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a b s t r a c t

How to take advantage of the available auxiliary covariate information when the primary
covariate of interest is not measured is a frequently encountered question in biomedical
study. In this paper, we consider themultivariate failure times regression analysis inwhich
the primary covariate is assessed only in a validation set, but a continuous auxiliary covari-
ate for it is available for all subjects in the study cohort. Under the frame of marginal haz-
ard model, we propose to estimate the induced relative risk function in the non-validation
set through kernel smoothing method and then obtain an estimated pseudo-partial like-
lihood function. The proposed estimator which maximizes the estimated pseudo-partial
likelihood is shown to be consistent and asymptotically normal. We also give an estimator
of the marginal cumulative baseline hazard function. Simulation studies are conducted to
evaluate the finite sample performance of our proposed estimator. The proposedmethod is
illustrated by analyzing a heart disease data from the Study of Left Ventricular Dysfunction
(SOLVD).

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

In biomedical studies, it is common that the true exposure variable of interest, X , is only measured for a subset of the
whole study cohort. This subset is often referred to as the validation set where it is usually just a simple random sample
of the whole cohort. In many cases, there exists some easily available auxiliary covariate about X , denoted byW , that can
be easily assessed for the full study cohort. Real examples for data with auxiliary covariate can be found in cancer research
(e.g. [1,2]) and heart disease research (e.g. [3]).
It is well known that simply usingW in place of X when X is not observed could lead to biased results. On the other hand,

analysis based solely on the validation setwould not be themost efficient one as information from the non-validation set, the
set of individuals whose X is not assessed, is not utilized. It would be always desirable to incorporate the available auxiliary
covariate information to improve the efficiency of inference. For the censored failure time data with auxiliary covariate,
some methods have been proposed to improve the study efficiency. Among others, Prentice [4] proposed using induced
partial likelihood for the Cox regression under the rare events assumption. Zhou and Pepe [5] removed the rare diseases
assumption and proposed an estimated partial likelihood method for discrete auxiliary variable. Their work was extended
by Zhou andWang [6] to handle continuous auxiliary covariate based on a kernel smoother approach. Kulich and Lin [7] and
Jiang and Zhou [8] studied failure time data with auxiliary covariate under additive hazards model of Lin and Ying [9].
All the aforementioned studies assumed that the failure time is univariate. In real studies, multivariate failure time

data with auxiliary problem are just as frequently encountered. There are limited methods available for auxiliary covariate
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problem when the failure times are correlated. For multiplicative hazards models, Hu and Lin [10] proposed a corrected
estimating functionmethods for themarginal Cox proportional hazardsmodel under the assumption that themeasurement
error is symmetrically distributed. Liu, Zhou and Cai [11] proposed an estimated pseudo-partial likelihood method for
marginal Cox proportional hazardsmodel with discrete auxiliary. However, the continuous auxiliary often arises in practical
studies (e.g. SOLVD data we studied in Section 5). In this case, Liu, Zhou and Cai suggested to discretize the continuous
auxiliary first and then use the available method. This simplification would entail a loss of information and other limitations
[11]. In this paper, we develop a method to handle continuous auxiliaryW under the marginal Cox model framework. The
proposed method is based on nonparametric multivariate kernel smoothing procedure and makes no assumption about
the relationship between the auxiliary variable and the true exposure variable. The proposed estimator for the regression
parameter which maximizes the estimated pseudo-partial likelihood is shown to be consistent and asymptotically normal.
The rest of this paper is organized as follows. In Section 2, we propose to estimate the induced risk function through

kernel method, derive the proposed estimator for the regression parameter from an estimated pseudo-partial likelihood
function, and finally give a Breslow-type estimator for the baseline cumulative hazard function. Asymptotic properties of
our proposed estimators are established in Section 3. Section 4 presents a simulation study to evaluate the performance
of our proposed method. We apply the proposed method to study the effect of ejection fraction on the risk of heart failure
and first myocardial infarction using the data from the SOLVD [3] in Section 5. Some concluding remarks are provided in
Section 6. Sketched proofs of the asymptotic properties are presented in the Appendix.

2. Model and estimation

2.1. Notation and data structure

Suppose that there is a random sample of n independent groups from an underlying population and that there are K
different correlated members in each group. Let (i, k) denote the kth member in the ith group. Let T̃ik be the failure time
for subject (i, k), Cik the correspondingly potential censoring time, and Tik = min(̃Tik, Cik) the observed time. The censoring
indicator is denoted by ∆ik = I (̃Tik ≤ Cik), where I(·) is the indicator function. Yik(t) = I(Tik ≥ t) denotes the at-risk
indicator process. For simplicity, we assume that each cluster potentially has the same number of subjects, that is, K is fixed.
However, we may allow the cluster size to change by setting appropriate Cik = 0. Write the transpose of a matrix A as A′
and let (X ′ik(t), Z

′

ik(t))
′ be a p-vector of possibly time-dependent covariate, where Xik(t) is the primary covariate subject to

missing and Zik(t) is the remaining covariate that is always observed. Let Wik(t) be the auxiliary covariate for Xik(t), and
assume that conditional on Xik(t),Wik(t) provides no additional information to the regression model in the sense that

λik(t; Xik(t), Zik(t),Wik(t)) ≡ lim
∆t↓0

[
1
∆t
Pr
(
t ≤ T̃ik < t +∆t | T̃ik ≥ t, Xik(t), Zik(t),Wik(t)

)]
= lim

∆t↓0

[
1
∆t
Pr
(
t ≤ T̃ik < t +∆t | T̃ik ≥ t, Xik(t), Zik(t)

)]
≡ λik(t; Xik(t), Zik(t)).

This is a kind of surrogate condition that asserts a conditional independence, given Xik(t) and Zik(t), of failure rate at t and
Wik(t) for subject (i, k) and requires the auxiliary covariate Wik(t) to have no predictive value given the covariates Xik(t)
and Zik(t). Let ηik be an indicator variable with ηik = 1 indicating that subject (i, k) is in the validation set and with ηik = 0
in the non-validation set. Let η̄ik = 1− ηik. Denote the kth marginal validation set by Vk = {i : ηik = 1} and non-validation
set by V̄k = {i : η̄ik = 1}, respectively. Let nk denote the number of subjects in Vk and assume

nk
n → ρk, as n→∞, where

ρk is an unknown positive constant representing the fraction of kth marginal validation set. If ηik = 1, then the observed
data for subject (i, k) are {Tik,∆ik, Yik(t), Xik(t), Zik(t),Wik(t)} and if ηik = 0, then the observed data for subject (i, k) are
{Tik,∆ik, Yik(t), Zik(t),Wik(t)}. Suppose that the data are observed on the time interval [0, τ ], where 0 < τ <∞ is a fixed
quantity. For fixed k, suppose (̃Tik, Cik, ηik, Xik(t), Zik(t),Wik(t); t ∈ [0, τ ])(i = 1, . . . , n) are independent and identically
distributed.

