution for f, but this could lead
to biased conclusions if the underlying model is misspecified.
In the next section, we propose a semiparametric empirical
likelihood approach to maximize the likelihood without spec-
ifying the distribution function of W. Note that a reduced
form of likelihood function Ln can be derived if one ignores
the information W (see Web Appendix A). The estimation
algorithm we propose below will lead to a reduced estimator
that is not dependent on parameterization of X |W .

3. An Empirical Likelihood Approach
3.1 The Inference Algorithm
Denote πk =

∫
φk (w; β, ξ) dF (w), k = 1, . . . , K. pik = f (wik ),

i = 1, . . . , nk , k = 0, . . . , K . The log likelihood can be ex-
pressed as

ln (β, ξ, {pik }) = l1n (β, ξ) +
K∑

k=0

n k∑
i=1

log pik −
K∑

k=1

nk log πk ,

(4)

where

l1n (β, ξ) =
K∑

k=0

[
m k∑
i=1

{log f (yik | xik , wik ; β) + log f (xik |wik ; ξ)}

+
n k∑

i=m k +1

log ψ(yik , wik ; β, ξ)

]

is a function only involving β and ξ. To estimate β, we first
profile the log likelihood (4) over pik , that is, all distributions
whose support contains the observed W values. The corre-
sponding profile likelihood is

pln (β, ξ) ≡ sup
{p i k }

ln (β, ξ, {pik }). (5)

The estimator for β can thus be obtained by maximizing (5)
over β and ξ.

To get (5), it suffices to maximize

�2n (pik ) ≡
K∑

k=0

n k∑
i=1

log pik −
K∑

k=1

nk log πk , (6)

for fixed (β, ξ), subject to

K∑
k=0

n k∑
i=1

pik {φj (wik ; β, ξ) − πj } = 0, for j = 1, . . . , K,

and
K∑

k=0

n k∑
i=1

pik = 1.

Using ideas similar to Qin and Lawless (1994), for a fixed β
and ξ, we can show that a unique maximum p̂ik in (6) which
satisfies the above constraints exists if 0 is inside the convex
hull formed by the points {φj (w; β, ξ) − πj } for j = 1, . . . , K .
An explicit expression can be derived by the Lagrange multi-
plier argument:

H(β, ξ, {pik }) = ln (β, ξ, {pik }) + ρ

(
1 −

∑
i ,k

pik

)

−n

K∑
j=1

λj

∑
i ,k

pik {φj (wik ; β, ξ) − πj }, (7)

where ρ and λ’s are Lagrange multipliers. Taking derivatives
of H with respect to pik and solving the score equations, we
obtain that ρ = n and

p̂ik (β, ξ) =
1
n
· 1

1 +
K∑

j=1

λj {φj (wik ; β, ξ) − πj }
. (8)

We plug p̂ik (β, ξ) back into ln (β, ξ, {pik }) and obtain the es-
timator for (β, ξ) by maximizing the resultant profile likeli-
hood function. The above procedure enables us to change an
infinite dimension problem to a finite-dimension problem at
the expense of introducing a 2k-dimensional parameters. The
Newton–Raphson procedure can be invoked to get (β̂n , ξ̂n ).

3.2 Asymptotic Properties
We reparametrize γk = λk − n k

n π k
, k = 1, . . . , K . Denote ζ =

(β, ξ), η = (π, γ), and θ = (ζ, η). The likelihood function now
is

ln (θ) = l1n (ζ) −
∑
i ,k

log

[
1 +

K∑
j=1

λj {φj (wik ; ζ) − πj }
]

−
K∑

k=1

nk log πk .
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Define hk (wik ) = φk (w i k ; ζ )−π k
Q (w i k ) , where Q(wik ) =

∑K

k=0
n k

n π k

φk (wik ; ζ). The following theorem summarizes the asymptotic
properties of the proposed estimator.