2.2. Model and kernel-based estimation of pseudo-partial likelihood function

Assume that the marginal hazards function for the subject (i, k) takes the form:

λik(t; Xik(t), Zik(t)) = λ0k(t) exp{β ′1Xik(t)+ β
′

2Zik(t)}, (1)

where β = (β ′1, β
′

2)
′ is the relative risk parameter to be estimated, and λ0k(t) is an unspecified marginal baseline hazard

function pertaining to the kth marginal subjects. If subject (i, k) belongs to the validation set Vk, then Xik(t) and Zik(t) are
observed and the marginal model takes the form as (1). If subject (i, k) belongs to the non-validation set V̄k, then Xik(t) is
not observed. Under this situation, it can be verified, using the arguments of Prentice [4] and Zhou and Wang [6], that the
hazard function λik(t; Zik(t),Wik(t)) satisfies the induced model
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λik(t; Zik(t),Wik(t)) ≡ lim
∆t↓0

[
1
∆t
Pr
(
t ≤ T̃ik < t +∆t | T̃ik ≥ t,Wik(t), Zik(t)

)]
= λ0k(t)E{eβ

′
1Xik(t) |̃Tik ≥ t,Wik(t), Zik(t)} exp(β ′2Zik(t)).

Under the independent censoring assumption described by equation (5) in Prentice [4] that

λik(t; Zik(t),Wik(t), no censorship in [0, t)) = λik(t; Zik(t),Wik(t)),

we can rewrite the induced model as

λik(t; Zik(t),Wik(t)) = λ0k(t)E{eβ
′
1Xik(t)|Yik(t) = 1,Wik(t), Zik(t)} exp(β ′2Zik(t)). (2)

Note that this induced hazard model (2) is also a proportional hazard model with the relative risk function

φik(t;β) ≡ E{eβ
′
1Xik(t)|Yik(t) = 1,Wik(t), Zik(t)} exp(β ′2Zik(t)),

which is a weighted average of the relative risks in model (1), givenWik(t) and Zik(t) at risk prior to time t .
Based on (1) and (2), the relative risk function can be concluded in general as

rik(t;β) ≡ ϕik(t;β)ηik + φik(t;β)(1− ηik), (3)

where ϕik(t;β) = exp(β ′1Xik(t)+ β
′

2Zik(t)).
If all the subjects under study are independent, we can write the partial likelihood as

PPL(β) ≡
K∏
k=1

n∏
i=1

 rik(Tik;β)
n∑
j=1
Yjk(Tik)rjk(Tik;β)


∆ik

. (4)

When the failure times within each group are correlated, the above partial likelihood function is referred to as the pseudo-
partial likelihood [12]. Since the induced relative risk function rik(t;β) includes unknown conditional expectation except
the regression parameter, we should estimate it by using data from the validation set.
To estimate rik(t;β), it suffices to estimate φik(t;β). The conditional expectation in φik(t;β) depends on the underlying

distributions of Xik(t) and Zik(t). If f (Xik(t)|Tik ≥ t, Zik(t),Wik(t)) is a known function up to a parameter θ , then the inference
about β and θ can be derived from the usual pseudo-partial likelihood (4) based on the general relative function rik(t;β, θ)
[13]. To avoid making undesirable parameter assumption, Liu, Zhou and Cai [11] used a marginal empirical relative risk
estimator for those in the non-validation set when Wik(t) is discrete. For continuous Wik(t), we propose to estimate the
relative risk in non-validation set through a kernel smoother method.
Let Z∗ik = (Z ′ik,W

′

ik)
′ be a d-dimension vector. Using the method of Nadaraya [14] and Watson [15], we could estimate

φik(t;β) as:

φ̂ik(t;β) =

n∑
j=1
ηjkYjk(t)Qk

{
B−1k {Z

∗

jk(t)− Z
∗

ik(t)}
}
exp{β ′1Xjk(t)}

n∑
j=1
ηjkYjk(t)Qk

{
B−1k {Z

∗

jk(t)− Z
∗

ik(t)}
} exp{β ′2Zik(t)}, (5)

where Qk(·) is a kernel function with bandwidth matrix Bk, which is d × d positive-definite, with its elements possibly
depending on n. For simplicity, we only consider the situation in which Bk is a diagonal matrix with element at (l, l) denoted
by blk.
Replacing φik(t;β) by φ̂ik(t;β) in (3), we obtain an estimated induced relative risk function:

r̂ik(t;β) = ϕik(t;β)ηik + φ̂ik(t;β)(1− ηik). (6)

Note that the kernel-based relative risk estimator is not defined when the denominator in (5) is equal to zero, which
occurs when the risk set at time t in the kth marginal validation set Vk is the null set. This could be treated by interpolating
the neighboring points of continuous Z∗ik(t) as suggested by Zhou and Wang [6].
Substituting r̂ik(t;β) for rik(t;β) in (4), we obtain an estimated pseudo-partial likelihood function:

EPPL(β) ≡
K∏
k=1

n∏
i=1

 r̂ik(Tik;β)
n∑
j=1
Yjk(Tik)̂rjk(Tik;β)


∆ik

. (7)

The proposed estimator, denoted by β̂E , which is defined as the maximizer of (7), is used to estimate β0, the true value
of β . β̂E can be obtained by solving the resultant estimated pseudo-partial likelihood score equation Û(β) = 0, where
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Û(β) =
K∑
k=1

n∑
i=1

∫ τ

0

 r̂
(1)
ik (u;β)
r̂ik(u;β)

−

n∑
j=1
Yjk(u)̂r

(1)
jk (u;β)

n∑
j=1
Yjk(u)̂rjk(u;β)

 dNik(u), (8)

Nik(t) = I(Tik ≤ t,∆ik = 1) is the observed counting process corresponding to the subject (i, k), and r̂
(j)
ik (t;β) denotes the

jth derivative of r̂ik(t;β) with respect to β , especially, r̂
(0)
ik (t;β) = r̂ik(t;β). The same definitions go for r

(j)
ik (t;β). We can

use Newton–Raphson iterative procedure to get β̂E .
Furthermore, a Breslow-type estimator of the marginal cumulative baseline hazard functionΛ0k(t) can be consequently

constructed as follows:

Λ̂0k(t) =
∫ t

0

n∑
i=1
dNik(u)

n∑
i=1
Yik(u)̂rik(u; β̂E)

.

3. Asymptotic properties

To investigate the asymptotic properties of β̂E and Λ̂0k(t), we define the following notation. For a vector a, define
a
⊗
2
= aa′ and ‖a‖ = supi |ai|. For a matrix A, define ‖A‖ = supi,j |aij|. Unless otherwise stated, all the limits are taken

as n→∞.
For k = 1, . . . , K , let

S(a)k (t;β) =
1
n

n∑
i=1

Yik(t)r
(a)
ik (t;β), a = 0, 1, 2,

S(3)k (t;β) =
1
n

n∑
i=1

Yik(t)
r (2)ik (t;β)
rik(t;β)

rik(t;β0),

S(4)k (t;β) =
1
n

n∑
i=1

Yik(t)

{
r (1)ik (t;β)
rik(t;β)

}⊗ 2

rik(t;β0).

For l = 0, . . . , 4, we define Ŝ(l)k (t;β) by substituting r̂ik(t;β) for rik(t;β) in S
(l)
k (t;β) and denote s

(l)
k (t;β) = ES

(l)
k (t;β).

Except the aforementioned assumptions, we impose the following conditions throughout our discussions:
Conditions:

C1. Λ0k(τ ) <∞, for k = 1, . . . , K .
C2. P{Yik(t) = 1} > 0, for all t ∈ [0, τ ] and i = 1, . . . , n and k = 1, . . . , K .
C3. For every i and k, each component of (X ′ik, Z

′

ik,W
′

ik)
′ has bounded total variation almost surely over [0, τ ].

C4. There exists an open setB, containing β0 as its interior point, such that φik(t;β) is bounded away from 0 on [0, τ ]×B.
A(β0) ≡

∑K
k=1 Ak(β0) is positive-definite, where

Ak(β0) =
∫ τ

0

 s(4)k (t;β0)
s(0)k (t;β0)

−

{
s(1)k (t;β0)

s(0)k (t;β0)

}⊗ 2
 s(0)k (t;β0)λ0k(t)dt.

C5. For k = 1, . . . , K , multivariate kernel Qk(·) is non-negative and uniformly bounded with finite support satisfying that∫
Qk(u)du = 1 and

∫
Q 2k (u)du < ∞. Furthermore, the kernel Qk(·) has order α0k in the sense that α0k ≡ inf{|α| >

d;
∫
Rd u

αQk(u)du 6= 0}, where uα = u
α1
1 · · · u

αd
d , |α| = α1 + · · · + αd,u = (u1, . . . , ud), α = (α1, . . . , αd), and α

′

is are
non-negative integers. The bandwidth Bk satisfies that

√
n‖Bk‖α0k → 0 and log n

√
n‖Bk‖d

→ 0.

C6. For given t , let Hk(u, v, s) be the joint distribution of (ηkYk(t), Z∗k (t), Xk(t)). Suppose that hk(v, s) =
∂2Hk(1,v,s)

∂v∂s has the
α0kth continuous derivatives with respect to every component of v.
Conditions C1–C4 are regular conditions similar to those given in Spiekerman and Lin [16]; condition C5 is the usual

condition for kernel smoothing; condition C6 is a technical assumption for proving.
To develop the asymptotic properties of the proposed estimators, we first claim that s(l)k can be consistently estimated

by Ŝ(l)k for all t ∈ [0, τ ] in the following lemma.

Lemma 1. Under conditions C1–C6, for k = 1, . . . , K , and l = 0, . . . , 4, there exists a neighborhoodB of β0 such that s
(l)
k (t;β)

is continuous function of β ∈ B uniformly in t ∈ [0, τ ] and is bounded on [0, τ ] ×B . s(0)k (t;β) is bounded away from zero on
[0, τ ] ×B . Furthermore, for a = 0, 1, 2,
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sup
t∈[0,τ ],β∈B

|̂φ
(a)
ik (t;β)− φ

(a)
ik (t;β)|→p 0;

sup
t∈[0,τ ],β∈B

‖̂S(l)k (t;β)− S
(l)
k (t;β)‖→p 0;

sup
t∈[0,τ ],β∈B

‖̂S(l)k (t;β)− s
(l)
k (t;β)‖→p 0.

The proof of Lemma 1 is outlined in the Appendix. Furthermore, let the filtration {F k
t : t ∈ [0, τ ]} be the kth marginal

data history up to time t , that is,
F k
t = σ {Nik(s), Yik(s+), Zik(s+), Xik(s+) : 0 ≤ s ≤ t, i = 1, . . . , n}.

DefineMik(t) = Nik(t)−
∫ t
0 Yik(u)rik(u;β0)λ0k(u)du, thenMik(t) is a F k

t martingale. Following closely the arguments of
Foutz [17], we can show that β̂E is consistent for β0. To show the asymptotic normality of β̂E , we use the Taylor expansion
of the estimated pseudo-partial likelihood score equation which, using martingale convergence theory and standard kernel
estimate theory, can be shown to be asymptotically equivalent to a sum of two independent terms. Each of the terms can be
shown to be a scaled sum of independent vectors. The multivariate central limit theorem is then applicable. We summarize
the results in the following theorem and give the outline of the proofs in the Appendix.

Theorem 1. Under conditions C1–C6, β̂E is a consistent estimator of β0. Furthermore,
√
n(β̂E − β0) is asymptotically normal

distributed with mean zero and variance matrix

Σ(β0) = A−1(β0)[B1(β0)+ B2(β0)]A−1(β0),

where A(β0) is defined as in condition C4, and

B1(β) =
K∑
k=1

K∑
l=1

√
ρk
√
ρlE

(
µ1k(β)µ

′

1l(β)
)
,

B2(β) =
K∑
k=1

K∑
l=1

√
1− ρk

√
1− ρlE

(
ν1k(β)ν

′

1l(β)
)
,

with

µjk(β) =

∫ τ

0

[
ϕ
(1)
jk (t;β)

ϕjk(t;β)
−
s(1)k (t;β)

s(0)k (t;β)

]
dMjk(t)−

1− ρk
ρk

Hjk(β),

Hjk(β) =
∫ τ

0

[
φ
(1)
jk (t;β)

φjk(t;β)
−
s(1)k (t;β)

s(0)k (t;β)

] (
ϕjk(t;β)− φjk(t;β)

)
Yjk(t)dΛ0k(t),

νjk(β) =

∫ τ

0

[
φ
(1)
jk (t;β)

φjk(t;β)
−
s(1)k (t;β)

s(0)k (t;β)

]
dMjk(t).

Remark 1. Observe that, when the validation fraction ρk = 1 for every k, the variancematrix is the same as that of the usual
pseudo-partial likelihood estimator [12], as it should be.

It follows from Theorem 1 and Lemma 1 that the covariance matrixΣ(β0) can be consistently estimated by
Σ̂(β̂E) = Â−1(β̂E)[̂B1(β̂E)+ B̂2(β̂E)]̂A−1(β̂E),

where

Â(β̂E) =
K∑
k=1

∫ τ

0

 Ŝ(4)k (t; β̂E)
Ŝ(0)k (t; β̂E)

−

{
Ŝ(1)k (t; β̂E)

Ŝ(0)k (t; β̂E)

}⊗ 2
 Ŝ(0)k (t; β̂E)dΛ̂0k(t),

B̂1(β̂E) =
1
n

K∑
k=1

K∑
l=1

∑
i∈Vk

∑
j∈Vl

µ̂ik(β̂E)µ̂
′

jl(β̂E),

B̂2(β̂E) =
1
n

K∑
k=1

K∑
l=1

∑
i∈V̄k

∑
j∈V̄l

ν̂ik(β̂E )̂ν
′

jl(β̂E),

µ̂jk(β̂E) =

∫ τ

0

[
ϕ
(1)
jk (t; β̂E)

ϕjk(t; β̂E)
−
Ŝ(1)k (t; β̂E)

Ŝ(0)k (t; β̂E)

]
dM̂jk(t; β̂E)−

n− nk
nk

Ĥjk(β̂E),
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ν̂jk(β̂E) =

∫ τ

0

[
φ̂
(1)
jk (t; β̂E)

φ̂jk(t; β̂E)
−
Ŝ(1)k (t; β̂E)

Ŝ(0)k (t; β̂E)

]
dM̂jk(t; β̂E),

Ĥjk(t; β̂E) =
∫ τ

0

[
φ̂
(1)
jk (t; β̂E)

φ̂jk(t; β̂E)
−
Ŝ(1)k (t; β̂E)

Ŝ(0)k (t; β̂E)

]
(ϕjk(t; β̂E)− φ̂jk(t; β̂E))Yjk(t)dΛ̂0k(t),

dM̂jk(t; β̂E) = dNjk(t)− Yjk(t )̂rjk(t; β̂E)dΛ̂0k(u).