Theorem 1. Suppose |hk | and |∂hk /∂θ|, as functions of
θ, are bounded by some integrable function in a neighborhood
of the true value θ0 = (ζ0, π0, 0). Then

√
n(θ̂n − θ0) converges

weakly to N (0, Σ(θ0)) in a neighborhood of θ0, where Σ(θ0) =
V −1(θ0)U (θ0)V −1(θ0) with V and U as defined in the Appendix.

An outline of the proof for Theorem 1 is given in the Ap-
pendix. A consistent estimator of the covariance matrix Σ
is V̂ −1Û V̂ −1, where Û and V̂ are obtained by replacing the
large sample quantities with their corresponding finite-sample
quantities.

3.3 Extension to Allow the Second-Stage Sample
to Depend on {Y, Z}

In this subsection, we show that by simply redefining the
corresponding components, we can extend the results in
Theorem 1 to allow for the selection of the second-stage sam-
ple to depend on the first-stage covariate Z as well as the out-
come Y. We assume that the domain of Z is a union of J mu-
tually exclusive intervals {Bj }J

j=1, where Bj = (bj−1, bj ] with
bj ’s being some prespecified constants such that −∞ = b0 <
b1 < · · · < bJ −1 < bJ = ∞. Thus, Y and Z partition the study
population into K × J strata. For notational simplicity, we
rewrite these rectangles as Δl for l = 1, . . . , L. Hence, {Ck ×
Bj : k = 1, . . . , K and j = 1, . . . , J} = {Δl : l = 1, . . . , L} and
Y × Z =

⋃K

k=1

⋃J

j=1 Ck × Bj =
⋃L

l=1 Δl . The first-stage sam-
ple with {Y, Z, W } observed consists of the SRS of size n0

and the outcome Y and covariate Z dependent sample of
size nl conditioning on {(Y, Z) ∈ Δl} for l = 1, . . . , L. Then
the second-stage sample with X observed is a subsample
of first-stage sample that consists of m0 subsamples from
n0 and ml subsamples from nl for l = 1, . . . , L. Then the
data structure for this two-stage sample can be summarized
as:

• The first stage: {yi , zi , wi} for i = 1, . . . , n0, n0 +
1, . . . , n0 + n1, . . . , n.

• The second stage: {xi | (yi , zi ) ∈ Δl} for i =
1, . . . , m0, n0 + 1, . . . , n0 + m1, . . . , m.

Redefine πl = P {(Y, Z) ∈ Δl} and define Ql (x, z; β) ≡
P ((Y, z) ∈ Δl |X = x, Z = z)1Δ∗

l
(z) for l = 1, . . . , L, where

Δ∗
l = {z ∈ Z : for some(y, z) ∈ Δl}. Thus,

Ql (x, z; β) =
∫
{y :(y ,z )∈Δl }

f (y |x, z; β) dy.

Redefine φl (z, w; β, ξ) =
∫
X Ql (x, z; β)f (x | z, w; ξ) dx, then

πl =
∫
W

∫
Z

∫
X

Ql (x, z; β)f (x | z, w; ξ) dxf (z, w) dzdw.

Furthermore, redefine ψ(y, z, w; β, ξ) =
∫
X f (y |x, z; β)

f (x | z, w; ξ) dx and pil = f (zil , wil ) for i = 1, . . . , nl , l =
0, . . . , L. Then Theorem 1 still holds by replacing the
counterparts correspondingly with these redefinitions.

4. Simulation Studies
We conduct simulation studies to assess the small-sample per-
formance of the proposed estimator. For all simulation stud-
ies, we generated 2000 simulated datasets, each with 500 inde-
pendent subjects. The data were generated according to the
following model:

Y = β0 + β1X + β2Z + ε1,

where X denotes a continuous exposure variable of in-
terest. We generate Z ∼ χ2(1). We assume that X = ξ0 +
ξ1W + ε0 and W =