Define the baseline stochastic processes Wn(t) =
(
Λ̂01(t)−Λ01(t), . . . , Λ̂0K (t)−Λ0K (t)

)′. Let D[0, τ ]K be a space
consisting of right-continuous functions {a1(t), . . . , aK (t)}T with left limits, where ak(t) : [0, τ ] → R for k = 1, . . . , K .
Make D[0, τ ]K a metric space by equipping it with the metric ρK (a, b) = maxt∈[0,τ ]{|ak(t) − bk(t)|, 1 ≤ k ≤ K} for
a, b ∈ D[0, τ ]K . The essential asymptotic results for the baseline cumulative hazard function estimator are summarized by
the following theorem.

Theorem 2. Under conditions C1–C6,Wn(t) converges uniformly in t ∈ [0, τ ] to zero in probability, and
√
nWn(t) converges

weakly to a zero-mean Gaussian random fieldW(t) inD[0, τ ]K , whereW(t) = (W1(t), . . . ,WK (t))′. The covariance function
betweenWj(t) andWk(t) is ξjk(s, t) = E(Φ1j(s)Φ1k(t)), where

Φik(t) =
∫ t

0

dMik(u)
sk(u;β0)

−

[∫ t

0

s(1)k (u;β0)
sk(u;β0)

dΛ0k(u)

]′
A−1(β0)

K∑
l=1

(ηilµil(β0)+ η̄ilνil(β0)) .

Furthermore, ξjk(s, t) can be consistently estimated by ξ̂jk(s, t) = 1
n

∑n
i=1 Φ̂ij(s)Φ̂ik(t), where

Φ̂ik(t) =
∫ t

0

dM̂ik(u; β̂E)

Ŝk(u; β̂E)
−

[∫ t

0

Ŝ(1)k (u; β̂E)

Ŝk(u; β̂E)
dΛ̂0k(u)

]′
Â−1(β̂E)

K∑
l=1

(
ηilµ̂il(β̂E)+ η̄il̂νil(β̂E)

)
.

4. Simulation study

Simulation studies are conducted to evaluate the finite sample performance of the proposed estimator (̂βE). The proposed
estimator is compared with the following three estimators: (a) The full-data estimate (̂βF ) given by maximizing (4) with X
observed for all the subjects under study,which is thewell knownpseudo-partial likelihood estimator [12]; (b) The complete
case estimate (̂βC ), which is the pseudo-partial likelihood estimator based only on the validation set; (c) The naive estimate
(̂βN ), which is the pseudo-partial likelihood estimator by substituting the auxiliary covariate W for the covariate X when
X is unobserved. Obviously, β̂F can only be calculated in simulation studies because X is only observed for subjects in the
validation set in real studies.
We simulateK = 2 failure typeswith the twobaseline hazard functions being both 1. Thepartially observed covariatesXi1

and Xi2 are generated from the uniform distribution U[0, 1]. The completely observed covariate (Zi1, Zi2) follows a bivariate
normal distribution with marginal mean 0, standard deviation 1, and Corr(Zi1, Zi2) = 0.8. The multivariate failure times
(T̃i1, T̃i2) are generated from the commonly used multivariate Clayton and Cuzick distribution [18], with the joint survival
function as:

S(t1, t2; Z1, Z2; X1, X2) =

{
2∑
k=1

exp(θ−1tkeβ
′Dk)− 1

}−θ
,

where β = (β1, β2)′ and Dk = (Xk, Zk)′. The positive parameter θ controls the degree of dependence between (T̃1, T̃2), with
θ → ∞ corresponding to independence and θ → 0 to the increasing positive correlation. Simple calculations show that
the failure times (t1, t2) are generated through:

t1 = −e−β
′D1 × ln(1− u1),

t2 = e−β
′D2 ln[1− a1 + a1(1− u2)−(θ+1)

−1
],

where u1 and u2 are independently generated from U(0, 1) and a1 = e−θ
−1t1eβ

′D1 .We set θ = 0.25 to represent a strong
dependence between two type failure times. For k = 1, 2, the auxiliary covariateWk is defined as

Wk = Xk + ek,
where ek ∼ N(0, σ 2) is a random error and σ is the parameter that controls the strength of the association betweenWk and
Xk. As σ increases,Wk becomes less informative about Xk. Censoring times are generated from U(0, C), where C is chosen
to yield a censoring rate, approximately being 80%.
Noting that the covariates X = (X1, X2) and Z = (Z1, Z2) are generated independently, we could let Z∗k = Wk in (5).

We use the Epanechnikov kernel function [19] with bandwidth Bk = (b1k), where b1k = 2σ̂Wkn
−1/3
k and σ̂Wk is the sample

standard deviation ofWk in the kth marginal validation set with sample size being nk. Note that Bk satisfies the bandwidth
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conditions C5 in Section 3. We use the approach to interpolating the neighboring points of continuous Z∗k as suggested by
Zhou and Wang [6] for the small sample correction.
The true parameter values in our simulation studies are β1 = 0.693 and β2 = −0.2. We set σ = 0.1 and 0.6, which

lead to the correlation coefficient between X and W approximately being 0.94 and 0.43, representing the high and low
informative strength of W for X , respectively. The validation set proportion studied are ρ of 30% and 50%. The number of
independent groups are n = 300 and n = 600. For each simulation configuration, 1000 replicated samples are generated.
The sample standard deviations of the 1000 estimates are given in the corresponding SD columns. The SE columns give the
average of the estimated standard errors. The coverage probabilities of the 95% confidence intervals for the true parameters
using the estimated standard errors are listed in the CI columns.
Table 1 displays the simulation results. All four estimators for β2 work well in all considered scenarios. The proposed

estimator for β2 is shown to be more efficiency than the complete case estimator β̂C . For the estimators of β1, we have
the following observations: (i) The naive estimator β̂N is biased and the bias increases as the association betweenW and X
becomes weaken (i.e. σ increases). The proposed estimator β̂E corrects this bias very well, especially when the sample size
is not too small. For example, when σ = 0.6, which corresponds to the situation thatW is less informative about X , β̂E is less
accurate in estimatingβ1when group size n = 300 as indicated by the amount of biases shown in theβ1 estimates. However,
this bias is deducted drastically when we increase n to 600. (ii) The standard deviation (SD) of the proposed estimator is
always smaller than that of the complete case estimator, and is not much larger than that of the full-data estimator when
σ = 0.1. Specifically, when n = 300 and σ = 0.1, the relative efficiency of the proposed estimator versus the full-data
estimator, which is defined as the ratios of empirical variance of the full-data estimator to that of the proposed estimator,
are 0.90 and 0.975 at 30% and 50% validation fraction, respectively. (iii) The relative efficiency of proposed estimator over
the complete case estimator is higher when σ is small or the validation fraction is low. For example, the relative efficiency of
β̂E over β̂C for validation fraction being 0.3 and 0.5 are 3.35 and 2.19 at σ = 0.1, 1.76 and 1.35 at σ = 0.6, respectively. This
suggests that the proposed method is more beneficial compared with the complete case estimator when used in situations
with a small validation fraction or a high informative auxiliary covariate. (iv) The estimated standard errors (SE) are very
close to the true standard deviations (SD), and the coverage probabilities of the 95% confidence intervals also suggest that
the asymptotic approximations in the sample sizes considered are of satisfactory.

5. Analysis of the SOLVD study

In this section, we illustrate the proposedmethodwith a data set from the Study of Left Ventricular Dysfunction (SOLVD)
[3]. This data has been previously analyzed by several authors, including Liu, Zhou and Cai [11]. The SOLVD study was a
randomized, double-masked, and placebo-controlled trial between 1986 and 1991. The trial had a three-year recruitment
and a two-year follow-up. The basic inclusion criteria for the prevention trial were: age between 21 and 80 years, inclusive,
no overt symptoms of congestive heart failure, and left ventricular ejection fraction less than 35 percent. Ejection fraction
is a number between 0 and 100 that measures the efficiency of the heart in ejecting blood. A total of 4228 patients with
asymptomatic left ventricular dysfunction were randomly assigned to receive either enalapril or placebo at one of the 83
hospitals linked to 23 centers in the United States, Canada, and Belgium.
The primary clinical issues of interest are the effects of covariates on the risk of heart failure and on the first myocardial

infarction (MI) after adjusting for the confounding variables. The covariates of interest are ejection fraction, patient’s gender
(SEX), which is coded 1 for male and 0 for female; treatment (TRT), which is coded as 1 for enalapril and 0 for placebo, and
patient’s age (AGE), which was measured in years. The average age of the patients is 59 years old with a standard deviation
of 10 years. The covariates of SEX, AGE, and TRT were recorded for almost all of the subjects, but only 108 among the total
of 4228 patients have their ejection fraction accurately measured using a standardized radionucleotide technique (LVEF).
A related nonstandardized measure (EF) was, however, ascertained for all the patients. Therefore, the nonstandardized
measure (EF) can be used as the auxiliary for the standardized measure for ejection fraction (LVEF) in this case. Both LVEF
and EF are continuous quantities measured in percentage. One way is to discrete the EF variable through its quartiles as
Liu, Zhou and Cai [11], however, discretizing the continuous variable may lead to loss of efficiency because a lower order
scale is used in the analysis. Hence, our proposed method is required to handle the continuous auxiliary covariate in the
multivariate failure times in the SOLVD study to investigate the effect of LVEF on both the risk of heart failure and the
non-fatal MI adjusted by other confounding variables.
Let k denote failure type with k = 1 for heart failure and k = 2 for non-fatal MI and i denote the patient with

i = 1, . . . , 4228. Considering that the effects of the covariates on different failure times may be different, we set Xik =
(LVEFik, LVEFik ∗ I(k = 2))′,Wik = EFik, Zik = (TRTik, SEXik, AGEik, TRTik ∗ I(k = 2), SEXik ∗ I(k = 2), AGEik ∗ I(k = 2))′ in
terms of the notation introduced in the previous sections. Denote by α = (α′1, α

′

2)
′ the unknown regression coefficients,

where α1 = (β1, γ1)′ and α2 = (β2, β3, β4, γ2, γ3, γ4)′.
We use the following marginal hazards model to fit the SOLVD data:

λik(t|Xik, Zik,Wik) = λ0k(t)rik(α, t), (9)

where

rik(α, t) =
{
exp(α′1Xik + α

′

2Zik) when Xik is observed,
φik(α, t) when Xik is missing,
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Table 1
Simulation results comparing β̂E , β̂N , β̂C and β̂F with censoring rate 80% based on 1000 replications. ρ is the validation fractiona .

β1 = 0.693 β2 = −0.2
ρ σ Method Mean SD SE CI Mean SD SE CI

n = 300

1 – β̂F 0.695 0.322 0.322 0.950 −0.197 0.091 0.093 0.950
0.3 – β̂C 0.722 0.622 0.601 0.939 −0.189 0.173 0.172 0.944

0.1 β̂N 0.642 0.302 0.310 0.958 −0.202 0.093 0.093 0.949
β̂E 0.692 0.340 0.348 0.960 −0.200 0.092 0.095 0.955

0.6 β̂N 0.165 0.163 0.158 0.084 −0.197 0.091 0.093 0.957
β̂E 0.562 0.469 0.462 0.936 −0.195 0.090 0.095 0.965

0.5 – β̂C 0.709 0.482 0.461 0.941 −0.194 0.132 0.132 0.943
0.1 β̂N 0.663 0.303 0.313 0.950 −0.201 0.093 0.093 0.950

β̂E 0.700 0.326 0.337 0.957 −0.199 0.092 0.094 0.955
0.6 β̂N 0.213 0.179 0.178 0.224 −0.197 0.091 0.093 0.956

β̂E 0.630 0.415 0.405 0.942 −0.196 0.090 0.094 0.958

n = 600

1 – β̂F 0.700 0.225 0.227 0.950 −0.198 0.064 0.065 0.956
0.3 – β̂C 0.707 0.416 0.418 0.951 −0.198 0.124 0.120 0.939

0.6 β̂N 0.172 0.113 0.112 0.005 −0.197 0.064 0.065 0.955
β̂E 0.673 0.412 0.417 0.956 −0.196 0.064 0.067 0.961

0.5 – β̂C 0.703 0.279 0.272 0.944 −0.199 0.076 0.078 0.949
0.6 β̂N 0.298 0.148 0.146 0.236 −0.197 0.064 0.065 0.957

β̂E 0.698 0.278 0.272 0.946 −0.195 0.064 0.066 0.957
a The marginal models λk(t; Xk, Zk) = exp(β1Xk + β2Zk)(k = 1, 2) with β1 = log(2)

.
= 0.693 and β2 = −0.2, where X1 and X2 are generated

independently from the U(0, 1) and (Z1, Z2) is from a multi-normal distribution with mean zero, unit standard error and Corr(Z1, Z2) = 0.8. The auxiliary
variableWk = Xk + ek , where ek ∼ N(0, σ 2). β̂E = proposed estimator, β̂C = complete case estimator, β̂N = naive estimator, β̂F = full-data estimator. ‘–’
represents the corresponding method does not depend on the σ . Mean is the sample mean of the estimator β̂ , SD is the sampling standard deviation of β̂ ,
SE is the sampling mean of the standard error estimator, and CI is the coverage probability of the 95% confidence interval.