√
Z + e, where ε0 ∼ N (0, σ2

0) and e ∼
N (0, ν2). That is, ξ ≡ (ξ0, ξ1, σ

2
0) and f (x |w, ξ) ∼ N (ξ0 +

ξ1w, σ2
0). Through some calculations, f (y |w; β, ξ) ∼ N (β0 +

β1ξ0 + β1ξ1w + β2w
2, σ2

1 + β2
1σ

2
0). We fix β0 = 1, β2 = 1, σ2

1 =
1, ξ0 = 1, ξ1 = 0.5, ν = 0, and σ2

0 = 1. Our ODS design con-
sists of an SRS sample of 300, a supplement sample of 100
from individuals with Y values in the lower and upper tails of
the marginal distribution of Y, respectively (i.e., n1 = n3 =
100, n2 = 0), defined by cutpoints μY ± aσY , where μY and
σY represent the mean and standard deviation of Y, respec-
tively. We choose the second-stage data to be a proportion of
the first-stage data (ρ = 0.2, 0.5), however, it should be noted
that one can choose different proportions of the second stage
for different strata. We investigate the effect between Y and X
by allowing β1 to take values 0 and 0.5. In addition to various
configurations for the parameter values, we investigate the
impact of different second-stage sample sizes on parameter
estimates. The cutpoints for the ODS design were μY ± aσY ,
where a is taken to be 0.6, 1, and 1.2, respectively. To ensure
convergence we use the adjusted empirical likelihood approach
proposed by Chen, Mulayath, and Abraham (2008).

For each setting, we compare the proposed estimator de-
noted by β̂P with seven competing estimators:

(i) a modified estimated maximum likelihood estimator
(EMLE of Weaver and Zhou, 2005) (β̂Y ) that uses the
first-stage covariates information but does not param-
eterize f (X |W ),

(ii) the inverse probability weighted estimator (β̂W ) us-
ing only the second-stage data and strata sampling
probabilities but no parameterizing f (X |W ),

(iii) a modified semiparametric empirical likelihood esti-
mator (SPELE of Zhou et al., 2002) (β̂R ) using only
the second-stage data with parametrizing f (X |W ),

(iv) the naive estimator (β̂V ) of using only the SRS in the
proposed design,

(v) the reduced proposed estimator (β̂P : no W ) that max-
imizes the reduced likelihood function Ln (no W ) (for
details see the online Web Appendix A). This esti-
mator uses the same inference algorithm but with W
stripped out.

(vi) The proposed estimator under a moderately misspec-
ified model f (X |W )(β̂P : model (1)), and

(vii) the proposed estimator under a severely misspecified
model f (X |W )(β̂P : model (2)). Table 1 summarizes the
similarity and difference among these estimators with
special comments on each estimator.

Simulations results are given in Tables 2–4 with Table 3
on the relative efficiency and Table 4 on the sample sizes
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Table 1
Summary for different methods compared in simulation study

Design Stage of data used Parameterization
Method 1st/2nd in inference f (x |w) Comment

βP ODS/ODS 1st and 2nd Yes proposed method
βR ODS/ODS 2nd only Yes modified SPELE
βW SRS/ODS 2nd only No sampling probability needed
βY SRS/ODS 1st and 2nd No modified EMLE
βP : no W ODS/ODS 1st and 2nd No reduced β̂P , no W used
βP : model (1) ODS/ODS 1st and 2nd Yes moderately misspecified X |W
βP : model (2) ODS/ODS 1st and 2nd Yes severely misspecified X |W

Table 2
Simulation results. Results are based on 2000 simulations with n0 = 300, n1 = n3 = 100.

β̂1 β̂2

a β1 Methods Mean SE ŜE C.I. Mean SE ŜE C.I.