Table 2
SOLVD data analysis results: The proposed method versus the complete case method.

Proposed method Complete case method
Covariate Est. exp(Est.) SE p-value Est. exp(Est.) SE p-value

Heart failure
LVEF (β1) −0.064 0.938 0.003 <0.001 −0.075 0.928 0.038 0.051
TRT (β2) −0.530 0.589 0.066 <0.001 −0.835 0.434 0.564 0.140
SEX (β3) −0.283 0.753 0.115 0.014 0.405 1.499 1.089 0.710
AGE (β4) 0.026 1.026 0.002 <0.001 0.035 1.035 0.033 0.300
Non-fatal MI
LVEF (β1 + γ1) −0.121 0.886 0.058 0.038 −0.012 0.988 0.042 0.780
TRT (β2 + γ2) −0.382 0.682 0.526 0.467 −0.703 0.495 0.875 0.420
SEX (β3 + γ3) −0.043 0.958 1.769 0.981 −0.838 0.433 1.058 0.430
AGE (β4 + γ4) 0.012 1.012 0.153 0.938 0.003 1.003 0.032 0.920

with φik(α, t) = E{eα
′
1Xik(t)|Yik(t) = 1,Wik(t), Zik(t)} exp(α′2Zik(t)). Liu, Zhou and Cai [11] checked the conditional

dependence structure for SOLVD data and found that LVEF is conditional independent of TRT, SEX, and AGE, giving EF.
Therefore, when Xik is missing, φik(α, t) can be regarded as E{eα

′
1Xik(t)|Yik(t) = 1,Wik(t)} exp(α′2Zik(t)) and thus can be

estimated by (5) with Z∗ik = Wik. We use Epanechnikov kernel with the bandwidth b1k = 2σ̂kn
−1/3
k with nk = 108 being the

number of subjects in validation set and σ̂k being the sample standard deviation ofW ′iks in the kth marginal validation set.
Table 2 presents the results of data analysis. The proposed estimated pseudo-partial likelihoodmethod is comparedwith

the complete case pseudo-partial likelihood method. The proposed method utilizes the information contained in both the
auxiliary (EF) for all subjects and data in the non-validation set while the complete case analysis relies only on validation
set with the available true ejection fraction (LVEF).
The p-values in Table 2 indicate that at 0.05 significance level, LVEF, TRT, SEX, and AGE all have statistically significant

effects on the heart failure under the proposed method, while only the effect of LVEF on the heart failure is approximately
significant under the complete case analysis. The results from the proposed method also indicate that the effects of TRT,
SEX, and AGE are different on the heart failure and on the non-fatal MI. Specifically, TRT, SEX, and AGE do not seem to affect
the risk of non-fatal MI, but is related to the risk of heart failure.
The variance for coefficient α is estimated using the proposed method. For estimating the effect of LVEF on heart failure,

there are substantial efficiency gains by using the proposed approach over the complete case analysis. The proposedmethod
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provides more precise 95% confidence intervals for the effect of covariates on heart failure. For instance, the 95% confidence
interval for effect of LVEF on heart failure is (−0.070, −0.058) for the proposed method, and (−0.149, −0.001) for the
complete case method.
Utilizing the auxiliary information in the proposed method, we had in effect regained the statistical power of the study

that would have been lost had one conducted the complete case analysis. Therefore, our proposed method is more efficient
and applicable than the complete case method.

6. Concluding remarks

In this paper, we studied an estimated pseudo-partial likelihood approach for multivariate survival data with continuous
auxiliary. The proposed method is based on the kernel smoother technique and is nonparametric with respect to the
association between the unobserved primary covariate and available auxiliary variable. Simulation studies demonstrate that
the proposed estimator works well in the scenarios considered and outperforms the estimator which uses only data from
the validation set. The real data example also indicates that amuchmore precise estimator can be obtained by incorporating
the auxiliary covariate information into the statistical inference. Hence, the proposed method can achieve more statistical
efficiency than what would be gained by using only the validation set.
We have a couple of cautionary notes on the limitations of the proposed method. First, for the reason of curse of

dimensionality, the proposed method will not work well if the dimension of kernel smoother is high (e.g. d > 3). One
possible way to avoid the potential issue due to the high dimensionality is to create the auxiliary using a predicted model
with possible multiple predictors so that one-dimensional kernel smoother is applicable, or to employ some techniques
(e.g. introducing some additive structure) in the dimension reduction. Second, when the auxiliary W is less informative
about X , the proposed estimator tends to underestimate the true parameter. Increasing the fraction of the validation set
sample or the total sample size can help to alleviate this problem as shown in the simulation study.
Although frequently used bandwidth is adopted in both our simulation study and SOLVD data analysis, it is valuable

to consider some bandwidth selection criteria such as the generalized cross validation (GCV). On the other hand, Cai and
Prentice [20] showed that more efficient estimator for the regression parameter could be obtained by introducing weights
into the pseudo-partial likelihood score equations. In the sequel, wewill introduce suitable weights to our proposedmethod
to further improve the efficiency of estimator.
Finally, since the additive hazards model is an alternative for Cox’s proportional hazards model when it is unsuitable

to fit the data, therefore it is worthwhile to consider the nonparametric kernel smoothing method in the additive hazards
model when there exists auxiliary covariate. The related investigations are currently under way.
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Appendix. Proofs of the asymptotic properties

In the following, we use notation→p,→a.s., and→d to denote the convergence in probability, convergence in probability
1, and convergence in distribution, respectively.
Denote the determinant of matrix Bk by |Bk|. Let bk = (b1k, . . . , bdk)′ and α∗0k = (α

∗

0k1, . . . , α
∗

0kd) such that each α
∗

0kj is
non-negative integer and |α∗0k| ≡

∑d
j=1 α

∗

0kj = α0k. For l-vector u = (u1, . . . , ul) and v = (v1, . . . , vl), define u
v
=
∏l
j=1 ul

vl

and uv = (u1v1, . . . , ulvl).

Proof of Lemma 1. Let Z∗k be the domain of the process Z
∗

k (t), t ∈ [0, τ ]. Let Pn be the empirical measure from the n i.i.d.
observations and P be the corresponding probability measure. For fixed z∗k;0 ∈ Z∗k , let

Lkn(t, β1, z
∗

k;0) = Pn
[
|Bk|−1ηkYk(t)Qk

{
B−1k {Z

∗

k (t)− z
∗

k;0} exp{β
′

1Xk(t)}
}]
.

Note that the stochastic processes Z∗k (t), Xk(t), Yk(t), and exp{β
′

1Xk(t)} have bounded total variation over t × β1 ∈
[0, τ ] × B1. It follows from the Lemma 9.10 of Kosorok [21] that they are all VC-subgraph with finite VC-index. Using the
similar arguments used in Yin, Li and Zeng [22], we can obtain that

sup
Θk

∣∣Lkn(t, β1, z∗k;0)− P
[
|Bk|−1ηkYk(t)Qk

{
B−1k {Z

∗

k (t)− z
∗

k;0} exp{β
′

1Xk(t)}
}]∣∣

= Op

(
log n
√
n‖Bk‖d

)
,

whereΘk = [0, τ ] ×B1 × Z∗k .
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On the other hand, by the Taylor expansion,

P
[
|Bk|−1ηkYk(t)Qk

{
B−1k {Z

∗

k (t)− z
∗

k;0} exp{β
′

1Xk(t)}
}]
=

∫
(b1k · · · bdk)−1Qk{B−1k (v− z

∗

k;0)}hk(v, s) exp(β
′

1s)dvds

=

∫
Qk(u)hk(bku+ z∗k;0, s) exp(β

′

1s)duds

=

∫
Qk(u)

α0k−1∑
|α|=0

Dαv hk(z
∗

k;0, s)
α!

bαku
α exp(β ′1s)duds+

∫ D
α∗0k
v hk(z

∗Ě
k;0, s)

α0k!
uα
∗
0kQk(u) exp(β ′1s)dsdu

 b
α∗0k
k

=

∫
hk(z∗k;0, s) exp(β

′

1s)ds+ O(b
α∗0k
k )

= gk(z∗k;0)
∫ hk(z∗k;0, s)

gk(z∗k;0)
exp(β ′1s)ds+ O(‖Bk‖

α0k)

= gk(z∗k;0)E{exp(β
′

1Xk(t)) | Yk(t) = 1, Z
∗

k (t) = z
∗

k;0} + O(‖Bk‖
α0k),

where Dαv hk(v, s) is the αth order derivative of hk(v, s) respect to v, gk(z
∗

k;0) is the density function of (Yk(t) = 1, Z
∗

k (t) =
z∗k;0), and z

∗Ě
k;0 is on the line segment of z

∗

k;0 and bku.
Therefore, we can conclude that by condition C5,

sup
Θk

∣∣Lkn(t, β1, z∗k;0)− gk(z∗k;0)E{exp(β ′1Xk(t)) | Yk(t) = 1, Z∗k (t) = z∗k;0}∣∣→p 0.

On the other hand, let β1 = 0, then we can obtain that

sup
Θk

∣∣Lkn(t, 0, z∗k;0)− gk(z∗k;0)∣∣→p 0.

Consequently, it follows straightforwardly that

sup
Θk

∣∣∣∣∣ Lkn(t, β1, z∗k;0)Lkn(t, 0, z
∗

k;0)
− E{exp(β ′1Xk(t)) | Yk(t) = 1, Z

∗

k (t) = z
∗

k;0}

∣∣∣∣∣→p 0.

Furthermore, note that

φ̂ik(t;β) =
Lkn(t, β1, Z

∗

ik(t))
Lkn(t, 0, Z

∗

ik(t))
exp(β ′2Zik(t)),

then

sup
t∈[0,τ ],β∈B

∣∣̂φik(t;β)− φik(t;β)∣∣→p 0.

Similarly, for a = 1, 2, we can also prove that

sup
t∈[0,τ ],β∈B

‖φ̂
(a)
ik (t;β)− φ

(a)
ik (t;β)‖→p 0. (10)

Thus, we have the first half of the lemma proved. With respect to the second half part, we sketch the proof when l = 0.
The remaining conclusions can be proved in the similar way so they are omitted here.
First of all, by (10) and the definition of Ŝk and Sk, we can prove

sup
t∈[0,τ ],β∈B

‖̂S(0)k (t;β)− S
(0)
k (t;β)‖→p 0.

Second, by the uniform strong law of large numbers, we have

sup
t∈[0,τ ],β∈B

‖S(0)k (t;β)− s
(0)
k (t;β)‖→a.s. 0.

It follows directly that

sup
t∈[0,τ ],β∈B

‖̂S(0)k (t;β)− s
(0)
k (t;β)‖→p 0.

Thus, the proof of Lemma 1 has been done. �
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Proof of Theorem 1. Consistency
Note that β̂E solves n−1Û(β) = 0. Following closely the arguments of Foutz [17], one can show that β̂E is consistent for

β0, provided that:
(I) n−1∂Û(β)/∂β exists and is continuous in an open neighborhood B of β0;
(II) n−1∂Û(β)/∂β converges in probability to a fixed function, say, H(β), uniformly in an open neighborhood of β0;
Furthermore, every element of H(β) is a continuous function of β in the neighborhood of β0 and H−1(β0) exists;

(III) n−1∂Û(β0)/∂β is negative-definite with probability going to 1;
(IV) n−1Û(β0)→p 0.
Obviously, (I) is satisfied. To verify (II), define

Ûk(t;β) =
n∑
i=1

∫ t

0

[
r̂ (1)ik (u;β)
r̂ik(u;β)

−
Ŝ(1)k (u;β)

Ŝ(0)k (u;β)

]
dNik(u),

then from (8), Û(β) =
∑K
k=1 Ûk(τ ;β). After simple algebraic manipulations, we obtain that

∂Ûk(t;β)
∂β

=

n∑
i=1

∫ t

0

 r̂ (2)ik (u;β)
r̂ik(u;β)

−

{
r̂ (1)ik (u;β)
r̂ik(u;β)

}⊗ 2

−
Ŝ(2)k (u;β)

Ŝ(0)k (u;β)
+

{
Ŝ(1)k (u;β)

Ŝ(0)k (u;β)

}⊗ 2
 dNik(u).

Define

Ck(t;β) =
n∑
i=1

∫ t

0

 r̂ (2)ik (u;β)
r̂ik(u;β)

−

{
r̂ (1)ik (u;β)
r̂ik(u;β)

}⊗ 2

−
Ŝ(2)k (u;β)

Ŝ(0)k (u;β)
+

{
Ŝ(1)k (u;β)

Ŝ(0)k (u;β)

}⊗ 2


× Yik(u)rik(u;β0)λ0k(u)du,

then

1
n
∂Ûk(t;β)
∂β

−
1
n
Ck(t;β)

=
1
n

n∑
i=1

∫ t

0

 r̂ (2)ik (u;β)
r̂ik(u;β)

−

{
r̂ (1)ik (u;β)
r̂ik(u;β)

}⊗ 2

−
Ŝ(2)k (u;β)

Ŝ(0)k (u;β)
+

{
Ŝ(1)k (u;β)

Ŝ(0)k (u;β)

}⊗ 2
 dMik(u)

is a square integrable martingale, which converges in probability to zero uniformly in β ∈ B by Lenglart’s inequality
[23]. Thus, 1n

∂Ûk(t;β)
∂β

converges in probability to the same limit as does 1nCk(t;β), uniformly in β ∈ B. It follows that
1
n
∂Û(t;β)
∂β

and 1n
∑K
k=1 Ck(t;β) converges in probability to the same limit. Let H(β) denote the uniformly convergence limit

of 1n
∑K
k=1 Ck(τ ;β). On the other hand, by Lemma 1, we can show that

H(β) =
K∑
k=1

∫ τ

0

s(3)k (t;β)− s(4)k (t;β)−
 s(2)k (t;β)
s(0)k (t;β)