0.6 0.5 βV 0.500 0.132 0.131 0.947 1.006 0.445 0.444 0.950
βW 0.503 0.102 0.100 0.939 1.000 0.067 0.066 0.939
βY 0.502 0.080 0.081 0.952 1.000 0.049 0.049 0.949
βR 0.497 0.084 0.085 0.940 1.005 0.062 0.063 0.941
βP 0.501 0.066 0.067 0.945 1.003 0.030 0.030 0.946
βP : no W 0.499 0.094 0.090 0.945 1.005 0.067 0.064 0.944
βP : model (1) 0.515 0.054 0.052 0.955 1.002 0.030 0.030 0.959
βP : model (2) 0.451 0.067 0.071 0.903 1.123 0.033 0.031 0.930

0 βV 0.000 0.133 0.132 0.944 1.005 0.448 0.440 0.953
βW 0.001 0.099 0.099 0.940 1.003 0.065 0.066 0.947
βY 0.002 0.091 0.091 0.940 1.000 0.044 0.045 0.952
βR −0.003 0.082 0.084 0.943 1.003 0.062 0.063 0.940
βP −0.001 0.064 0.064 0.939 1.002 0.027 0.027 0.951
βP : no W 0.000 0.077 0.083 0.960 1.002 0.065 0.064 0.947
βP : model (1) −0.005 0.046 0.045 0.940 1.000 0.026 0.027 0.953
βP : model (2) 0.057 0.081 0.081 0.883 0.997 0.028 0.028 0.952

1 0.5 βW 0.501 0.102 0.102 0.935 1.004 0.066 0.064 0.933
βY 0.498 0.081 0.080 0.942 1.001 0.049 0.049 0.947
βR 0.509 0.081 0.079 0.953 1.001 0.056 0.056 0.948
βP 0.505 0.064 0.064 0.947 1.002 0.028 0.029 0.940
βP : no W 0.502 0.080 0.085 0.961 1.007 0.059 0.059 0.958
βP : model (1) 0.519 0.040 0.051 0.951 1.001 0.020 0.024 0.960
βP : model (2) 0.465 0.070 0.066 0.913 1.122 0.030 0.029 0.011

0 βW −0.001 0.106 0.100 0.929 1.004 0.062 0.063 0.937
βY −0.002 0.087 0.086 0.945 1.002 0.044 0.045 0.949
βR −0.003 0.077 0.077 0.950 1.002 0.056 0.056 0.950
βP 0.005 0.061 0.063 0.947 1.002 0.029 0.029 0.940
βP : no W 0.001 0.094 0.091 0.939 0.997 0.063 0.065 0.960
βP : model (1) 0.000 0.044 0.043 0.958 1.002 0.026 0.025 0.942
βP : model (2) 0.091 0.078 0.074 0.754 0.995 0.027 0.026 0.946

NOTE: Results are based on the model Y = β0 + Xβ1 + W 2β2 + ε; the true parameter values are β0 = 0 and 0.5, respectively, and β2 = 1.
The cutpoints for the ODS design were μY ± aσY . The second-stage proportion for all strata are all 0.2. Explanations of estimators are given in
Table 1.

required for testing β1 = 0 at power levels of 80% and 85%,
respectively.

4.1 Robustness of β̂P

As the proposed method requires a parametric model for
X |W , it is of practical importance to see how sensitive the
resulting inference on the parameters of interest is with re-
gard to Y given X to a misspecified nuisance model of X |W .

We explore this issue with some modifications of the sim-
ulation models, where we generate data from model (1):
X = W 1/3 + ε0 and model (2): X = log(W 2 + 1) + ε0, respec-
tively. The working model remains to be: X = ξ0 + ξ1W + ε0.
Other simulation settings remain unchanged. Model (1) char-
acterizes the relations of X with a monotone transformation of
W. Hence, model (1) is closer to the working model compared
with model (2).
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Table 3
Empirical relative efficiencies of the simulation studies

Model

β1 = 0 β1 = 0.5

Cut points Second-stage proportion Methods β̂1 β̂2 β̂1 β̂2

0.6 0.5 βV 0.573 0.097 0.566 0.104
βW 0.758 0.643 0.758 0.659
βY 0.810 0.587 0.855 0.604
βR 0.904 0.692 0.887 0.763

0.2 βV 0.607 0.080 0.653 0.087
βW 0.646 0.415 0.647 0.448
βY 0.703 0.614 0.825 0.612
βR 0.780 0.435 0.786 0.484