−

{
s(1)k (t;β)

s(0)k (t;β)

}⊗ 2
 s(0)k (t;β0)

 λ0k(t)dt.
Hence,

sup
β∈B

∥∥∥∥∥1n ∂Û(β)∂β
− H(β)

∥∥∥∥∥→p 0. (11)

Note that s(3)k (t;β0) = s
(2)
k (t;β0), then H(β0) = −A(β0) is just as what we defined in condition C4 and is negative-

definite. Thus, (II) is done. (III) is followed straightforwardly from (I), (II), and (11).
To prove (IV), we first rewrite

Ûk(t;β) = Ûk:1(t;β)+ Ûk:2(t;β),

where

Ûk:1(t;β) =
n∑
i=1

∫ t

0

[
r̂ (1)ik (u;β)
r̂ik(u;β)

−
Ŝ(1)k (u;β)

Ŝ(0)k (u;β)

]
dMik(u),

and

Ûk:2(t;β) =
n∑
i=1

∫ t

0

[
r̂ (1)ik (u;β)
r̂ik(u;β)

−
Ŝ(1)k (u;β)

Ŝ(0)k (u;β)

]
Yik(u)rik(u;β)λ0k(u)du.
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By Lemma 1, the fact thatMik(t) is a square integrable martingale, and Lenglart’s inequality [23], we can show that

1
√
n
Ûk:1(τ ;β0) =

1
√
n

n∑
i=1

∫ τ

0

[
r (1)ik (u;β0)
rik(u;β0)

−
s(1)k (u;β0)

s(0)k (u;β0)

]
dMik(u)+ op(1).

By the arguments used in Zhou and Wang [6], it can be also shown that

1
√
n
Ûk:2(τ ;β0) = −

1
√
n
n− nk
nk

∑
j∈Vk

Hjk(β0)+ op(1).

Hence, we obtain that

1
√
n
Ûk(τ ;β0) =

1
√
n

∑
j∈Vk

{∫ τ

0

[
ϕ
(1)
jk (u;β0)

ϕjk(u;β0)
−
s(1)k (u;β0)

s(0)k (u;β0)

]
dMjk(u)−

1− ρk
ρk

Hjk(β0)

}

+
1
√
n

∑
i∈V̄k

∫ τ

0

[
φ
(1)
ik (u;β0)
φik(u;β0)

−
s(1)k (u;β0)

s(0)k (u;β0)

]
dMik(u)+ op(1)

=
1
√
n

∑
j∈Vk

µjk(β0)+
1
√
n

∑
i∈V̄k

νik(β0)+ op(1). (12)

Note that Mik(t) is a martingale with mean zero and E(Hjk(β0)) = 0, then by strong law of large numbers, we have
1
n Ûk(τ ;β0)→a.s. 0, so does 1n Û(β0)→a.s. 0. Thus, (IV) is verified.
Hence, we have shown that β̂E converges in probability to β0.

Asymptotic normality
By Taylor expansion of Û(β) around the true parameter β0, we have

√
n(β̂E − β0) =

[
−
1
n
∂Û(β∗)
∂β

]−1 [
1
√
n
Û(β0)

]
, (13)

where β∗ is on the line segment between β̂E and β0.
By (11), the consistency of β̂ , and the continuity of 1n

∂Û(β)
∂β
, we have[

−
1
n
∂Û(β∗)
∂β

]−1
→p A−1(β0). (14)

On the other hand, the two sums on the right-hand side of (12) are mutually independent since they are from validation
set and non-validation set, respectively. Thus, by multivariate central limit theorem,

1
√
n
Û(β0)→d N(0, B1(β0)+ B2(β0)). (15)

Combining (13)–(15), we have that
√
n(β̂E − β0)→d N(0,Σ(β0)). �

Proof of Theorem 2. Note that

sup
t∈[0,τ ]

∣∣Λ̂0k(t)−Λ0k(t)∣∣ ≤ sup
t∈[0,τ ]

∣∣∣∣∣∣∣∣
∫ t

0

1
n

n∑
i=1
dMik(u)

Ŝ(0)k (u; β̂W )

∣∣∣∣∣∣∣∣+ sup
t∈[0,τ ]

∣∣∣∣∣
∫ t

0

S(0)k (u;β0)− Ŝ
(0)
k (u; β̂W )

Ŝ(0)k (u; β̂W )
dΛ0k(u)

∣∣∣∣∣ .
The first term on the right-hand side of above inequality converges almost surely to zero by Lemma 1 and Lemma A.1

in the Appendix of Kulich and Lin [7]; Likewise, it can be shown that the second term is also asymptotically negligible.
Therefore, Λ̂0k(t) converges almost surely to the cumulative hazard functionΛ0k(t), uniformly in t .
By Lemma 1 and Theorem 1, it can be shown that

√
n(Λ̂0k(t)−Λ0k(t)) =

1
√
n

∫ t

0

n∑
i=1
dMik(u)

Ŝ(0)k (u; β̂W )
+
√
n
∫ t

0

S(0)k (u;β0)− Ŝ
(0)
k (u; β̂W )

Ŝ(0)k (u; β̂W )
dΛ0k(u)
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=
1
√
n

∫ t

0

n∑
i=1
dMik(u)

s(0)k (u;β0)
−

[∫ t

0

s(1)k (u;β0)

s(0)k (u;β0)
dΛ0k(u)

]′
√
n(β̂W − β0)+ op(1)

=
1
√
n

n∑
i=1

Φik(t)+ op(1).

Thus

√
nWn(t) =

1
√
n

n∑
i=1

(Φi1(t), . . . ,ΦiK (t))′ + op(1),

which converges in finite-dimensional distributions to a normal distribution with mean zero by the multivariate central
limit theorem. If the tightness of

√
nWn(t) holds, we can conclude that

√
nWn(t) converges to a zero-mean Gaussian process

W(t) = (W1(t), . . . ,WK (t))′ with covariance function betweenWj(t) andWk(t) being ξjk(s, t) = E(Φ1j(s)Φ1k(t)).
Therefore, to complete the proof, we only need to prove the tightness of

√
nWn(t). Since the space of D[0, τ ]K is

equipped with uniform metric and thus marginal tightness implies joint tightness, it suffices to verify the tightness

of 1
√
n

∑n
i=1

∫ t
0
dMik(u)

s(0)k (u;β0)
and the tightness of

[∫ t
0
s(1)k (u;β0)

s(0)k (u;β0)
dΛ0k(u)

]′
√
n(β̂W − β0). From the weak convergence of

1
√
n

∑n
i=1Mik(t),

1
√
n

∑n
i=1

∫ t
0
dMik(u)

s(0)k (u;β0)
converges weakly to a zero-mean Gaussian process. It then follows from Theorem

10.2 of Pollard [24] that 1
√
n

∑n
i=1

∫ t
0
dMik(u)

s(0)k (u;β0)
is tight. The tightness of

[∫ t
0
s(1)k (u;β0)

s(0)k (u;β0)
dΛ0k(u)

]′
√
n(β̂W − β0) follows from

Theorem 1. Thus, we complete the proof. �
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