1 0.5 βV 0.531 0.092 0.543 0.094
βW 0.698 0.650 0.714 0.634
βY 0.786 0.590 0.849 0.542
βR 0.917 0.722 0.882 0.722

0.2 βV 0.428 0.057 0.482 0.063
βW 0.575 0.468 0.627 0.424
βY 0.701 0.659 0.790 0.571
βR 0.792 0.518 0.790 0.500

1.2 0.5 βV 0.516 0.087 0.536 0.093
βW 0.667 0.600 0.700 0.619
βY 0.778 0.571 0.830 0.578
βR 0.875 0.706 0.880 0.743

0.2 βV 0.414 0.070 0.617 0.077
βW 0.514 0.375 0.612 0.394
βY 0.655 0.533 0.778 0.522
βR 0.733 0.453 0.778 0.473

NOTE: The relative efficiency is defined as the ratio of the empirical standard error of β̂P over the corresponding estimator. For other settings
see footnote of Table 2.

Table 4
Sample size needed for testing H0 : β1 = 0 for a given power for models in the simulation studies

Sample size

βY βP

Second-stage proportion Power True β1 a = 0.6 a = 1 a = 1.2 a = 0.6 a = 1 a = 1.2

0.5 0.8 0.05 5351 4978 4573 3468 3039 2769
0.15 573 527 507 385 338 308

0.85 0.05 5968 5378 4973 3967 3476 3168
0.15 681 619 585 441 386 352

0.2 0.8 0.05 12507 11163 10356 6430 5841 4749
0.15 1324 1257 1094 714 649 528

0.85 0.05 13485 13047 11732 7355 6682 5432
0.15 1576 1406 1337 817 742 604

The simulation results reported in Table 2 suggest that the
deviation of the working model from the true model will affect
the inference on the parameter of interest β1: the larger the
deviation, the larger the bias. For example, when β1 = 0, a =
0.6 and the second-stage proportion is 0.2, the estimate of β1

with true model (1) is −0.005 with empirical 95% coverage
probability of 94.0%. The estimate of β1 with true model (2)
is 0.057 with empirical 95% coverage probability 88.3%.

These observations clearly indicate that careful attention is
needed in making and checking for parameterization of X |W .
Proper transformations may be carried out to ensure the pa-
rameterization of X |W is valid. The SRS sample could be
used to validate such assumption. Table 2 also demonstrated
that the robust estimator βP : no W is clearly valid and not im-
pacted by the model misspecification of X |W . However, it is
not as efficient as βP when the X |W is correctly specified.
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Next, we evaluate the performance of the proposed estima-
tor when X |W is correctly specified. We compare it against
four remaining estimators βV , βW , βY , and βR in the next sub-
section.

4.2 Efficiency of β̂P

For all the cases considered in Table 2, estimators
β̂V , β̂W , β̂Y , β̂R , β̂P : no W , and β̂P are all unbiased, the means
of the standard error estimates agree well with the sample
standard errors and the confidence intervals attain coverage
rates close to the nominal 95% level. As evident in Table 2,
the proposed estimator β̂P is the most efficient one among
all estimators compared. As expected, the estimator β̂V is
the least efficient one. Both the estimators β̂Y and β̂R are
more efficient than the estimator β̂W . Furthermore, efficiency
gains associated with the different second-stage proportions
and positions of the cutpoints of estimators β̂V , β̂W , β̂Y , and
β̂R relative to β̂P are presented in Table 3.

Note that all entries in Table 3 are less than 1, suggesting
that β̂P is the most efficient estimator overall. Another inter-
esting fact is that as a, the cutpoint of the ODS design, in-
creases, the relative efficiency of β̂P versus β̂W also increases.
As the same time, the relative efficiencies of β̂P versus β̂Y and
β̂R are also increasing but in a much less noticeable manner.

Table 4 shows the sample sizes required to achieve a given
power for two local values of β1(0.05, 0.15) using two methods
βY and βP under the previous simulation settings. The sample
sizes are calculated based on the asymptotic normal proper-
ties of the corresponding estimators. See Web Appendix B
for calculation details. Note that although we did not include
β̂W in Table 4, the sample sizes for method βW will be con-
sistently larger than that of βY , as βW has been shown to
be consistently less efficient than βY . Using our proposed es-
timator under ODS requires a smaller sample size. When the
cutpoints are μY ± 0.6σY , the proposed method needs about
80% of the subjects who would be needed if the study were
conducted with a simple random sampling scheme at the first
stage. As the cutpoints are further out, fewer subjects are
needed to achieve a certain power. Furthermore, for a given
power, as the true value of β1 is further away from 0, relatively
fewer subjects are needed to achieve the same power with βP

as compared with βP , therefore, efficiency gains increase as β1

is further away from 0.

5. Analysis of CPP Data
We illustrate the proposed method by analyzing a dataset
from the Collaborative Perinatal Project (CPP), a study de-
signed to identify determinants of neurodevelopmental deficits
in children (Niswander and Gordon, 1972). Pregnant women
were enrolled and data were collected on the mothers at each
prenatal visit. The children born into the study were also fol-
lowed for various outcomes. The investigators are interested
in the relationship between in utero exposure to PCBs, mea-
sured as the third trimester maternal serum PCB level, and
cognitive test scores (IQ) at 7 years of age for children (Long-
necker et al., 1997). We are mainly interested in the effect of
PCB on IQ measurement.

Because of the cost associated with the blood serum as-
say, the PCB level is measured on a subsample with an ODS
scheme from the CPP population. In addition to a random
sample of 849 subjects, there are two supplemental subgroups

Table 5
The analysis of CPP data

Covariate β̂V β̂R β̂P

Intercept 67.948/5.593∗ 69.991/4.325∗ 70.302/2.732∗

PCB 0.134/0.472 0.104/0.348 0.191/0.327
SSES 1.078/0.364∗ 1.349/0.268∗ 1.550/0.169∗

EDU 3.606/1.342∗ 3.520/0.997∗ 2.728/0.604∗

AGE 0.038/0.120 0.040/0.089 0.019/0.055
WHITE 16.957/3.867∗ 11.669/2.909∗ 10.010/1.770∗

BLACK 7.207/3.806 2.029/2.869 0.130/1.749
SEX −0.409/1.454 −0.738/1.094 −0.390/0.674

NOTE: The estimates and the standard error of the CPP data are
recorded in the form “estimate/standard error.” We mark “∗” to mean
that the corresponding parameter estimate is significant at 5% level.

that are defined by children’s IQ scores that are one standard
deviation above and below the mean of the population IQ
scores, with 81 subjects in the low IQ group and 108 subjects
in the high IQ group.

The two-stage ODS setting in the CPP study was created
as follows. The first-stage data consist of 1038 subjects. In
the second stage, 534 measurements of PCB of 849, 51 of 81,
and 72 of 108 in SRS and two tails are randomly taken, re-
spectively. The socioeconomic status (SES) is a continuous
variable distributed from 0 to 9.5. We defined a surrogate of
SES by discretizing SES into three levels: low (0–3), medium
(4–6), and high (6–9.5). Additional covariates considered to
be potential confounders include the highest education level
attained by the mother at the time of the child’s birth (EDU),
the mother’s age in years at the time of the child’s birth
(AGE), the race of the child (WHITE and BLACK), and the
gender of the child (SEX). The covariate SEX was coded 0
for males and 1 for females. The model we fit is

IQ = β0 + β1PCB + β2SES + β3EDU + β4AGE

+ β5WHITE + β6BLACK + β7SEX + ε1,

where ε1 is assumed to be a normal error with zero mean. The
relationship between PCB and the discretized SES is set to
be PCB = ξ0 + ξ1W + ε0, and the error term ε0 is normally
distributed.

We first explored the relationship between the discretized
SES and PCB based on the SRS data. The resulting lowess
curve indicates a linear association between discretized SES
and PCB, which is further verified by a linear model fit with
the estimate of slope as 0.154 (p < 0.0001). A scatter plot of
PCB versus SES is provided in Web Appendix C.

Table 5 summarizes the results from the same three meth-
ods we evaluated in the simulation study. The βW is not calcu-
lated as we do not have the strata proportion here. First, note
that the three estimators provided similar point estimates for
the regression parameters. The differences in these estimators
are in the precisions associated with these estimates. Using
the covariate AGE as an example, the βV is the least effi-
cient method with an estimated standard error for AGE at
0.120. The estimated standard error for AGE is 0.089 for βR

and is 0.055 for βP . The proposed method, βP , which takes
advantage of both two-stage and ODS design, is the most effi-
cient estimator. Again, using AGE as an example, its relative
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efficiencies relative to βV and βR are 4.76 and 2.62, respec-
tively. These observations are consistent with the results from
the simulation study. Overall, the results from the three meth-
ods agree well. We observe that SES, EDU, and WHITE were
all significantly associated (at the 0.05 level) with IQ, whereas
AGE, BLACK, and SEX were not. Although the effect of PCB
on IQ is also not significant, the proposed method does pro-
vide a tighter 95% nominal confidence interval for the effect
of PCB.

6. Remarks
In this article, we proposed a two-stage ODS design for a
continuous outcome and exposure variables and developed
a semiparametric empirical likelihood-based method to an-
alyze data from a such two-stage ODS design. This proposed
method is robust to the misspecification of the probability dis-
tribution of the auxiliary covariate W. The proposed estima-
tor has the usual asymptotic normality property. Simulation
studies show that the proposed estimators are more efficient
than existing methods.

In many practical settings, investigators choose a two-stage
design because of budget limitations. Suppose the total bud-
get available for the study is B, denoting the cost of each
first-stage observation C1 and the additional cost of ascer-
taining second-stage data for a subject C2. It can be seen
that B = nC1 + mC2. With the budget fixed at B, the opti-
mal design is the study size n and the second-stage sampling
fractions {rk }, k = 1, . . . , K , which minimize the variance of
β̂j , where βj is the jth entry of β which is of primary interest.
It would be worthwhile in the future to derive the second-
stage sampling fractions under such optimal design with an
ODS scheme in this context.

We would like to stress the importance of careful model
checking and model building for f (X |W ) when using the
proposed method, as failure to do so may lead to biased pa-
rameter estimates. In this regard, design with SRS sample
in the first stage (i.e., n0 > 0) is useful in helping correctly
identifying a parametric model for f (X |W ). Future research
for a fully nonparametric treatment of f (X |W ) is certainly
warranted.

7. Supplementary Materials
Web Appendixes A, B, and C are available under
the Paper Information link at the Biometrics web site
http://www.biometrics.tibs.org.
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Appendix

Proof of Theorem 1. Let ln (θ) = ln 1(θ) + ln 2(θ), where

ln 1(θ) =
K∑

k=0

[
m k∑
i=1

{log f (yik |xik , wik ; β) + log f (xik |wik ; ξ)}

+
n k∑

i=m k +1

ψ(yik , wik ; β, ξ)

]
−

K∑
k=1

nk log πk

and ln 2(θ) = −∑K

k=1

∑
i
log(1 + γk (θ)hk (zik )) −∑K

k=1 log Q
(zik ).

The consistency proof is similar to the proof of
Theorem 4.1 in Lehmann (1983). We sketch the proof in
the following. We will show (a) ln 1(θ0) > ln 1(θ) a.s. and (b)
ln 2(θ0) > ln 2(θ) a.s. for θ = θ0 + un−1/3 to get the conclusion
that ln (θ) has a local maximum inside the ball ‖θ − θ0‖ �
n−1/3. Part (a) can be proved through a Taylor expansion
around θ0 in a n−1/3 neighborhood of θ0. We note that the
essential part is to notice that E[∂2ln 1(θ0)/∂θ∂θt ] is negative
definite. For part (b), to show ln 2(θ0) > ln 2(θ) a.s., we follow
closely the proof of Lemma 1 in Qin and Lawless (1994). Based
on (a) and (b), we conclude ln (θ0) > ln (θ) a.s. for θ = θ0n−1/3.
Since ln (θ) is a continuous function in θ as θ belongs to the ball
‖θ − θ0‖ � n−1/3, ln (θ) has a local maximum in a small neigh-
borhood of θ0. The consistency is achieved by the smoothness
of the likelihood function.

Now we prove the asymptotic normality. The first deriva-
tive of ln (θ) with respect to θ is

Sn (θ) =
∂ln (θ)

∂θ

=
K∑

k=0

{
m k∑
i=1

uik (yik , xik , wik ; θ)+
n k∑

i=m k +1

vik (yik , wik ; θ)

}
,

where

uik (yik , xik , wik ; θ) =

⎛⎜⎜⎜⎜⎜⎜⎝

∂log f (yik |xik , wik ; β)
∂ζ

+
∂log f (xik |wik ; ξ)

∂ζ
− ∂Q(wik , ζ)/∂ζ

Q(wik ; ζ)
− γk ∂hk (wik ; θ)/∂ζ

1 + γk hk (wik ; θ)

−1{k > 0}nk

πk

− ∂Q(wik ; θ)/∂πk

Q(wik ; θ)
− γk ∂hk (wik ; θ)/∂πk

1 + γk hk (wik ; θ)

− hk (wik ; θ)
1 + γk hk (wik ; θ)

⎞⎟⎟⎟⎟⎟⎟⎠

and

vik (yik , wik ; θ)

=

⎛⎜⎜⎜⎜⎜⎝
∂ log ψ(yik , wik ; ζ)

∂ζ
− ∂Q(wik , ζ)/∂ζ

Q(wik ; ζ)
− γk ∂hk (wik ; θ)/∂ζ

1 + γk hk (wik ; θ)

−1{k > 0}nk

πk
− ∂Q(wik ; θ)/∂πk

Q(wik ; θ)
− γk ∂hk (wik ; θ)/∂πk

1 + γk hk (wik ; θ)

− hk (wik ; θ)
1 + γk hk (wik ; θ)

⎞⎟⎟⎟⎟⎟⎠.

By the law of large numbers, one can show

Sn (θ)
n

=
K∑

k=0

nk

n

(
mk

nk

m k∑
i=1

uik (θ)
mk

+
nk − mk

nk

n k∑
i=m k +1

vik (θ)
nk − mk

)

→p

K∑
k=0

ρk {rk E(u1k ) + (1 − rk )E(v1k )}

≡ s(θ),

where ρk = limn→∞ nk /n is the limit of the first-stage propor-
tion, and rk = limn→∞ mk /nk is the limit of the second-stage
proportion. When rk = 1, k = 0, 1, . . . , K , our likelihood has
the same form as that in Zhou et al. (2002). When evaluated
at θ0, we can show s(θ0) = 0.

Similarly, we have Vn (θ) = 1
n

∂ 2ln (θ )
∂ θ∂ θ ′ converges to V (θ) in

probability, where

V (θ) =
K∑

k=0

ρk

{
rk E

(
∂uik (θ)

∂θ

)
+ (1 − rk )E

(
∂vik (θ)

∂θ

)}
.

It follows from central limit theorem that
√

nSn (θ̂n ) converges
in distribution to N (0, U (θ)), where

U (θ) =
K∑

k=0

ρk (rk cov(uik ) + (1 − rk )cov(vik )) .

Expanding Sn (θ) at the true value θ0, we have
√

n(θ̂n − θ0) =
Vn (θ)−1 1√

n
Sn (θ) + op (1). Thus Theorem 1 holds by Slutsky’s

theorem. A consistent estimator of Σ is Σ̂ = V̂ −1Û V̂ −1, where
V̂ = Vn (θ̂n ), and Û = 1

n

∑
k ,i

Sn (θ̂n ), by consistency results
and the continuous mapping theorem.


